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A NOTE ON SUBQUASIVARIETIES OF SOME VARIETIES OF LATTICES

Véclav SLAVIK, Praha

Abstract: This paper is concerned with varieties of
lattices, all subquasivarieties of which are varieties.
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V.I. Igo8in has shown in [1] that the variety of latti-
ces defined by the inclusion a A (bv(c A d)) A (cvade
€ bv (aac)v (aAnd) has no subquasivariety which is
not a variety. We shall give also some examples of such va-
rieties of lattices.

Given a lattice L , we denote by N (L) the class
of all lattices that contain no sublattice isomorphic to L .
Let X be a ciass of lattices. A lattice L € X is cal-
led weakly JK -projective iff L can be embedded in any
laitice in KX that has a homomorphic ‘image isomorphic to
L . A lattice is said to be primitive ( K -primitive X -
is a variety of lattices) if the class NN (L) (N (L) NXK)
is a variety. It is easily verified that a non-trivial sub-
directly irreducible lattice L is J -primitive if and

only if L is weakly X -projective .
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Theorem 1. Let K be a variety of lattices. The fol-

lowing conditions are equivalent.
(1) Any subquasivariety of KX is a variety.

(2) Any non-trivial subdirectly irreducible lattice in X
is XK -primitive.

(3) Any subdirectly irreducible lattice in XK is weakly
K -primitive.

Progf. Assume (1) and let L be a non-trivial subdi-
rectly irreducible lgttice. The class N (L) N K is a
subquasivariety of X and so by (1), it is a variety, i.e.
the condition (2) holds. Evidently, (2) is equivalent to
(3). Now suppose (3) and let A be a subquasivariety of
K @and let B be the variety generated by A . We shall
show A =B . Since any lattice in B is isomorphic to
a subdirect product of subdirectly irreducible lattices from
B and A is closed under the formation of products and
sublattices, it suffices to prove that all subdirectly irre-
ducible lattices of B belong to A .Let L € B be
subdirectly irreducible. There exists a homomorphism of a
lattice M € A onto L and by (3) M contains a sublat;-
tice isomorphic to L . Since A is closed under sublatti-
ces, we have L & A , and this is what we were required
to prove.‘

A class X of lattices is called locally finite if
any finite subset of any lattice in K generates a finite
sublattice. If A is a set of lattices such that for any

positive integer n there exists a positive integer ¢ (n)
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such that any n elements of any lattice in A  generate

a sublattice of cardinality < ¢ (n) , then A generates

a locally finite variety (see [5]1). Given a class of latti-
ces K we shall denote by Fin ( JX ) the class of all fi-
nite lattices of K .

Theorem 2. Let JK Dbe a locally finite variety of lat-

tices. The following conditions are equivalent. .
(1) Any subquasivariety of JX is a variety.

(2) Any non-trivial finite subdirectly irreducible lattice

in X is X -primitive.

(3) Any finite subdirectly irreducible lattice in X is
weakly K -projective.

(4) Any finite subdirectly irreducible lattice in K is
weakly Fin (] )-projective.

Proof. It suffices to prove that (4) implies (3). Assu-
me (4) and let A  be a subquasivariety of JX . Denote by
B the subvariety of K generated by A . Suppose
A S B . Then there exists a finitely generated latti-
ce LeB such that L € A . Since X is locally
finite, L is finite. The lattice L is a homomorphic image
of a lattice M € A . We can assume that M is finitely
generated and since M € K |, we see that M is finite.
L 1is isomorphic to a subdirect product of finite subdirect-
1y irreducible lattices A_ & B (Le I) . Soweget
that any A (L € I) is a homomorphic image of M and by

(4) M contains sublattices isomorphic to Au( ve I).
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The class JA is closed under the formation of sublattices
and products and thus we get that all A_( L € I) are in

A and so L is also in A ; a contradiction.

Let L be a lattice. Define a lattice L* in this way:
L is a sublattice of L¥ , L¥\ L contains exactly three
elements a, u, v ; v is the smallest element of L* , u
is the greatest element of L* and a is comparable with no
element of L . Given a finite lattice L we denote by L°
a lattice which is obtained from L by adding exactly one
element comparable only with the greatest and the smallest
element of L .
Let X be a class of lattices. A lattice L & K will be
called semi JK -projective if the following condition holds:
whenever 4 is a homomorphism of A € K onto L then
there exists a homomorphism ¥ of L into A such that

@ o y(x)=x forall xel, i.e. g oy =id .

Lemma 1. Let X be a class of lattices and let L €
€K and L*e€eK . If L is weakly J -projective,
then L* is weakly X -projective. If L is semi ¥ -

projective, then L* is also semi )X -projective.

