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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,1 (1975) 

NORMAL SUBSETS OF QUASIGROUPS 

Jaroslav JE.2EK, Praha 

Abstract: A characterization of normal subsets (i.e. 
blocks of normal congruences) in quasigroups is given. 

Key words: Quasigroup, loop, normal subset, congruence. 

AMS: 20N05 Ref. 2.: 2.721.7 

1. A connection between ouasijeroups and loops. The rea

der is supposed to be acquainted with Section 1 of [43. Ter

minology can be found in tl] and L 23. 

Quasigroups will be considered as algebras with three 

binary operations. The class % of all quasigroups is a 

variety. 3C* denotes the variety of all algebras 

Q( . , / , \ , e) such that Q( . , / , \ ) is a quasigroup 

and e e Q • 

We denote by 1H the variety of,all algebras 

Q( #• i ^ , \ , f , ct , ft , «y , of ) satisfying the following 

four conditions: 

(i) Q( # , / , \ , f) is a loop with the unit f ; 

(ii) t>c , ft * T * <̂  a r e permuations of Q (and thus unary 

operations in Q ); 

(iii) y = cc*"'1 and cT * /J~ • 

(iv) (i (f) =. f . 
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Further, we define a translation <p of the type 

« ( . , / , \ , e ? into the type U ,/ »^ i - " » * , ^ 

y , cf} end a translation ojr of U > // A J f t * > 

(I , y , <T} into •{ . , / , \ , e ] as follows: 

9? ( • ) > oc(x) * £ (?) f 

SP( / ) » r < * / ft <y>) • 
y ( \ ) = cf( oc ( x ) \ y) , 

g> (•).« f , 

t|r(*) * (x/e) ((e/e) \ y) , 

f ( / ) « (x / ( ( • / e ) \ y)) e , 

f ( \ ) = (e / e) ((x / e) \ y) , 

f (f) * e , 

ijr (o$ ) « xe , 

f (fS ) SB (© / • ) x , 

y(y) « x / e , 

y ( d ' ) == (e / e ) \ x . 

Corresponding to these translations, there are mapp

ings T~ of %. into 3C* and T~ of X * into Wl . 

--•--• Theorem. The varieties 3C* and 'Wl are rati

onally equivalent under gp , Y • 

Proof is a matter of counting. 

2. Normal subsets. By a normal congruence of a qua-

sigroup Q( • , / , \ ) we mean any congruence of the al

gebra Q( . , / , \ ) . In other words: <v is a normal 

congruence iff it is a congruence of Q( • ) and the fac

tor Q/'v is a quasigroup. A subset H of Q is called 
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normal if it is a block of a normal congruence of Q • 

In C31 normal subsets of finite and in Cll normal sub-

quasigroups of arbitrary quasigroups are characterized. Be-

lousov's proof is complicated. We shall find a more simple 

proof which can be, moreover, applied to arbitrary normal 

subsets. The idea is the following: Theorem 1.1 enables us 

to restrict ourselves to the case of normal subloops and 

the proof for normal subloops is easy. 

2.1. Proposition. Let v̂ be a normal congruence of 

a quasigroup Q ; let H be a block of /%/ and e an ele

ment of H . Then 

(i) a ~ b<.—> aH = bH <—-> Ha = Hb < — > ea / b c H <*-> 

<==-=> (a / e) \ b e H<=-»> b c (a / e) H ; 

(ii) (a / e) H = H(e \ a) for all a e Q ; the set 

(a / e) H is just the block of *\/ containing a • 

Proof is easy. 

Let Q be a quasigroup and e an arbitrary element 

of Q . By an e-inner permutation of Q we mean a permu

tation p belonging to the associated group of Q and sa

tisfying p(e) = e . If e is given, then the set of all 

e-inner permutations of Q is evidently a subgroup of Q • 

2.2. Proposition. Let Q be a quasigroup and e an 

element of Q . For any a, b * Q put 

-•f 
Ra,b = Re\(ea.b)° V Ba ' 

La,b = L(a.be)/e*La ' Lb » 
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•-1 T • L / • R . XB ea/e a 

Ihe group of all e-inner permutations of Q is just the 

subgroup of the permutation group of Q generated by all 

these permutations Ra b , LQ b and Tfi (where a and b 

range over Q )• 

Proof is contained in [13. 

