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REAL-VALUED FUNCTIONS ON ALEXANDROFF (ZERO-SET) SPACES(I)

Anthony W. HAGER(2), Middletown

Abstragt: We give some approximation theorems descri-
bing the algem‘a of all real-valued "continuous" functions
on a "space® in the sense of A.D. Alexandroff in terms of

& generating subsystem. Corollaries include characteriza—-
tions of such algebras (some known), and a concrete des-
cription of the functions on a subspace in terms of rest-~
rictions from the larger space. Topology generally lacks
auch theorems. The analogue of the Tietze-Urysohn extensiom
theory 1s described, and the A-space analogues of topolo-
gical pseudocompact, P-, and F-spaces are discussed briefly.

da: Alexandroff space, zero set space, cozero-
morphism, inversion-closed, approximation, extension.
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1. Alexgndroff spaces. These spaces were introduced

in [1] (under the name "completely normal spaces") and much
of the basic theory was developed there.

1.1. Definition. A cozero-field on the set X 4is a
family Q of subsets of X satisfyimg

(1) This Eaper follows, to some extent, the recent paper [2]
by R.L. Blair and the present author on somewhat similar
topics in topology, and supercedes the unpublished manu-—

script [101.

(2) I am pleased to thank the Academies of Sciences of Cze-
choslovakia and the United States for support.
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(a) F,X €@ .
(b) @ 1is closed under finite intersection and countable
union.
(¢) If A4,Be@ , with (X-A)nN(X~B) =@ , then the-
re are disjoint 4;, B e @ with A;2X - A& and B;OX -
-B.

.
(@) If A eQ , then there are Ay, Ay,...€ @ with
X=A-= Q An .

An Alexandroff space, or A=-space, is a pair < X,Q)>
where Q 18 a cozero-field on X . The sets in 4 are cal-
led the gogero-gets of (X,A > , and the complements are
called zero-sets.

An A-map (or coz-map; or continuous tunction [1] )
P:X,>—><Y,B > Dbetween A-spaces is a function with
rHB)ca .

We shall see below why a cozero-field is so named.

1.1 (a) and (b) say that @ 1is like a topology, but
only closed under countable union. (¢) is thus the analogue
of normality, and (d) says that each "closed" set is a G, .
Consequently, any perfectly normal topological space "is"
an A-space, and continuous maps between such spaces are A=
maps.

Evidently, one gets a category with objects A-spaces
and morphisms, the A-maps. A morphism set will generally
be abbreviated to A(X,Y) , and Por A(X,R) , we write Jjust
A(X) (where R 1is the real line).

In general, given f: X—> R , the cozero-set is coz f =
={fx| f(x)+0} and the zero-set is 2f ={x|£(x) =0}.

- 756 -




For VcRY , coz V = {coz flfeVi.,

If X 1is a topological space, let aX be the A-space
¢ X,coz C(X)> , where C(X) 4is the set of real-valued con-
tinuous functions. This evidently defines a functor a . No-
te that Por topological spaces X and Y , fel(X,Y) 1iff
afe A(aX,a¥) when Y is Tychonoff, because coz C(Y} is
a basis; thus the theory of "continuity" in A-spaces inclu-
des the theory of continuity in Tychonoff spaces. In the
opposite direction, one may take the cozero-field of an A-
space as the basis of a topology, thus defining a functor
t . See [1].

Likewise, there is a functor similar to a , from uni-
form spaces to A-spaces, and more interestingly, at least
two in the opposite direction: Given the A-space ( X, A,
the finite and countable QA -covers form respective bases
for uniformities; these functors are full. Some of this is
discussed in [11, 12, 7, 4, 5] .

We begin the examination of A(X) .

1.2. Propogition. If ( X,A)> is an A-space, A(X)
is & uniformly closed inversion-closed vector lattice and
ring, and BA(X) i1s a uniformly closed cbq vector lat-
tice and ring.

