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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

16,4 (1975)

CONCERNING THE RATE OF CONVERGENCE OF NEWION S PROCESS

Vlastimil PTAK, Praha

ibstract: The author establishes an gxplicit formula
for the partial sum x +w(x) + ... + w""igx) where @
is the rate of convergence cbtained in [5) for the Newton’s
process .

@{x) =
2(x° + )12
. Key-words: Nondiscrete mathematical induction, rate
of convergence.
AMS: 4600 , 65J05 Ref. Z.: 7.97, 8.31

In a recent series of investigations the author has
proposed  a new way of estimating convergence of iterative
processes. Instead of defining the rate of convergence as
a number, the author introduces the following

(1.1) Definition. ILet T be an interval of the form
T = {t; O<t<t°} for some positive t, . A rate of con-
vergence on T 1s a function & defined on T with the
following properties

1° w maps T into itself

2% for each te€T the series

t + () » 28] » ...
is convergent.

We use the abbreviation @2 for the n-th iterate
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of the function <« , sc that @2(t) = @ (co (t)) and

so on. The sum of the above series will be denoted by

® . The function & satisfies the following equation
g(t) -t = & (x(t)) .,

In [5] we have applied the method of nondiscrete
mathematical induction to Newton’s process - and obtained
the rate of convergence together with the corresponding
sigma function. The rate of convergence yields sharp esti-
mates for each step of the process. However, to estimate
the distance from the solution it is necessary to have ex=-
plicit expressions for partial sums of the series x +
+ o (x) + ... « For the rate of convergence described in
the Gatlinburg Lecture [41]1 such a formula has been recent-
1y established [63,

In the case of Newton’s process, the rate of conver=-

gence turns out to be
2

@ (x) = ——F—yps
2(x* + d)

where d i1is a nonnegative number determined by the cha-
racteristics of the process [5]. The case d =0 presents
no difficulties,the function being linear. We restrict
our attention to the case d>0 . To compute directly the
superpositions w(n) (x) seems to be difficult, the ex—
pressions become complicated; on the other hand using the
method suggested in 163, 1t is possible to establish an
explicit formula for the partial sums x + @(x) + ...
ceoted Nx)

We begin with two lemmes concerning a recursively

- 700 -



defined sequence.

(1.1) Let x°>-1 . Define a sequence x_ by the re-

n
cursive relation

Then

n n
(x, + 1% + (x, - 1)?
- [o]
xn =

. 2n 2P
(xo +1)° - (x° -1)

Proof. Clearly it is sufficient to verify this for-
mula inductively. We intend, however, to describe a heuris-

tic approach to the result. We look for solutions of the

u
form x, = —=2— ; the relation to be satisfied becomes
n
2 2
Wel _ 1 ( u, . Yo ) - up vy
Vel 2\ Vp Un 2 uy vy
2 2
- bup + v )¢+ () = vy)
2 <
(u, + v )° - (u, - v,)
Upen setting u, + Vo =Pns Uy < Vy T qp o, we may rcfor-

mulate the relation in the following form
2 2
Prey * 943 _ Pn* 9
- - -
Pn+sl T %41 Pn ” 9n

This will be satisfied if we st p ., = pﬁ and .« Qpuy =

= qi « Hence
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for suitable p and q . A possible choice is tc take p

and q such that p+qg=x_ and p~-q =1 . This leads

°
to the formula

n n
(xo +1)% & (xD -1)?

n n
(x, + 1% - (x, - 13

(1.2) Suppose that Vo> d1/2 and that the sequence
¥, 18 defined by the recursive formula

=31 da_
Y1 =5 p * In )
then
n n
+ al72y27 (7, - 41/2)2

- d1/2 (yo
n n n
(v, + /72" - (5 - aV/2)2

Eroof. If we set y, = d]‘/2 X, then x,  satisfies

n
the relation

=4 iy,
e =3 (xp * xg '
the result follows from the preceding lemma by an elementa-
ry argument.
In the second part we apply the methods of [5] and [61

to the case of Newton's process.
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2
: x
(2.1) Theorem. Let d=0 . Then X —p 22 /?

iz a rate of convergence on the whole positive axis. For

each natural n and each x>0 we have

X+ @W(X) + co0 *+ co(n)(x) =

2m»l o+l
1/2 , .2 1/2) 2h
, d + (¥ + 4d) + x
=x+ (x2 + )12 2 g1/2 (

5\ o+l n+l °
(4172 & (x? » )/2) 27°_ 22

Proof. Let f be the function defined, for real x ,
by the formula

Consider a point Xo>

starting at b S Since

tle Ne,wton'sproceas transforms a point 240 into the point

N(z) = z - L'.Z)._.= L+ 9y,
£(2z) 2 2

Suppose now that x, is such that x, = N(xo) =x , It

follows from Lemma (2.1) of[5] that
xg = Nix) =x + @(x) + ooo * @™ Vix)

The equation to be satisfied by x is

o]
£(x ) 1 d .
x=x - Nx)=—=2—s==(x - —) .It follows that
O fixy) 2 % xg
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*o

(1)

[2]

3]

[4]

=x+ (2 + ayl/2 whence, using Lemma (1.2)

Nn(xo)

4l/2y2" - gl/2y2"

+

(x°

gl/2 (x, +

n n
(x, + al/2y2" _ (x, - dl/g)z

n
al’2 4 (2« /2,2

X +1

( al’? o (2 + d)l/e) 2" -1

= /2

X

This proves the vhecrem.

v.

v.
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