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COMMENTATIONES MATHBMATICAE UNIVERSITATIS GAROLINAB 

16f 3 (1975) 

THE PRODUCT OF RELATIVELY REGULAR OPERATORS 

J.J. KOLIHA, Parksville 

Abstract! The product T-jTg of relatively regular boun
ded linear operators between Banach spaces is shown to be re
latively regular iff the product QP is relatively regular, 
where Q is a projection parallel to the null space of T* , 

and P a projection onto the range of T 2 • The paper gives 

applications of this result. 
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doinverse, strict pseudo-inverse, projection, spectrum, resol
vent. 
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!• The Main Result 

Let X and Y be complex Banach spacesf and let B(X,Y) 

be the space of all bounded linear operators from X to Y ; 

B(X,X) is written as B(X). If T € B(XfY)f N(T) and R(T) 

denote the null space and the range of T , respectively. An 

operator S e B(YfX) is called a pseudo-inverse of T e B(X,Y) 

if it satisfies the equation 

(1) TST - T ; 

an operator. T e B(XfY) is called relatively regular if it 

possesses a pseudo-inverse. It is known (Caradus 15], Hashed 

[93) that T. is relatively regular iff H(T) is complement

ed in X 'and R(T) closed and complemented in Y • If S 
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is a pseudo-inverse of T f ST is a projection of X paral

lel to N(T) f and TS a projection of Y onto R(T) f i.e.f 

N(ST) • N(T) and R(TS) «- R(T) . If T € B(XfY) is a rela

tively regular operator, we can find a pseudo-inverse S of 

T which satisfies, in addition to (l)f the equation 

(2) STS * S 

(cf. Caradus C5]f p. 9)# In this paper we call such S a 

strict pseudo-inverae of T . 

Caradus C43f C51 recently initiated the study of rela

tive regularity of the product T^Tg of two relatively regu

lar operators in B(X) based on the product QP of a projec

tion Q € B(X) onto R(T2) and a projection P e B(X) para

llel to N(T,) f and obtained useful sufficient conditions. 

The present paper continues in this investigation, and gives 

a complete solution to the problem of the relation between re

lative regularity of T^T2 and of QP • 

Let X , Y and Z be complex Banach spaces* and let 

T, € B(YfZ) and T 2 6 B(XfY) be two relatively regular ope

rators. Sufficient conditions for the relative regularity of 

T,T2 have been given by various authors (e«g# Atkinson CH» 

Caradus C41f C53f Koliha [8]). Bouldin C21f C31 has found a 

necessary and sufficient condition in the ca3e when X * Y « 

» Z is a Hilbert space. We show that the relative regularity 

of the product T^T2 is equivalent to the relative regulari

ty of the product of two projections in B(Y) . 

Theorem Is Let T^ € B(YfZ) and T 2 6 B(XfY) be rela

tively regular operators with pseudo-inverses S^ and S 2 f 
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respectively* Then the operator T-jT2 is relatively regular 

iff the operator S^T-^TgSg € B(Y) is relatively regular. If 

U is a pseudo-inverse of T-jT2# TgUT-, is a pseudo-inverse 

of siTiT2S2 » *hen S2T2S2VS1T1S1 *a a pseudo-inverse of 

T aT 2 . 

Proof5 Let us first assume that U is a pseudo-inverse 

of T-jTg . Then 

S1T1T2S2<T2UT1> S1T1T2S2 - S1 T1< T2 S2 T2 ) U <T1S1T1> T2 S2 

* SjTjTgUTjTgSg 

88 S1T1T2S2 • 

so that TgUT.̂  is a pseudo-inverse of siTiT2S2 • Converselyf 

suppose that V € B(Y) is a pseudo-inverse of siTiT2S2 • 

Let us write P » T 2S 2 and Q » S - ^ . Then P € B(Y) is a 

projection onto R(T2) f & e B(Y) projection parallel to 

N(T1) , and QPVQP » QP . Put 

(3) W - PVQ . 

