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ODШENTATIONES MATHEMATICAE UNIУ.ШSITATIS CABOLINAE 

16,4 (1975) 

REAL-VALÜEI) FÜNCTIONS ON AШÁNDROFP (ZERO-SET) SPACES(l) 

Anthony W. HAGERÍ2), Middletown 

Abstract: We give some approximation theorems d e s c r i ­
bing the algebra of a l l real-valued "continuous" funct ions 
on a "space* i n the senee of A..D. Alexandroff i n terma of 
a generating subsystem. Coro l laries include characteriza­
t ions of such algebras (some known), and a concrete d e s ­
cr ipt ion of the functions on a subdpace i n terms of r e s t ­
r i c t i o n s from the larger space. Topology general ly lacks 
auch theorema. The analogue of the Tietze-Uryaohn extendiozt 
theory i9 de9eribed, and the A-space analogues of topo lo ­
g i c a l pseudocompact, P- , and F-spaces are d i scussed br ief ly* 

Key words: Alexandroff space, zero set space, cozero-
mo rph ism, invers ion - c losed , approximation, ex tens ion. 

AMS: 54-00, 54C30, S4C45, 54C50, 54E15, 54H05 
Ref. 2 . : 3.966 

1 . Alexandroff spaces . Theae dpacea were introduced 

i n Til (under the name "completely normal spaces") and much 

of the bas ic theory was developed there . 

*•-*•• definition. A cozero-field on the set X i s a; 

family Q/ of subset9 of X satisfying 

(1) This paper follows, to some extent, the recent paper 12] 
by R.L. Blair and the present author on somewhat similar 
topics in topology, and supercedes the unpublished manu­
script C101. 

(2) I am pleased to thank the Academies of Sciences Of Cze­
choslovakia and the United States for support. 
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(a) 0 , X € a • 

(b) d is closed under f inite intersection and countable 

union. 

(c) If Af B 6 a f with (X - A)n (X - B) =- 0 f then the­

re are disjoint A ,̂ B̂  € d with A^DX - A and B ^ X -

- B . 

(d) If A € & , then there are A ,̂ A^,.. . 6 d with 

X - A * O A„ . n, n 
An Alexandroff space, or A-space, i s a pair ^ X f d > 

where: d i s a cozero-field on X . The set3 in (I are cal­

led the cozero-sets of < X f& > , and the complements are 

called zero-sets. 

An A-map (or coz-map; or continuous function £l] ) 

f: <Xf £t>—*<Y f# > between A-spaces ia a function with 

.r"l(») c a . 
We shall see below why a cozero-field i s so named. 

1.1 (a) and (b) say that & i s like a topology, but 

only closed under countable union, (c) 1* thus the analogue 

of normality, and (d) says that each "closed" set is a Gy . 

Consequently, any perfectly normal topological space "is" 

an A-space, and continuous maps between such spaces are A-

maps. 

Evidently, one gets a category with objects A-spaces 

and morphisms, the A-maps. A morphism set will generally 

be abbreviated to A(X,Y) , and for A(XfR) f we write just 

A(X) (where R i s the real l ine ) . 

In general, given f: X —* R , the cozero-set i s coz f 

• -fx | f(x)*-0 \ and the zero-set is Zf -*{x [ f (x) « 0 J . 
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For Tc RX , coz V « -tcoz f j f e V 1 . 

If X is a topological space, let aX be the A-space 

< X,coz C(X)> f where C(X) i s the set of real-valued con­

tinuous funct ion . This evidently defines a functor a • No­

te that for topological spaces X and X f f cC(XfY) i f f 

af € A(aXfaY) when Y i s Tychonoff f because coz C(Y) i s 

a basis; thus the theory of "continuity" in A-spaces inclu­

des the theory of continuity in Tychonoff spaces, in the 

opposite direction, one may take the cozero-field of an A-

9pace as the baal3 of a topology, thus defining a functor 

t . See. [13. 

Likewise, there is a functor similar to a , from uni­

form spaces to A-spaces, and more interestingly, at least 

two in the opposite direction: Given the A-spac© < X, &> } 

the f ini te and countable & -covers form respective bases 

for uniformities; the9e functors are fu l l . Some of this i s 

discus3ed in [ l l f 12, 7 , 4, 51 . 

We begin the examination of A(X) • 

--•2. Proposition. If ( Xf d> i s an A-space, A(X) 

i s a? uniformly closed inversion-closed vector latt ice and 

ring, and BA(X) is a uniformly closed cbq vector la t ­

t ice and ring. 