The terminology: Let VCRY . BV is the subset of
bounded functions. The uniform closure uc V consists of
all limits of sequences from V which converge uniformly
on X ; if ueV =V , V is uniformly closed. If fgV
and 2f =¢ imply 1/feV , then V is inversion-closed.
V 1s closed under bounded quotients (cbq) if f, geV ,
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Z2g =@ , and /g bounded imply f/geV .

The proof of 1.2 is easy, and can be found in [1] or
[13]. We shall see later that the conditions in 1.2 charac-~
terize the morphism sets A(X) and BA(X) .

The following guarantees that A(X) 4is large.

l.4. Proposition [13. If 4 saatisfies 1.1 (a),(b),
(¢), then whenever A, Bed have (X -A)N(X-B) =g,
then there 18 f: X—> R with £ 2(0) € @ for each open
O in R end f£(X-4)=0, £(X=B)=1.

1l.5. Corollary [1]1 . If {X,Q > is an A-space, then
A = coz AlX) .

l.4 is proved by the usual technique for Urysohn's Lem~
ma. 1.5 follows by the argument used to show that a closed

Gy in & normal topological space is a zero-set.

2. pApproximatijon and characterization. Some simple

preliminaries are needed. The following will be used without
explicit mention. We shall assume that all families of real-
valued functions contain the constant function 1 .

2.1, Lemmg. Let Vc RX ve a uniformly closed vector
lattice. Then
(a) It feVv , then |f]| e V.,
(b) If feV , then there 1s geV with 04g<l and
coz g =coz T ,
(e) 1I¢ feV , then £~ (a,b) e coz V .

Proof. (g). £l = (£v0)v ((-£)vO) . (b). g=1flA
Al . (c), #~X(ayb) = coz (£ - a)dv0oI Allb~-£)vol.
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2.2. Proposition. If Ve RY is a uniformly closed
vector lattice, then { X,coz V) 1is an A-space.

Proof. & = ;:oz O¢cozV and X =coz lecozV ,

The equation coz f3n...ncoz £ = coz (If;lA ...
ees Alfpl ) shows coz V is closed under finite inter-
section.
And U coz £ = coz ( ;5' £,1A 2™  (the series conver-
ging uniformly by the Weierstrass: M-test) shows coz V is
closed under countable union.

Let £, fpe¢V with Zf,nZf, =g . Set g =
=(leyl =210 )vo, g =(12] -2t (vo0 .

Then coz g2 Zf; , coz g2 2f, , and coz &) N coz gy %=
=4 .

Finally, the equation 2f = Q{xl Il (x)<1/n %
shows 1.1 (d).

Thus the question: what is A({(X,coz V>) for V as
in 2.2 ?

2.3. Theorem. Let Vc rX be a uniformly closed vec—
tor lattice. The following families coincide.
(a) A(<¢X,coz VD) .
(b) ucit/g|f,g€BV , 2z =03,
(¢) The smallest uniformly closed vector lattice (and ring)
H(V) which is inversion-closed, and contains Y .

Proof. To begin with, we show that the parenthetical
condition in (¢) follows from the rest of (c).

2.4. Lemma. (a) A uniformly closed vector lattice of
bounded functions is a ring.

(b) A uniformly closed inversion-closed vector lattice is
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a ring.

Proof. Let V be a vector lattice. To show that pro-
ducts from V are in V , it suffices that fe V= fze v,
by the equation (f + g)z =2 +2 fg + gz .

(a)e Let V=BV, and let feV . Let {h } be a se-
quence of continuous piecewise linear functions on range f
which converges uniformly to the function x > x2 « Then
{hpo £} converges uniformly to fz . Such V 1is a vector
lattice, each hye feV.

(b). Let feV . Then Z2(]f1Al) =0 , hence
1/¢| £l+ 1)eBV . By (a), [1/(1¢]+1)1%eBV , and in-
verting again, fz +2)|f|+ 1€V . Thus f‘ze V.

