Jaroslav Ježek Normal subsets of quasigroups

Commentationes Mathematicae Universitatis Carolinae, Vol. 16 (1975), No. 1, 77--85

Persistent URL: http://dml.cz/dmlcz/105606

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,1 (1975)

NORMAL SUBSETS OF QUASIGROUPS

Jaroslav JEŽEK, Praha

<u>Abstract</u>: A characterization of normal subsets (i.e. blocks of normal congruences) in quasigroups is given.

<u>Key words</u> :	Quasigroup,	1 00 p,	normal	subset,	congruence.
AMS: 20N05	5		Ref.	Ž.: 2.7	21.7

1. <u>A connection between quasigroups and loops</u>. The reader is supposed to be acquainted with Section 1 of [4]. Terminology can be found in [1] and [2].

Quasigroups will be considered as algebras with three binary operations. The class \mathcal{K} of all quasigroups is a variety. \mathcal{K}^* denotes the variety of all algebras $Q(.,/,\backslash, e)$ such that $Q(.,/,\backslash)$ is a quasigroup and $e \in Q$.

We denote by \mathcal{M} the variety of all algebras Q(*, //, \, f, \propto , β , γ , σ) satisfying the following four conditions: (i) Q(*, //, \, f) is a loop with the unit f;

(ii) \propto , β , γ , σ are permuttions of Q (and thus unary operations in Q);

(iii) $\mathcal{T} = \alpha^{-1}$ and $\mathcal{O} = \beta^{-1}$;

(iv) $\beta(f) = f$.

- 77 -

Further, we define a translation φ of the type $\{., /, \setminus, e\}$ into the type $\{*, /, \setminus, f, \infty, \beta\}$ γ , σ and a translation ψ of $\{*, //, \mathbb{N}, f, \infty$, β, γ, σ into $\{., /, \setminus, e\}$ as follows: $\varphi(.) = \alpha(\mathbf{x}) \ast \beta(\mathbf{y}),$ $\varphi(/) = \gamma'(\mathbf{x} / \beta(\mathbf{y})),$ $\varphi(\mathbf{n}) = \sigma'(\mathbf{x}(\mathbf{x}) \mathbf{n} \mathbf{y}),$ φ (e) = f, $\psi(\mathbf{x}) = (\mathbf{x}/\mathbf{e}) ((\mathbf{e}/\mathbf{e}) \setminus \mathbf{y}),$ $w(\#) = (x / ((e / e) \setminus y)) e$, ψ (\mathbb{N}) = (e / e) ((\mathbf{x} / e) \setminus y), w(f) = e, $\eta (\infty) = xe$, $w(\beta) = (e / e) x$, $\psi(\gamma) = x / e$, $w(\sigma) = (e / e) \setminus x$.

Corresponding to these translations, there are mappings T_{cp} of ${\mathfrak M}$ into ${\mathfrak K}^*$ and T_{w} of ${\mathfrak K}^*$ into ${\mathfrak M}$.

l.l. <u>Theorem</u>. The varieties \mathfrak{X}^* and \mathfrak{M} are rationally equivalent under φ , ψ .

<u>Proof</u> is a matter of counting.

2. <u>Normal subsets</u>. By a normal congruence of a quasigroup $Q(.,/, \setminus)$ we mean any congruence of the algebra $Q(.,/, \setminus)$. In other words: \sim is a normal congruence iff it is a congruence of Q(.) and the factor Q/\sim is a quasigroup. A subset H of Q is called

- 78 -

normal if it is a block of a normal congruence of Q.

In [3] normal subsets of finite and in [1] normal subquasigroups of arbitrary quasigroups are characterized. Belousov's proof is complicated. We shall find a more simple proof which can be, moreover, applied to arbitrary normal subsets. The idea is the following: Theorem 1.1 enables us to restrict ourselves to the case of normal subloops and the proof for normal subloops is easy.

2.1. <u>Proposition</u>. Let \sim be a normal congruence of a quasigroup Q; let H be a block of \sim and e an element of H. Then

(i) $a \sim b \iff aH = bH \iff Ha = Hb \iff ea / b \in H \iff$ $\iff (a / e) \setminus b \in H \iff b \in (a / e) H ;$

(ii) $(a / e) H = H(e \setminus a)$ for all $a \in Q$; the set (a / e) H is just the block of \sim containing a.

Proof is easy.

Let Q be a quasigroup and e an arbitrary element of Q. By an e-inner permutation of Q we mean a permutation p belonging to the associated group of Q and satisfying p(e) = e. If e is given, then the set of all e-inner permutations of Q is evidently a subgroup of Q.

2.2. <u>Proposition</u>. Let Q be a quasigroup and e an element of Q. For any a, $b \in Q$ put

$$R_{a,b} = R_{e^{(ea,b)}}^{-1} \circ R_{b} \circ R_{a} ,$$
$$L_{a,b} = L_{(a,be)/e}^{-1} \circ L_{a} \circ L_{b} ,$$

- 79 -

$$T_a = L_{ea/e}^{-1} \bullet R_a$$

The group of all e-inner permutations of Q is just the subgroup of the permutation group of Q generated by all these permutations $R_{a,b}$, $L_{a,b}$ and T_a (where a and b range over Q).