The terminology: Let V c r , BV is the subset of 

bounded functions. The uniform cloeure uc V consists of 

a l l limit8 of dequence3 from V which converge uniformly 

on X ; i f uc V » V , V i9 uniformly closed. If f c V 

and Zf « $ imply 1/feV , then V is inversion-closed. 

V i s closed under bounded quotients (cbq) i f ff gcV f 
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Zg • 0 , and f/g bounded imply f /geV . 

The proof of 1.2 i s easy, and can be found in /111 or 

[131* We shall see later that the conditions in 1.2 charac­

terize the morphlsm sets A(X) and BA(X) • 

The following guarantees that A(X) i s large. 

1*4. Proposition [13. If (X, sa t i s f i e s 1.1 (a) , (b) , 

( c ) , then whenever A, B e & have (X - A)n (X - B) » 0 , 

then there is f: X—> R with f^CO) « d for each open 

0 in R and f (X - A) « 0 , f (X - B) =- 1 . 

1»5. Corollary [1] . If < X, a > i s an A-space, then 

& » coz A(X) . 

1.4 i s proved by the usual technique for Urysohn s Lem­

ma. 1.5 follows by the argument used to show that a closed 

CJjf in a normal topological space is a zero-set. 

2. Approximation M*A cfra^a^erjza.UQn. Some simple 

preliminaries are needed. The following wi l l be used without 

exp l icit mention. We shall assume that a l l families of real-

valued functions contain the constant function 1 • 
x --•1» LejEffiS* Let VcB be a uniformly closed vector 

l a t t i c e . Then 

(a) If f e y , then | f I e V . 

(b) If f e V , then there is geV with 0*6g£l and 

coz g * coz f 0 

(c) If f e V , then f (a ,b)e coz V • 

Proof. (a)* * f ' * ( * v O ) v ( ( - f ) v O ) . (b). g * l f | A 

A 1 . ( c ) . f-*(a,b) * coz C(f - a)v 0 2 A, t(b - f) vO 1 • 
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X 

2-2. Proposition. If Tea i s a uniformly closed 

vector la t t i ce , then < X,coz V> is an A-space# 

Proof. 0 = coz Oc coz V and X =- coz l e coz V • 

The equation coz f*n . . . n coz fn » coz (If,! A . . . 

. . . A I fn I ) shows coz V is closed under f ini te inter­

section. 
And U coz f_ ~ coz ( £ I f„ I A 2~n) (the series conver-/fl,. n fo n 

ging uniformly by the Weierstras* M-test) shows coz V is 

closed under countable union. 

Let tl$
 fz*V ***** Z f l n 2 f 2 ~ ^ • S e t g l * 

« ( 1 fjjj - 2 If-J ) v 0 , g2. • ( I f x l - 2 If^lMvO . 

Then coz g^3 Zf̂  , coz Bg^Ztg , and coz g^n coz gg*3 

= 0 . 

Finally, the equation Zf * C\ i x I I f I (x)-s:l/n J 

shows 1.1 (d). 

Thus the question: what is A(<X,coz V>) for V as 

in 2.2 ? 
x 

2»3« Theorem. Let Vc R be a uniformly closed vec­
tor l a t t i c e . The following families coincide. 

(a) Af <X,coz V>) . 

(b) uc 4f/g | f ,g«BV , Zg * 0 } . 

(c) The smallest uniformly closed vector latt ice (and ring) 

H(V) which is inversion-closed, and contains V • 

Proof. To begin with, we show that the parenthetical 

condition in (c) follows from the rest of (c ) . 

2-4. Lsjffi&a* (a) A uniformly closed vector latt ice of 

bounded functions is a ring, 

(b) A uniformly closed inversion-closed vector latt ice i s 
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a r ing . 

Proof. Let V be a vector l a t t i c e . To show that pro­

ducts from V are i n V , i t s u f f i c e s that feVa-as^r € V , 

by the equation ( f • g ) 2 » f2 • 2 fg • g2 . 

( a ) . Let V - BV , and l e t f eV . Let i hn 1 be a s e ­

quence of continuous p iecewise l inear functions on range f 
2 which converges uniformly to the function x »—> x • Then 

2 -fhn© f } converges uniformly to f . Such V i s a vector 

l a t t i c e , each h o f eV . 

( b ) . Let f e V . Then Z( | f I A l ) = £/ , hence 

l / ( | fl-c- l ) c BV . By ( a ) , tl/{ I f J • 1) ] 2e BV , and i n ­

vert ing again, f2 • 2 | f | • 1 € V . Thus f2e V . 