If Q is a loop with the unit 1 , then 1-inner per

mutations of Q are called its inner permutations. 

£•3. Lemma. A subloop H of a loop Q is normal iff 

any inner permutation of Q maps H into H • 

Proof* Suppose first that H is normal, so that H 

is a block of a normal congruence <v of Q • If p is an 

inner permutation and h c H , then h ̂  1 and thus 

p ( h ) ~ p(l) » l c H . 

Suppose now that H is a sublopp and any inner permu

tation of Q maps H into H • Taking inverse permutations 

into account we see that any inner permutation maps H onto 

H • Define an equivalence *x/ on Q by 

a ~ b if aH * bH . 

Evidently, H is a block of /-v . We shall show that ~ is 

a normal congruence of Q • 

We have a . bH = ab . H for all a, b € Q . Indeed, 

a . bH * Lfi • Lb(H) * Lfib • L8fb(H) » Lfib(H) . 

We have a ~ b<w> b c &4^ a \ b c H . Indeed, aH * 

• bH implies b = b . 1 * fcH « aH and b € aH implies 
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a \ b c H evidently; if a \ b € H , then aH » a • 

. (a \ b)H s Q(a \ b) . H = bH . 

We have a <**> b<***> ac A/ be and a ̂v b<—•> ca *v cb • 

-1 
Indeed, the inner permutation LftC © Rc • L transforms 

a \ b into ac \ be and the inner:permutation L
c a*

L
c
f lL 

transforms a \ b into ca \ cb • 

This shows that /v is a normal congruence, so that H 

is normal* 

«-•*• Theorem. Let a quasigroup Q , a subset H of Q 

and an element e € H be given. H is a normal subset of 

Q iff the following two conditions are satisfied: 

(i) any e-inner permutation of Q maps H into H ; 

(ii) if (a / e)b = c and two of the elements a, b, c 

belong to H , then the third belongs to H , too. 

Proof. Suppose first that H is normal, so that H is 

a block of a normal congruence rv of Q • If p is an e-

inner permutation and h e H , then h /v e and thus p(h)^v 

/-v p(e) s e € H . Let (a / e)b = c , If a, b e H , then 

c s (a / eJb/v (e/e)e s e e H . I f a, c e H , then b s 

s ( a / e ) \ c ' v ( e / e ) \ e s e € H . I f b, c e H , then 

a s (c / b)e ~ (e /e)e « e e H • 

Suppose now that the conditions (i) and (ii) are sa

tisfied. Taking inverse permutations into account we see 

that any e-inner permutation maps H onto H • Put 

Q( * i / | V t 1 ,*,/J , ? icT) «T y(Q( . , / , \ , e)) • 

If b € Q , then (e / e) \ b e H iff b € H . Indeed, 
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«1 - 1 
(e / e) \ b -= L / e (b) and L e / e i s ev ident ly an e-irmer 
permutation. 

This, together with (ii), proves the following:- if 

(a / e) ((e / e) \ b) = c and if two of the elements a, b, 

c belong to H , then the third belongs to H, too. As 

a # b = (a / e) (( e / e) \ b) , this means that H is a 

subloop of Q( * , / , \ ) . 

The associated group of the loop Q( * , / ,\ ) is 

contained in the associated group of Q( . , / , \ ) . In

deed, the left translation x t—* a *. x of Q( >K , / , % ) 

can be expressed as ^>a/e ° ^ e / e
 ana" t n e right transla

tion X H - + x * a as R ( e / e ) a« R ^ • 

Consequently, any inner permutation of Q(# , / ,% ) 

is an e-inner permutation of Q( . , / , \ ) . From 2.3 it 

follows that H is a normal subloop of Q(* , / ,\ ) • 

Denote by rv the corresponding normal congruence of 

Q( * •, / , \ > • We have 

a^v b<=> a \ b 6 H<-=*> (e / e) ((a / e) \ b) e H . 