Then 

(4) PWQ » W and QWP « QP # 

Prom (4) we get Q(I - W)P» 0 . Hence I - W maps R(P) » 

R(T2) into N(Q) • NfT-,) in Y , and T-^I - W)T2 * 0 . Thus 

T1*2
S2WS1T1T2 m Tlpw<5T2 * T1 W T2 

-* T-^2 - T-^I - W)T2 

' T1T2 • 

which shows that SgWS^ » SgPVQS-^ * SgTgSgVS-^S, is a pseu

do-inverse of T.jT2 . 
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Remark:. Let S.̂  and S2 be strict pseudo-inverses of 

T.̂  and T2 f respectively. Then each pseudo-inverse V of 

S1T1T2S2 yiel<*8 *he pseudo-inverse S-̂ VS-̂  of T^T2 . It is 

readily verified that in this case SgVS-̂  is a strict pseudo-

inverse whenever V is a strict pseudo-inverse. 

Assume that T-̂  e B(YfZ) and T2 e B(XfY) are relative

ly regular, so that the spaces N(T^) and R(T2) are closed 

and complemented in Y . Let P e B(Y) be a projection onto 

R(T2) f I - Q € B(Y) a projection onto N(T-t) . Then we can 

find pseudo-inverses S-, and S2 of T.. and T2 f respec

tively, such that T2S2 « P and SjT^ • Q (Caradus L51K 

Then, according to Theorem lf T.,T2 is relatively regular iff 

the product QP of the projections Q f P e B(Y) is relati

vely regular. This proves the following result. 

Theorem 2s Let T ^ B(YfZ) an& T2 e B(XfY) be rela

tively regular operators. Then the following conditions are 

equivalent t 

(i) There exists a projection P E B(Y) onto R(T2) 

and a projection Q c B(Y) parallel to N(T-,) such that the 

product QP is relatively regular in B(Y) • 

(ii) For each projection P e B(Y) onto R(T^) and 

each projection Q e B(Y) parallel to HCT^) the product QP 

is relatively regular in B(Y) • 

(iii) The product T^T2 is relatively regular in 

B(X,Z) • 

If (1) is satisfied with a pseudo-inverse V of QP and if 

S, f S2 are strict pseudo-inverses of T^ 9 T2 such that 

T2S2 -> P and S-jT.̂  « Q f then the operator 
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(5) U - S ^ 

is a pseudo-inverse of T-,T2 f strict whenever V is strict. 

2. Special cases 

In this section we assume that T-̂  e B(Y,Z) and T 2 e 

€ B(X,Y) are relatively regular operators with strict pseudo-

inverses S-̂  and S2 , respectively. Unless stated otherwise, 

we assume that P and Q are the projection operators P • 

• T 2S 2 and Q • S-jT̂  . 

(I) If T, (resp. T2) is regular, T^Tg is relative

ly regular with a strict pseudo-inverse SgS-̂  , where S, • 

« T* (resp. S 2 « T 2 ) • This follows from (5) when we ob

serve that under our assumptions Q • I and V » P (reap. 

P • I and V « Q ). 

(II) If QP is a projection, ^ T 2 is relatively regu

lar with a strict pseudo-inverse SgQPS-^ « S 2S 1T 1T 2S 2S 1 • In

deed, the projection QP is relatively regular with pseudo-

inverse QP . 

(III) If Q and P commute, T.-T2 is relatively regu

lar with a strict pseudo-inverse S2S-^ • If QP • PQ , then 

QP is a projection, and SgQPS-^ « SgPQS.^ • S2T2S2S-LT-tS1 • 

« S2S-^ is a pseudo-inverse of T-^T2 by (II). This result has 

been obtained by Caradus 143 f cf» also 1519 P* 36. As a corol

lary, we obtain the following result (Caradus [5]- p. 37); If 

T-̂  and T 2 are relatively regular with either H(T1) fini

te dimensional or R(T2) finite codimensional, then TjT2 is 

relatively regular. This contains as special case a theorem 
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due to Atkinson til on the product of semi-Fredholm operators. 