Troof. Let ¢ be a homomorphism of a lattice A € K
onto L¥ . Let ae L* be aomparable with no element of
L and der;ote by b the smallest and by ¢ the greatest ele-
ment of L . There exist a’, b’, c’e A such that ¢(a’) =
=a,9(b')=b,y(c')=c.Put vi=b'va ,c" =
=(c’Av)vb , u"=c"Aa” and b =b'v u’ . One

. .

can easily show that u'< b"< c"'<e v  , c"Aa =u’,
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b"v a’ =v’ and g(c") =c, ¢ (b") =b . Since the in-
terval I = {xe A ; b"& x £ c"} is mapped by ¢ onto

L , we have that it contains a sublattice L’ isomorphic

to L . It is easy to verify that the set L v { a”, u’, v¢
forms a sublattice of A isomorphic to L* . If L is se-
mi JX -projective, then there exists a homomorphism ¥ of
L into I such that @ e % =id; . Let u and v be
the greatest and the smallest element of L* . Define a
mapping ¥ of L* into I by % (x) =  (x) for all xe
€ L, ¥(=u", F(v) =v" and ¥y (a) = a’ . One can
easily show that ¥ is a homomorphism of L* into I such

that @ o ¥ = idpx .

Lemma 2. Let K be a class of finite lattices and

let L be a semi J -projective lattice. If L° is in

K , then L° is also semi I -projective.

Proof. Let @ be a homomorphism of a lattice A € X

onto L° . Let u be the greatest and v the smallest ele-
ment of L . Denote by ho the smallest element of A that
is mapped by 4 onto u and i)y Vo the greatest element
of A that is mapped by @ onto v . Let b be an element
in A such that ¢ (b) = ae I\ L . The interval I =
=-{xeA;v°éxéuO§ is mapped by ¢ onto L and thus
there exists a homomorphism 9 of L intec I such that
ey =id, . Define b’ = (bv Vo) A u, . Evidently
@ (b") = a . It is easy to show that a mapping F of L°
inte I defined by ¥ (x) = ¥ (x) for all xe L and

¥ (a) = b° is a homororphiem of L° into I such that

qo?-:idLQ.
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The class of all lattices will be denoted by L and
the class of all finite lattices will be denoted by Fin(L ).
For any positive integer n 2 3 we shall denote by Mn the

lattice of dimension 2 and cardinality n + 2 .

Corollary 1. The lattices M, are semi Fin(L )-projec-
tive.

Proof. For any positive integer n = 3 the lattice M,
can be obtained in a finite number of steps from the three

element chain by application of o

Lemma 3. Let K be a locally finite variety of latti-
ces generated by a class A of lattices. If L € X is a
finite subdirectly irreducible lattice, then L is a homo-

morphic image of a sublattice of a lattice B € A

Proof. By [31] L is a homomorphic image of a sublat-
tice C of an ultraproduct of lattices from A . We can
suppose that C 1is finitely generated and since K is lo-
cally finite, we have that C is finite. The class WN (C)
is closed under the formation of ultraproducts and thus the-

re exists & lattice B € A that contains a sublattice iso-

morphic to C .
Theorem 3. Let A be a class of lattices such that

the following conditions hold:

(1) The variety ¥ generated by A is locally finite.

(2) Any finite subdirectly irreducible lattice which is a
homomorphic image of a sublattice of a lattice from A is

weakly Fin('¥Y )-projective.
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Then any subquasivariety of Y is a variety.

Proof. If L is a finite subdirectly irreducible lat-
tice of ¥V , then by Lemma 3 there exists a lattice Be A
such that L is a homomorphic image of a sublattice of B .
By (2) L is Fin(V )-projective. Now, Theorem 3 follows

from Theorem 2.

Corollary 2. Let M be a finite set of semi
Fin (L )-projective lattices and let any subdirectly irre-
ducible lattice which is a homomorphic image of a sublattice
of a lattice fromn M be semi Fin (L )-projective. Let
N be the set of all lattices which can be obtained from
a lattice of M in a finite number of steps by applica-
tions of x and e . Then any subquasivariety of the vari-

ety V generated by N is a variety.

Proof. One can easily show that the conditions (1) and
(2) hold.

Corollary 3. Let M be the class of all lattices that
can be obtained in a finite number of steps starting from a
lattice L; (i =1,2,...,7) in Fig. 1 by applications x
and o . Then all subquasivarieties of the variety Y ge-

nerated by M are varieties.

Proof. The lattices L, - Lg are primitive (see [2] )
and 3o they are sublattices of the free lattice and thus
L, - Lg are projective (see (61) . The lattice Lo = My is
semi Fin ( L, )-projective by Corollary 1. Now one can ea-

8ily show that the conditions (1) and (2) of Theorem 3 hold.
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Corollary 4. (Igodin [11 .) All subquasivarieties of
the variety V, of lattices defined by the inclusion

antbvicad))A(cvd)lebyv(anc)y (ar a

are varieties.

Proof. V, is generated by the set of lattices
{M, ; 3€ n< w3} (see [4]) and thus we have that V, is

a subvariety of the variety V in Corollary 3.

A
A
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