Next, the smallest H(V) in (c) exists:

r% is such a family, RXcV , and the intersection of such.
families is another.

We begin the proof proper. We abbreviate A(<X,coz V)
to A , and denote the object in (b) by Q .

QcH(V) : obvious.

H(V)cA : By 2.1 (c¢) and the fact that each open set
in R 1is the union of a sequence of open intervals.

Acj : Ve show that if fe€A and €>0 , then the-
re are g, heBV with |f(x) - g(x)/h(x) | < € for each
xeX .

* For each integer 1 , let Ii be the open interval of
length €/2 with center ry; = i(€/4) . Observe that
{Ii}t: is a cover of R with the property that any rel,
for at most two (consecutive) is; thus f-l({Ii}) is a
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Qo"er of X with the same property in X . And each
1 (I)€ecoz V .

For each i , choose g;€V with coz g = f"l(Ii)
apd 0%£83%41 . Then u= Zg; .is well-defined (probably
not 10V ), and so are the functions uy = gi/u . Then

eri u, (x) - f(x)l< € for each xeX ,

bocouse: u; =1 ,s80 Hryu -f= ;- fluy .
Q4qven X, X belongs to at most two consecutive coz uy
( =coz gy ), and E(ri - £(x)) uy(x) has at most two
non—-zero terms, each of absolute value <€ /2 .
Let o;=[28 (Av(lry_ gl +lrgl+lr,, 1017,
and let w = S.ocigi . Then Zr:‘_ui =w Zrigilw Zgi .
We show that g =w = r;g, and h=w S gy are in BV .
Consider a more general product of the form of these,
gjgiﬂno for at most j=1-1, i, i 1 , this becomes
Z il 18-y * ¥i8s * ¥paa€ye1) &1 » which we call
% wy . By 2.4 (a) , each wy;eBV . We show that the se-
ries converges uniformly for coefficients {f3 3, {33} cho-

sen so as to produce g and h . Since

lwg | & 1Bl Clgg gl s lggle Tay 1)
For g , we choose (3; = «; and ¥y =7T; ; then
lwy|l < 2, For h, we choose Bi=%3, ¥y=r;;
then |wyl = 271,
The proof is complete.

2.3 has evolved from restricted versions or variants
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in [8] and [2]. Related, and partially overlapping results
appear in § 41 of [13], and in [15]; these proofs do not
bear much resemblance to that above.

We mention some other constructions of A(< X,coz V)
from V ( V being a uniformly closed vector lattice). We
shall only sketch the proofs.

Let V (respectively, 'Y ) denote the collection of
all limits of pointwise convergent increasing (respective-

ly, decreasing) sequences from V ,

2.5. Theorem. BA(< X,coz V>) = B(VAY) .

(Note that to construct an A(X) it suffices to con-
struct BA(X) , because A(X) =4¢/g|f,geBA(X), Zg =@ }.)

Proof. In [9], it is shown that if feA(< X,coz V))
and f is bounded below, then £6&V . This and its "dusl"
give the inclusion " ¢ " in 2.5. The reverse inclusion fol-
lows from the elementary fact that if feV then {x| f(x)>
>r}6€coz V for each reR , and "dually".

Note the use of "lower semi-cozero functions™ here.
More explicitly, Mauldin [14] has shown that for £ boun-
ded below, {x| f(x)>r} e coz V for each reR 1irff feV.
Of course, this can be used to prove 2.5.

The next theorem uses Frolik’s "strong continuous con—
vergence" (which we indicate by * fnﬁc.y £" ). See [4] for
the definition.

2.6, Theorem. These conditions on f are equivalent:
(a) feAal(<X,coz V).

(b). £=¢g a(fn') » for some sequence § £,3 ©V and
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ge Al(£ )(X)) .
(¢) There is a sequence 4{f 3 c V with fn-:-c-> £ .

Here, (f.) d;notes the reduced product, or diagonal
map, of X into K ° , and (£ )(X)} 1s the range. This
range is metric, so that A({£ )(X) = cl(r)(X)) .