(IV) If A - 0 is a pole of (AI - QP)"
1
 of order 1

 f 

T,T
2
 is relatively regular with a strict pseudo-inveree U • 

*
 S
2^°H ® (Q*R) /Sj

 9
 where 0-y is the zero operator on 

N(QP) and P
R
 the restriction of P to R(QP) . First of 

all
f
 X m N(QP) ® R(QP) with R(QP) closed (Taylor C103, p. 

306)* This means that QP is relatively regular* Moreover, 

QP
R
 is a bijective operator on the Banach apace R(QP)

 f
 and 

hence continuoualy invertible on R(QP) by the open mapping 

theorem. The operator V » 0^ ® (QP
R
) ia a atrict pseudo-

inverse of QP
 f
 so that U » SgVS-, is a strict pseudo-inver

se of T-jTg • 

(V) If A - 0 is a pole of (XI - QP)""
1
 of order 1

 f 

and if the spectrum of QP is contained in the set 

ih : |A,
2
 - oc"

1
 I «= oc-

1
} KJ ioi for some oo > 0

 f
 then 

T-jT
2
 is relatively regular with pseudo-inverses U.» =- -^VjS^t 

j » l
f
2

 f
 where 

00 
2лn 

(6) V, - 2 е* (I - еоОЭРГГ <& , 
яг-0 

2> and where V
2
 is the projection onto R((PQ) ) parallel to 

N((PQ)
2
) (Caraaus £43,151, Koliha 181). Theorems 2 and 3 of 

[81 show thatf for any fixed oc > 0 f the two conditions on 

the spectrum of QP given above are necessary and sufficient 

for the convergence of the series (6); the sum V-, is then a 

strict pseudo-inverse of QP • From the equations (3) and (4) 

it follows that V2 « PV-̂ Q is also a (strict) pseudo-inver

se of QP • Then 

VP - P( S, cc(I - oc(QP)2)n QP)Q » - 2, oc PQ(I - oc(PQ)2)nPQ 
c en s 0 A*-- 0 
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- X <*(PQ)2U - oC(PQ)2)n - I - lim (I - <*(PQ)2)H « I - W t 
•ft* 0 N-XXJ 

where W « lim (I - oo (PQ)2)N is the projection onto 

H((PQ)2) parallel to R((PQ)2) (cf. m » Theorem 4). This 

improves on a result of Caradus E43. 

(VI) If there exists L e B(Y) such that the operator 

Q(I • PLQ)P is relatively regulart then TjT2 is relatively 

regular. This follows from Theorem 2 and a result of Atkinson 

til that an operator T c B(Y) is relatively regular if T -

* TLT is relatively regular for some L 6 B(Y) . 

(VII) If the operator (QP)2 is Predholm, then TjTg 

is relatively regular. Atkinson £11 proved that operators S 

and T are relatively regular if ST is Fredholm. Our result 

follows on setting S • T » QP and applying Theorem 2. 

(VIII) Let Y be a Hilbert spacet P the orthogonal pro

jection of Y onto R(T2) and Q the orthogonal projection 

of Y onto H(T,) • The operator T^T2 is relatively regular 

iff the range of QP (or equivalently of PQ) is closed. 

This follows from the fact that closed subspaoes of Hilbert 

space are complemented. Bouldin s result [23 shows that the 

range R(QP) is closed iff the subspaoes 

R(T2) and n(Tx) H C N ^ ) 0 R(T2)3 

enclose a positive angle. A pseudo-inverse U of T,T2 may 

be obtained from Groetsch s representation theorem [61 as fol

lows: Let A be the restriction of the operator I - PQP e 

s B(Y) to R(PQ) t let .0. be an open subset of the interval 

(-00,13 containing the spectrum of A t and let iS^f be a 
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net of continuous real functions on XL such that 

lim^ S ^ (x) « 1/(1 - x) uniformly on the spectrum of A . 

Then 

U - limc CS2Sc c(A)PQS1 

is the uniform operator topology of B(X,Y) • 
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