Proof is contained in [1].

If Q is a loop with the unit 1, then 1-inner permutations of Q are called its inner permutations.

2.3. Lemma. A subloop H of a loop Q is normal iff any inner permutation of Q maps H into H.

<u>Proof</u>. Suppose first that H is normal, so that H is a block of a normal congruence \sim of Q. If p is an inner permutation and h \in H, then h \sim l and thus $p(h) \sim p(1) = l \in H$.

Suppose now that H is a sublopp and any inner permutation of Q maps H into H. Taking inverse permutations into account we see that any inner permutation maps H onto H. Define an equivalence \sim on Q by

 $a \sim b$ if aH = bH.

Evidently, H is a block of \sim . We shall show that \sim is a normal congruence of Q .

We have a . bH = ab . H for all a, b \in Q . Indeed, a . bH = L_a • L_b(H) = L_{ab} • L_{a,b}(H) = L_{ab}(H) .

We have $a \sim b \iff b \in aH \iff a \sim b \in H$. Indeed, aH = bH implies $b = b \cdot l \in b_H = aH$ and $b \in aH$ implies

> 80 -

 $a \setminus b \in H$ evidently; if $a \setminus b \in H$, then aH = a. . $(a \setminus b)H = a(a \setminus b)$. H = bH.

We have $a \sim b \longrightarrow ac \sim bc$ and $a \sim b \longrightarrow ca \sim cb$. Indeed, the inner permutation $L_{ac}^{-1} \circ R_{c} \circ L_{a}$ transforms $a \geq b$ into $ac \geq bc$ and the inner permutation $L_{ca}^{-1} \circ L_{c} \circ L_{a}$ transforms $a \geq b$ into $ca \geq cb$.

This shows that \sim is a normal congruence, so that H is normal.

2.4. <u>Theorem</u>. Let a quasigroup Q, a subset H of Q and an element $e \in H$ be given. H is a normal subset of Q iff the following two conditions are satisfied: (i) any e-inner permutation of Q maps H into H; (ii) if (a / e)b = c and two of the elements a, b, c belong to H, then the third belongs to H, too.

<u>Proof.</u> Suppose first that H is normal, so that H is a block of a normal congruence \sim of Q. If p is an einner permutation and h \in H, then h \sim e and thus p(h) \sim \sim p(e) = e \in H. Let (a / e)b = c. If a, b \in H, then c = (a / e)b \sim (e/e)e = e \in H. If a, c \in H, then b = = (a / e) \setminus c \sim (e / e) \setminus e = e \in H. If b, c \in H, then a = (c / b)e \sim (e / e)e = e \in H.

Suppose now that the conditions (i) and (ii) are satisfied. Taking inverse permutations into account we see that any e-inner permutation maps H onto H. Put $Q(*, //, \land, 1, \alpha, \beta, \gamma, \sigma') = T_{\psi}(Q(., /, \land, e))$. If $b \in Q$, then $(e / e) \land b \in H$ iff $b \in H$. Indeed,

- 81 -

 $(e / e) \setminus b = L_{e/e}^{-1}$ (b) and $L_{e/e}^{-1}$ is evidently an e-inner permutation.

This, together with (ii), proves the following: if $(a / e) ((e / e) \land b) = c$ and if two of the elements a, b, c belong to H, then the third belongs to H, too. As $a * b = (a / e) ((e / e) \land b)$, this means that H is a subloop of Q(*, / , \land).

The associated group of the loop $Q(*, / , \wedge)$ is contained in the associated group of $Q(., / , \wedge)$. Indeed, the left translation $x \mapsto a * x$ of $Q(*, / , \wedge)$ can be expressed as $L_{a/e} \circ L_{e/e}^{-1}$ and the right translation $x \mapsto x * a$ as $R_{(e/e)a} \circ R_e^{-1}$.

Consequently, any inner permutation of Q(*, /, *)is an e-inner permutation of Q(., /, *). From 2.3 it follows that H is a normal subloop of Q(*, /, *). Denote by \sim the corresponding normal congruence of Q(*, /, *). We have

 $a \sim b \iff a \land b \in H \iff (e / e) ((a / e) \land b) \in H$. If $x \in Q$, then $(e / e) x \in H \iff x \in H$, since $(e / e)_x = L_{e/e}$ (I) and $L_{e/e}$ is an e-innel permutation. Consequently,

$$a \sim b \iff (a / e) \setminus b \in H$$
.