Proof. (a) == (c). wWrite £ =£* = £~ , and by the
device from [ 9] used in the proof of 2.6, choose ig,% »
fin,3cV with g tf* and n lf” . Then g -h, s £ .
(c)may (b). Lot £, “=p £ , and define g: (£ )(X)—> R
by g(@fn)(x)) = £(x) . Using sequences in (fn)(x) , con=
tinuity of g 1s easily verified. (b)sm) (a). One checks
easily ;;;;—”-(fn) 1s an A-map, and hence so is go(f ) .
(That (fn) is an A-map uses separability of the range. In
general, the reduced product of even two A-maps need not
be an A-map. See [12].)

The equivalence of (a) and (c) in 2.6 is the "construc-
tive version" of a characterization in (41. [4] includes so-
me other closely related ideas.

Each of the foregoing constructions yields immediately
a characterization of the morphism sets A(X) :

2.7. Corollary. Let VcRX . The following are equi-
valent:

(a) V=A(CX,0.>) for some cozero-field @ on X .
(b) V=a(<X,coz2V)) .

(¢) V is a uniformly closed inversion-closed vector lat-
tice (or ring).

(d) v is "sc-closed".

(e) V 4s "composition-closed".
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Likewise, the morphism sets BA(X) can be characteri-
zed, notably as the uniformly closed c¢bq vector lattices

V with V =BV , or as those V with V =B(VAYV) .

3. Fun u « The main observation he-
re (a simple corollary of 2.3) is that for X an A-space
and S an A-subspace (defined shortly) the functions in
A(S) have an explicit description in terms of the restric-
tions of functions in A(X) . This should be compared with
topology, where for S € X , C(S) generally bears no con—
crete relation to C(X) . The present simplification re-
sults directly from the equality coz A(S) = coz A(X)|S ,
the analogue of which fails in topology.

Notation: For (X, Y an A-space and ScX , @IS =
= 44nS|&4e Q3% , and for < Y,BY another A-space,

A(X,Y) | § 1s the set of restrictions £|S , for fgA(X,Y).

3.1. Propogition. If {X,Q > 1is an A-space, and ScX,
then Q|S is a cozero-field on S . So S, @|S > is an
A-_space.

Proof. It is obvious that @ |S satisfies Condi-
tions 1.1 (a),(b),(d). (¢) is more difficult, but proved
exactly as one proves that a perfectly normal topological
space is hereditarily normal; see (3] for a sketch of this.

So, {S, &|S > 1is said to be an A-subspace of {X,QY.
We shall write Sc¢X when no ambiguity seems likely.

3.2. Corpollary. If ScX , then
(a) for any X , A(X,Y)|sca(s) ;

(b) coz A(S) = coz (A(X)|S) = (coz A(X))|S .
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Proof. (a) is obvious. For (b): If 4 4is the cozero-
field of X , then @|S i1s the cozero-field of S , and
thus &S = coz A(S) by 1.5.

Since Q&[S = coz (A(X) | S) = (coz A(X)) | S , (b) follows.

3.3, Lemma. Let ScX , let £,,f,,... €A(X)|S,
and let f: S—> R be a function. If fo—> £ uniformly
on S, then feA(X)|9S.

The usual proof for contimuous functions works here;
see [2].

3.4. Corollary. Let ScX . Then A(X)| S.4is & uni-
formly closed vector lattice (with coz A(X)| S = coz A(S)).

Proof. Obviously, A(X)| S 4s a vector lattice. That
it is uniformly closed follows from 3.3.

3.5. Theorep. Tet ScX . If feA(S) and e>0 ,
then there are g,heA(X) with Z(h)AnS =@ and

|£¢ ) = g( )/n( )|< e for each sesS.

That is, A(S) =uc{e/h| g, heA(X)|[S and 2(h) =d%.