Next, the smallest H(V) in (c) e x i s t s : 
X X 

R i s such a family, R c V , and the in tersec t ion of such 

fami l ies i s another. 

V/e begin the proof proper. We abbreviate A(<X,coz V >) 

to A , and denote the object in (b) by Q . 

QcH(V) : obvious. 

H(V)cA : By 2 .1 (c) and the fact that each open se t 

in R i s the union of a sequence of open i n t e r v a l s . 

A C Q : We show that i f f c A and e > 0 , then t h e ­

re are g, heBV with I f (x) - g ( x ) / h ( x ) I -*-. e for each 

x e X • 
1 For each integer i , l e t 1^ be the open in terva l of 

length e / 2 with center r i = i ( e / 4 ) . Observe that 

^*i^~fl* * s a . c o v e r °^ R with the property that any r c l * 

for at most two (consecutive) i ' s ; thus f" (-{ 1^ ? ) i s a 
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^er of X with the same property in X • And each 

^ ( I j ^ ) € COZ V . 

For each i , choose g^e V with coz g± -» t~ (1.^) 

§nd O ^ g i - 1 • Then u =- 2 g.̂  i s wel l -def ined (probably 

^ 0 t in V* ) , and so are the functions \i^ » 8±/n • Then 

I !u r i ^ ( x ) - f (x) |<: e for each x e X , 

k e Cause: S u ^ == 1 , so 2 ^ i^ - f * S ( r i - f )u A . 

Qiven x> x belongs to at most two consecutive coz u^ 

{ ss coz g i ) , and S i ( r i - f ( x ) ) u.,(x) has at most two 

ri0rr~zero terms, each of absolute value •<-. € / 2 • 

Let <*-_=- [ 2 1 ( l v ( I r i - ; L | -K 1 x>± 1 -fr l r 1 + 1 l )3 "X , 

$nd l e t w « S oC i g i . Then 2j r ^ = f S r^gj/w .S gĵ  . 

tye show that g =- w 5-1 r i&i a n d h =- w S g^ are in BV . 

Consider a more general product of the form of these , 

g ^ i ^ t f "for at most j -- i - 1, i , i 1 , t h i s becomes 

% / M TTi^Si^i • T i % • ^ l S i + i ) g i , which we c a l l 

S w i . By 2 .4 (a) , each Wĵ eBV . We show that the s e ­

r i e s converges uniformly for c o e f f i c i e n t s € (I. i9itf*l eho-

sen so as to produce g and h • Since 

I w± I £ I / ^ 1 ( I T i - i I • I T i I * ' T i + 1 1 ) : 

FOP g f we choose /S i * o^i and -y.. s r-j > then 

iw-jj £ 2*"1 . For h , we choose /> i * * i t T j ~ r j J 

then | Wi I *& 2 - i . 

The proof i s complete. 

2 . 3 has evolved from r e s t r i c t e d versions OP variants 
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in [8] and [ 2 ] . Related, and pa r t i a l l y overlapping resu l t s 

appear in § 41 of [ 13] , and in [15] ; these proofs do not 

bear much resemblance to that above. 

We mention some other constructions of A(<Xfcoz V>) 

from V ( V being a uniformly closed vector l a t t i c e ) . We 

shal l only sketch the proofs. 

Let V (respectively, V ) denote the collect ion of 

a l l l imits of pointwise convergent increasing (respective­

ly , decreasing) sequences from V . 

2 .5 . Theorem. BA(<Xfcoz V>) a B(VnV) . 

(Note that to construct an A(X) i t suffices to con­

struct BA(X) , because A(X) » 4 f / g | f ,g6BA(X), Zg » 0 } •) 

Proof. In t93 , i t i s shown that i f feA(<X f coz V>) 

and f i s bounded below, then f *f . This and i t s "dual" 

give the inclusion " c " in 2 .5 . The reverse inclusion f o l ­

lows from the elementary fact that i f f «V then 4x | f ( x ) » 

?>r } € coz T for each r *R f and "dually". 

Note the use of "lower semi-cozero functions" here. 

More exp l i c i t ly , Mauldln £143 has shown that for f boun­

ded below, <x | f (x) .>r } * coz V for each r ^ R iff f « T . 

Of course, th is can be used to prove 2 .5 . 

The next theorem uses FroIlk s "strong continuous con-

vergence" (which we indicate by " fn » f" ) . Sea t4l for 

the def ini t ion. 

2*6« Theorem. These conditions on f are equivalent: 

(a) f %A(<X,coz V > ) . 

(b) f =- g • (fn) , for some sequence 4 f n $ c V and 
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g € A((f n ) (X)) . 