Since the e-inner permutation $L_a^{-1} \circ R_e \circ L_{a/e}$ transforms (a / e) b into a be, we get a ~ b (----> (----> a``be ϵ H and consequently a ~ b(----> (e / e)(a be) ϵ ϵ H. However, (e / e) (a be) = ae be = ∞ (a) ∞ (b), so that

- 82 -

$$a \sim b \iff \infty(a) \sim \infty(b)$$
.

Further, we have $a \sim b \Rightarrow a / b \in H \Rightarrow (a / ((e / e) \ b)) e \in H$. The e-inner permutation $R_e \circ R_b^{-1} \circ L_{e/e} \circ R_{(e/e) b} \circ R_e^{-1}$ transforms $(a / ((e / e) \ b))e$ into (((e / e) a) / b)e = ((e / e) a) / ((e / e) b) = $= (\beta (a) / \beta (b)$, so that

 $a \sim b \longleftrightarrow \beta(a) // \beta(b) \in H \longleftrightarrow \beta(a) \sim \beta(b)$.

This shows that \sim is a congruence of the algebra $Q(*, /, \mathbb{N}, 1, \infty, \beta, \tau, \sigma)$. Consequently, the rational equivalence of \mathcal{K}^* and \mathcal{M} guarantees that \sim is a congruence of the algebra $Q(., /, \mathbb{N}, e)$ and thus a normal congruence of the quasigroup Q.

If H is a subquasigroup of Q, then clearly (ii) can be omitted. We shall give one more characterization of normal subquasigroups; another proof can be found in [1], too.

2.5. <u>Theorem</u>. Let a quasigroup Q, its subquasigroup H and an element $e \in H$ be given. H is a normal subquasigroup of Q iff aH. bH = ((ae. be) / e)H for all a, b $\in Q$.

<u>Proof</u>. Suppose first that H is a block of a normal congruence \sim . If h_1 , $h_2 \in H$, then

 $ah_1 \cdot bh_2 \sim ae$. be = ((ae . be) / e) e ϵ ((ae . be) /e) H .

- 83 -

If $h \in H$, then

((ae . be) / e)h \sim ((ae . be) / e)e = ae . be ϵ aH . bH .

Suppose now aH . bH = ((ae . be) / e)H for all a, b $\in Q$. As H is a subquasigroup, the condition (ii) of 2.4 is evidently satisfied, so that it is sufficient to verify the condition (i).

We have Ha = (ea / e)H. Indeed, if $h \in H$, then (e / e) $\setminus h \in H$, too, so that

$$ha = ((e / e) ((e / e) \setminus h)) ((a / e) e) \in (e / e)H$$
.

(a / e)H = (ea / e)H;

conversely, if $h \in H$, then there exists an $h \in H$ with $((((e / e) e) ((a / e) e)) / e)h = (e / e)h' \cdot (a / e)e$,

so that

(ea / e)h = (e / e)h'. (a / e)e = (e / e)h'. $a \in Ha$.

This proves $T_{a}(H) = H$.

We have a . bH = (a / e)e . bH $\subseteq (a / e)H$. bH = = $((a \cdot be) / e)H$; conversely, if h \in H , then there exists an h' \in H with $(((a / e)e \cdot be) / e)h = (a / e)e \cdot bh'$, so that

 $((a \cdot be) / e)h = (a / e \cdot e \cdot bh' = a \cdot bh' \in a \cdot bH \cdot$ This proves a $\cdot bH = ((a \cdot be) / e)H$, i.e. $L_{a,b}(H) = H \cdot$

We have Ha . b = (ea / e)H . $(b / e)e \leq (ea / e)H$. . $(b / e)H = ((ea. b) / e)H = ((e (e \land ea. b)) / e)H =$ = $H(e \land ea . b)$; conversely, if $h \in H$, then there exists

- 84 -

an h' \in H with ((ea . b) / e)h = (ea / e)h' . (b / e)e , so that

 $H(e \ ea \ b) = ((ea \ b) \ / \ e)H \subseteq (ea \ / \ e)H \ b = Ha \ b \ b$ This proves Ha \cdot b = H(e \ ea \cdot b) , i.e. $R_{a,b}(H) = H$.

This shows that any permutation T_a , T_a^{-1} , $L_{a,b}$, $L_{a,b}^{-1}$, $R_{a,b}$, $R_{a,b}^{-1}$ maps H into H. The same must hold for any composition of these permutations, i.e. (by 2.2) for aby e-inner permutation of Q.

References:

- [1] V.D. BELOUSOV: Osnovy teorii kvazigrupp i lup, Moskva, Nauka 1967.
- [2] R.H. BRUCK: A survey of binary systems, Springer-Verlag 1966.
- [3] G.N. GARRISON: Note on invariant complexes of a quasigroup, Ann.of Math.47(1946),50-55.
- [4] J. JEŽEK and T. KEPKA: Quasigroups, isotopic to a group, Comment.Math.Univ. Carolinae 16(1975),59-76.

Matematicko-fyzikální fakulta

Karlova universita

Sokolovská 83, 18600 Praha 8

Československo

(Oblatum 17.12.1974)