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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLIÏÏAE 
16, 2 (1975) 

TOLERAÏÏCE RELATIOÏÏS OH SEMILATTICES 

Bohdan ZELINKA, Lib rec 

Abstract: A tolerance compatible with an algebra is de-
fined similarly as a congruence, only the transitivity is 
not required. This paper contains some results on tolerances 
compatible with a semilattice. * 
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AMS: 06A20 Ref. Z.: 2.724.8 

This paper continues the 3tudy of tolerance relations 

on algebras which was begun in £23,131 and [43. The concept 

of tolerance was introduced by E.G. Zeeman [11. 

A tolerance relation is a binary relation on some set 

which is reflexive and symmetric. If *££ » <A, ̂ > is some 

algebra ( A denotes the set of elements of ^ and F deno

tes the set of its operations), and £ is some tolerance on 

A , we say that P is compatible with WL if and only if the 

following condition is satisfied: If f e & is an n-ary 

operation, where n is a positive integer, and x-*,..., XL , 

y-*,..., y are elements of A such that (%±fy±) € § ^ o r 

i = 1,..., n , then 

(f(xlf...f xn) , f(ylf...f yn)) 6 f . 

Here,we shall study tolerances on semilattices. If a 

semilattice i3 not considered as a part of a lattice, the 
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operation in it is called multiplication and denoted by o t 

its result is called product. The ordering on a semilattice 

S is defined so that for a e S f b € S we have a 6 b if 

and only if a - b - b , If a semilattice is considered as 

a part of a lattice, we use the signs v and A for the 

lattice operations and call them join and meet. 

Thus, if S is a semilattice and | is a tolerance on 

the set of elements of S , then £ is compatible with S 

if and only if for any x-̂ fi S f Xg c S f y-̂  c S , y2 « S 

such that (xi-yi) • f » ̂ x2»y2^ e f we nave (^° *2 » 
yl ° y2> € f ' 

Theorem 1. Let S be a semilattice, let £ be a tole

rance compatible with S • Let x e S • The set S(x) « 
88 *iy € S | (xfy) « | f is a subsemilattice of S . Moreover, 

if S(x) has the greatest element M(x) for each x c S f 

then the mapping M which assigns M(x) to x for each 

x e S is an isotone mapping of S into itself. 

Proof. A semilattice is a commutative semigroup in which 

all elements are idempotents. Thus 4x1 for each x e. S is 

a subsemilattice of S and according to Theorem 4 from 2.2 3 

also S(x) is a subsemilattice of S • The assertion for 

M(x) is proved analogously to the proof of Theorem 12 from 

£23 5 that theorem is proved for lattices, but in its proof 

no meets are used. 

Now i f a € S f b e S f a 6 b , then the interval <afb > 

i s by definition the set { x e S | a £ x f c b f . 

Theorem 2. Let S be a semilattice, let £ be a to-
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lerance compatible with S • Let x € S f y € S f (x fy) e f . 

Then (x o y f z) e £ for each i c < x f x o y > u < y f x o y > . 

Proof. Let z e < x f x o y > u < y f x o y > .We have 

(x fy) € f f ( z f z ) c f f therefore (x o z f y o z) e f • 

Evidently, < x f x o y > u < y f x o y > « 4 x o y ? , thus 

y o z • x o y for each z e < x f x « y> and x o z « x o y 

for each z € < y f x o y > . Thus i f z e < x f x o y > f w e ha

ve z ^ z . thus x o z • z and farther y « z • x » y ; this 

means | 9 (x o z f y -> z) • (z, x o y) . I f z e < y f x o y > 

then x o z s x o y f y o z B Z and we have again 

(z f x o y) e f . 

This i s a substantial difference in comparison with the 

case of l a t t i ce s [41* In the case of semilattices i t i s not 

necessary that any two elements of <x f x o y > u < y f x o y > 

should be in | • For example, l e t 0^ f Cg be two disjoint 

chains of the cardinality greater than one with the least 

elements c, , c2 respectively, l e t 0 be an element which 

does not belong to C^u Cg • Pat S » C^u Cg u I 0 ? and de

fine the ordering in S so that x £ y i f and only i f e i t 

her both x and y are in C., and x 4t y hold a in C, f 

or both x and y are in C2 and i ^ y holds in C2 f or 

y • 0 and x i s an arbitrary element of S . Let £ be a 

tolerance relation on S consisting of the pairs ( c l f c 2 ) f 

(o 2 , c 1 ) and the pairs (x fx) f ( x f 0) f (0 fx) for each x c S • 

The tolerance £ i s compatible with S • 

Theorem 3. Let S be a semilattice with more than two 

elements. Then there exists a tolerance £ compatible with 

- 335 -



S which is not a congruence. 