(c) There i s a sequence Ktn\ c V with fn—-*• f • 

Here, (f ) denotes the reduced product, or diagonal 
$ 

map, of X into R ° , and (fn)(X) is the range. This 

range i s metric, so that A(Cfn)(X) * C((fn)(X)) . 

proof, (a) -=-> (c l . Write f » f* - f~ , and by the 

device from [91 used in the proof of 2.6, choose 4 g n } • 

- ih n 1cV with gnTf* and 1^4 f" . Then g]Q - l^-2£* f . 

(e)aMfr(b). Let ^ n - ^ t , and define g: (fn)(X)—* R 

by g(( f n ) (x) ) » f(x) • Using sequences in (fn)(X) , con­

tinuity of g is easily verified. (b)*-»->(a). One checks 

easily that (fn) i s an A-map, and hence so i s g o (fn) • 

(That ( f n ) i s an A-map uses separability of the range. In 

general, the reduced product of even two A-maps need not 

be an A-map. See [12].) 

The equivalence of (a) and (c) in 2.6 i s the "construc­

tive version** of a characterization in C41. [43 includes so­

me other closely related ideas. 

Each of the foregoing constructions yields immediately 

a characterization of the morphism sets A(X) : 
2»7« Corollary. Let Vc RX • The following are equi­

valent: 

(a) V * A(<X,0t/>) for some cozero-field Ct on X • 

(b) V * A(<X,coz V>) . 

(c) V i s a uniformly closed inversion-closed vector l a t ­

t ice (or ring). 

(d) V i s ••so-closed". 

(e) V i s "composit ion-closed*'. 
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Likewise, the morphism sets BA(X) can be characteri­

zed, notably as the uniformly closed cbq vector latt ices 

V with V =- BV , or as those V with V » B(7n V) . 

3 . Functions on subaoaces. The main observation he­

re (a simple corollary of 2.3) i s that for X an A-space 

and S an A-subspace (defined shortly) the functions in 

A(S) have an exp l icit description in terms of the restric­

tions of functions in A(X) • This should be compared with 

topology, where for S c X , C(S) generally bears no con­

crete relation to C(X) . The present simplification re­

sults d irectly from the equality coz A(S) = coz A(X) | S f 

the analogue of which f a i l s in topology. 

Notation: For <X f&> an A-space and ScX f & IS a 

= -t-tnS [ A € & 1 f and for < YfB > another A-space, 

A(XfY) | S i s the set of restrictions f | S f for f £ A(X,Y). 

3 . 1 . Proposition. If <X f&> i s an A-space, and ScX, 

then &|S is a cozero-field on S . So < S, &\S > i s an 

A-space. 

Proof. It i s obvious that Q, \ S sat is f ies Condi­

tions 1.1 (a ) , (b ) , (d ) . (c) i s more d i f f i cu l t , but proved 

exactly as one proves that a perfectly normal topological 

space is hereditarily normal; see [31 for a sketch of t h i s . 

So, < Sf & l S > is said to be an A-subspace of < X f d > . 

tie shall write ScX when no ambiguity seems l ikely . 

3.2. fioxpllaja:. If ScX f then 

(a) for any X f A(X,Y) ( ScA(S) ; 

(b) coz A(S) » coz (A(X) | S) » (eoz A(X)) |S . 
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Proof, (a) i s obvious. For (b) : If <L ia the cozero-

f i e l d of X , then & | S ia the cozero- f ie ld of S , and 

thus <L\ S » coz ACS) by 1 .5 . 

Since d\ S * coz U(X) t S) * Ccoz A(X)) ( S , (b) fo l lowa. 

3 . 3 , LfifflM* Let SCX , l e t f ^ - f g , . . . £ A(X) | S , 

and l e t f: S —•> R be a funct ion. If tn—>t uniformly 

on S , then f € A(X) | 5 . 

The usual proof for continuoua functiona worka here; 

see £22. 

3«4. Corollary. Let S c X . Then A(X) | S ia a u n i ­

formly cloaed vector l a t t i c e (with coz A(X) | S - coz ACS)). 

Proof. Obvioualy, A(x ) | S ia a vector l a t t i c e . That 

i t i8 uniformly closed followa from 3 . 3 . 

3*5. Theorem. Let S c X . I f f € A(S) and e > 0 , 

then there are g ,heA(X) with Z ( h ) n S ~0 and 

|fC ) » g( )/hC ) | < e for each a e S . 

That i s , A(S) « nc-ig/h \ g, h€A(X)f S and Z(h) * 0 ? . 

Proof. By 3 .4 and 2 . 3 . 