Mo By 3-4 and 2.3.
Similar theorems can be derived from 2.5 and 2.6,

4. Extension theorems. We now describe an extension
theory for A-spaces analogous to that for topology originat-

ing with Tietze and Urysohn. The development follows (2].
4.1, Theorep. Let ScX . Then A(S) = A(X)|S (res-
pectively, BA(S) = BA(X) | S ) iff A(X)|S 4is inversion-
closed (respectively, cbq ).
Proof. Immediate from 3.5 and 3.3.
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This uses the approximation theorem 2.3.

A more usual-argument yields a more usual theorem, 4.3 below.

4.2. Llemma. Let E,, BEpcX . The following are equi-
valent.

(a) There are disjoint zero-sets 2;, Z, of X with E,c
< Z‘l and Ez,c ZZ .

(b) There is fe A(X) (with 04f&1) with £(E;) =0 and
£6E,) =1 .

The usual proof for topology works here; see [6].

As in topology (e.g. [6]1) subsets E, and E, which
satisfy the conditions 4.2 are said to be completely separa=-
ted in X .

4.,3. Theoremp. Let ScX .

A. BA(X)] S = BA(S) 1iff disjoint zero-sets of § are com
pletely separated in X .

B. A(X)|S =A(S) iff S is completely separated from
each disjoint zero-set.

Proof. A. can be proved by the usual Urysohn techni-
que described in [6], or by the somewhat different method in
3.4 of[2].

To prove B., first note that the separation hypothesis
in B. implies that in A ; the proof then proceeds as in 3.4
of [2]. Alternatively, a direct proof of B. from 2.3 is
possible; see page 47 of [2].

The results for topology described in [2] which corres-
pond to 4.1 and 4.3 can be derived as follows: For X a
topological space, € X,coz C(X) > is an A-space with A(X) =
= C(X) . But a topological subspace S need not be an A-sub-
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space; the condition that it be is called "z-embedded" in
(2]. So for example: C(X)| S = C(S) iff S is completely
separated from each disjoint zero-set and S is z-embedded;
this is mrt of 3.6 of [2], and is immediate from 4.3 B.
The reader can easily finish the comparison with [2].

5. On gpecial cgges. We-conclude with some discusaion
of A-spaces which arise from consideration of the conditions
in 4.1 and 4.3. Again, the discussion is modeled on [2] (§

4 ), and so we shall omit proofs.

The Alexandroff compactification X of the A-space
X 1is the space of zero-set ultrafilters of X . It has the
properties: X 1is a compact A-space; X is a dense A-sub-
space; each A-map of X to a compact A-space has a unique
A-extension over (X . See [1]. (Thus @BX 1is the compact
reflection in the category of A-spaces.)

5.1. Proposjtion. The following conditions on the A=
space S are equivalent.

(a) S 1s pseudocompact: A(S) = BA(S) .

(b) The cozero-field of § is semi-compact:

each countable cozero cover has a finite subcover.
(¢) Each zero-set or (S meets S .

(d) Whenever S 1s an A-subspace of X , then

A(X) | s = A(S) (or, BA(X) | S = BA(S) ).

See 4.3 of [2), and Gordon’s nice theorem [7] that &
pseudocompact A-space has only one compactification. Other

equivalent conditions are given in [12].
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5.2« Proposition. The following condition on the A-space
X are equivalent.

(a) For each ScX (or, for each cozero set ScX ), A(X) |s =
= A(S) .
(b) The cozero-field of X is a 6 -field.

And then (3X is the Stone space of coz A(X) , hence
basically disconnected.

5e30 0 tion. The following conditions on the A-
space X are equivalent.

(a) For each ScX (or, for each cozero set ScX¥X) , Ba(X)| s=
= BA(S) .
(b) t X is an F-space.

These describe the A-space analogous of topological P-
spaces and F-spaces. See 4.5 of [2]. Virtually all the other
equivalent conditions from topology carry over; see Chapter
14 of [6].
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