Proof. At first let S be a chain. Let a be an ele

ment of S which is neither the greatest, nor the least one; 

such an element exists, because S has at least three ele

ments. Let £ consist of all pairs (x,y) f where either 

simultaneously x § a , y its a , or simultaneously x =i a , 

y ̂  a . Let (x1>y1) e | f (x^y-j)
 6 ? • If at least one of 

these pairs has the property that both elements are greater 

than or equal to a f then x-, o x2 g a , y,o y2 g, a and 

(x-̂  © x2> y., o y2) e f . If 3^1 a , X g ^ a t y ^ a , y 2 ^ a , 

then also x-̂ o Xg £ a f y, o y2 £ a and again (x-, o x2 , 

^1 ° ^ 2 ^ 6 f • T n u s f *s compatible with S . Now let b <. 

<: a < c . We have (bfa) € £ f (a,c) e f f but (b,c) $ £ > 

thus £ is not transitive and it is not a congruence. 

Now suppose that S is not a chain. Let a, b be two 

incomparable elements of S . Take a tolerance £ consisting 

of the pairs (x,x) , (y, a o b) f (a o bf y) f (y o x f 

a o b o x) , (a o b o xf y o x) for each x e S f y e 

€ < a f a o b > u < b f a o b > • This is evidently a tolerance 

compatible with S . We have (af ao b ) c £ , (a o b,b) € 

e | ; but (afb) £ | , because a =f= b an<a n o n e of t n e 

elements a, b can be equal to a o b or a o b o x for 

some x e S • 

Now we shall consider upper and lower semilattices of 

a lattice. 

Theorem 4. Let L be a lattice with more than two ele

ments, let L(v ) be the upper semilattice of L f let 
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L ( A ) be the lower semilattice of L . Then there exist to

lerances f , f' on L such that f is compatible with 

L(v) f £' is compatible with L ( A ) , but none of them is 

compatible with L • 

Proof. Suppose that L is not a chain. Then there ex

ist elements a, b of L which are incomparable. We const

ruct the tolerance f analogously as in the proof of Theo

rem 3; the tolerance £ is compatible with L(v) * Suppose 

that it is compatible with L . Prom (af a v b) € f , 

(a v bf b) € f we obtain (a A (a v b) , (a v b) A b) « 

« (a,b) € £ , which is a contradiction. If L is a chain, 

let a be an element of L to which at least two elements 

bf c exist such that b < c < a • Then £ consists of the 

pairs (xfx) f (afy) f (yfa) for all x € S and all y i a . 

Let x-̂  § *2 » yl * y2 be elemerrts of L t (x1,y1) 6 f f 

(*2»y2)
 € f .If ac-̂  » y1 f *2 * y2 t *

nen x i v x2 ~ 

= yjV y2 and (x1v Xg f y-jV y2) e f .If Xl « a f yx £ 

4 a , x.2 = y2 -= a , then x-, v Xg « x2 , y-̂  v y2 « y2 and 

(x-,v *2 » y l v y2) = (xg, y2)« f .If x1 - a , y, i a , 

X.P « y2 6 a f then x, v x.-> « a , y^ v y2 -6 a f thus again 

(x1v xg , y xv y2) c f .If x-, « a , y1 £ a f x2 « a f 

y2 6 a or x-̂  « a f y-̂  £ a , Xg ̂  a f y2 = a f then x-̂  v 

vjg = a , yjV y 2 i a and (x-^v Xg , y-^v y 2)« f • .All 

other cases are obtained from some of these cases by chang

ing the notation. Thus f is compatible with L(v ) • Now 

let c <. d «£ a . We have (cfa) € £ , (a,d) € f , but 

(c,d) « (c A af a A d) 4- f 5 *ne tolerance f is not com

patible with L . The construction of £' is dual to this 
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constraction. 
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