Similar theorems can be derived from 2.5 and 2 . 6 . 

4 . Extenaion theorems. We now describe an extension 

theory for A-spaces analogous to that for topology or ig inat ­

ing with Tietze and Uryaohn. The development fo l lows £ 2 ] . 

4 . 1 . Theorem. Let S c X . Then A(S) = A(X) | S (rea-

p e c t i v e l y , BA(S) * BA(X) | S ) i f f A(X) | S i s invers ion-

closed ( r e s p e c t i v e l y , cbq ) • 

Proof. Immediate from 3 .5 and 3 . 3 . 
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This uses the approximation theorem 2.3 . 

A more usual-argument yields a more usual theorem, 4*3 below* 

4*2. Lfimjaa* Let E^, E^c X • The following are equi­

valent. 

(a) There are disjoint zero-sete Z t̂ Ẑ  of X with E^c 

c Ẑ  and BgC Z^ • 

(b) There ia f€ A(X) (with 0 . 6 f 6 l ) with f(Ej,) =- 0 and 

ti%z) * 1 . 

The uaual proof for topology worka here; see C6J. 

Ae in topology (e .g . C6J) subsets E^ and E^ which 

satisfy the conditions 4*2 are said to be completely separa­

ted in X . 

4 .3 . Tftforem. Let ScX . 

A. BA(X) | S -» BA(S) i f f disjoint zero-sets of S are com­

pletely separated in X • 

B. A(X) J S « A(S) i f f S i s completely separated from 

each disjoint zero-set. 

froof. A. can be proved by the usual Urysohn techni­

que de3cribed in [ 6 ] , or by the somewhat different method in 

3,4 of [ 2 ] . 

To prove B., f i rs t note that the separation hypothesis 

in B. Implies that in A ; the proof then proceeds as in 3.4 

of [ 2 ] . Alternatively, a direct proof of B. from 2.3 i s 

possible; sec page 47 of [ 2 j . 

The results for topology described in [2J which corres­

pond to 4.1 and 4^3 can be derived as follows: For X a 

topological space, < X,coz C(X) > i s an A-space with A(X) -* 

« C(X) . But a topological subs pace S need not be an A-sub-
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space; the condition that i t be i s called ^-embedded11 in 

[ 2 ] . So for example: C(X) | S • C(S) i f f S i s completely 

separated from each disjoint zero-aet and S i s z-embeddedj 

this i s part of 3.6 of [ 2 ] f and is immediate from 4*3 B. 

The reader can easily finish the comparison with [2j* 

5« On special caaes. We"conclude with some discussion 

of A-spaces which arise from consideration of the conditions 

in 4.1 and 4.3 . Again, the discussion i s modeled on [ 2 ] (§ 

4 ) | and so we shall omit proofs. 

The Alexandroff compact i f ication (J X of the A-s pace 

X i s the space of zero-set ultrafi l ters of X . It has the 

properties: (h X is a compact A-eoace; X ie a dense A-sub-

apace; each A-map of X to a compact A-space has a unique 

A-extension over /|X » See 1 1 ] . (Thus (&X i s the compact 

reflection in the category of A-spaces.) 

5»1» Proposition* The following conditione on the A-

space S are equivalent* 

(a) S is paeudocompact: A(S) -* BA(S) . 

(b) The cozero-field of S i s semi-compact: 

each countable cozero cover has a f inite subcover. 

(c) Each zero-set of /IS meets S • 

(d) Whenever S i s an A-subspace of X , then 

A(X) | S * A(S) (or, BA(X) | S « BA(S) )• 

See 4*3 of [ 2 ] , and Gordon's nice theorem [73 that m 

pseudocompact A-space has only one compactif1cation« Other 

equivalent conditions are given in [123» 
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5*2. Proposi t ion. The fol lowing cond i t ion on the A-space 

X are equivalent . 

(a) For each S c X (or, for each cozero set S c X ) , A(X) | S = 

« A(S) . 

(b) The cozero- f i e ld of X i s a G - f i e l d . 

And then (h X i s the Stone space of coz A(X) , hence 

b a s i c a l l y d i sconnected . 

5 . 3 . Propos i t i on . The fol lowing cond i t ions on the A-

space X are equivalent . 

(a) For each S c X (or , for each cozero set S c X ) , BA(X) \ S= 

=*BA(S) . 

(b) t (I X i s an F-space. 

These describe the A-space analogous of topolog ica l P-

spaces and F-spaces . See 4.5 of £ 2 j . V ir tua l ly a l l the other 

equivalent cond i t ions from topology carry over; aee Chapter 

14 of C6] . 
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