If x € Q , then (e / e) x c H<-s==> x e H , since (e /e)x -

~ Le/e ^ a n d ^e/e *s a n ©"i*11161 permutation. Consequ

ently, 

a/v b<—»> (a / e) \ b 6 H . 

•A 

Since the e- inner permutation L « R o L f l / t rans 

forms (a / e) \ b into a \ be , we get a *v b <-»•-»> 

<-=> a \ be 6 H and consequently a ^ b<«----> (e / e ) ( a \ b e ) 6 

c H . However, (e / e) (a \ be) = a e ^ b e = to (a) \ . oc (b) , 

so that 
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a**v/ b<«-> co (a) *v/ ot (b) . 

Further, we have 

arv b<a=->a/ b m H<—> (a / ((e / e) \ b)) e e H . 

The e-inner permutation Re o Rb * Le/e o R( e / e ) v b * Re 

transforms (a / (( e /e) \ b))e into 

(((e /e ) a) / b)e = ((e / e) a) / ((e / e) b) = 

= (i (a) / fi (b) , so that 

a ~ b<«-»> (I (a) / /3 (b) c H<—> l3 (a) ̂  /3 (b) . 

This shows that <v is a congruence of the algebra 

Q(* , / , \ , l » « . /J , T i ̂ ^ • Consequently, the ra

tional equivalence of 3C* and % guarantees that ^ 

is a congruence of the algebra Q( . , / , \ , e) and thus 

a normal congruence of the quasigroup Q . 

If H is a subquasigroup of Q , then clearly (ii) 

can be omitted. We shall give one more characterization of 

normal subquasigroups; another proof can be found in [13, 

too. 

2-5. Theorem. Let a quasigroup Q , its subquasigroup 

H and an element e e H be given. H is a normal subqua

sigroup of Q iff aH . bH = ((ae . be) / e)H for all a, 

b € Q . 

Proof. Suppose first that H is a block of a normal 

congruence rv .If h, , h2 e H , then 

ah-ĵ  . bhg/v ae . be = ((ae . be) / e) e € ((ae . be) /e) H • 
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If h c H , then 

((ae • be) / e )h rv ((ae . be) / e)e = ae • be e aH • bH • 

Suppose now aH . bH = ((ae • be) / e)H for all a, 

b € Q • As H is a subquasigroup, the condition (ii) of 

2.4 is evidently satisfied, so that it is sufficient to ve

rify the condition (i). 

We have Ha = (ea / e)H . Indeed, if h c H , then 

(e / e) \ h c H , too, so that 

ha =- ((e / e) ((e / e) \ h)) ((a / e) e) e (e / e)H . 

. (a / e)H » (ea / e)H ; 

conversely, if h € H , then there exists an h'c H with 

((((e / e) e) ((a / e) e)) / e)h « (e / e)h' . (a / e)e , 

so that 

(ea / e)h = (e / e)h' . (a / e)e * (e /e)h' . a e Ha . 

This proves ^a(H) * H . 

We have a . bH =- (a / e)e . bH S (a / e)H . bH » 

« ((a . be) / e)H ; conversely, if h c H , then there ex

ists an h'e H with (((a / e)e • be) / e)h = (a /e)e . bh', 

so that 

((a . be) / e)h « (a /e )e . bh' « a . bh'c a • bH . 

This proves a . bH * ((a . be) / e)H , i.e. La ^(H) « H . 

We have Ha . b = (ea / e)H • (b / e)e S (ea / e)H • 

. (b / e)H = ((ea. b) / e)H = ((e (e \ ea. b)) / e)H =-

= H(e \ ea • b) ; conversely, if h e H , then there exists 
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an h'e H with ((ea . b) / e)h « (ea / e)h' . (b / e)e , 

so that 

H(e \ ea . b) = ((ea • b) / e)H £ (ea / e)H . b = Ha . b . 

This proves Ha . b = H(e \ ea • b) , i.e. R b(H) « H • 

This shows that any permutation TQ , TQ , L ^ , 

L b , R w.i Ra D maps H into H • The same must hold 

for any composition of these permutations, i.e. (by 2.2) 

for aby e-inner permutation of Q • 
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