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ON THE £(H,K)p - theorems

Alois SVEC, Praha

Ahﬂtziﬂ: The proof of a common generalization of
the following theorems: An ovaloid with

sz =1 or Hp =1 resp. is a sphere.
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One of the theorems of R. Schneider [2] has two fol-
lowing corollaries: ch3 being an ovaloid with Kp‘? =1
or Hp =1 resp., it is a sphere; see [1), p. 61. We are
going to prove another general theorem, the Kp= and Hp-
theorems beipg its special cases.

Let ¢ c R? be a bounded domain, 3G its bounda-
ry, m G u 86—-—»33 a surface, 8533 a fixed point.

For each g¢G u &G , define the vector v(g) by
(1) S =m(g) + v(g) .

Let v3 be a fixed field of unit normal vectors of the
surfzse m= m(G v @G) , the support function p(g) be
defined by

(2) plg) =< v3(g),v(g) > .



Further, let
(3) g2 =lvig) | Z - p(g)? ;

6(g) =20 is, of course, the length of the orthogonal pro-
Jection of v(g) into the tangent plane of m at m(g) .
Let us remark that the mean curvature H of m depends on
the chosen field of unit normal veetors; nevertheless,; Hp

is an invariant.

Iheorem. Let the situation be as above, and let F ,
¥,N:6ud8G—R be functions., Suppoge: (i) 6(g) =
=0 foreach gedG; (i1) op G v 3G ,

) Mp(Kp - H) + N(Hp - 1) = g2F ,
(s} Kp2ﬂ2+2HpHN+N2>O.
Then m 1s a part of a sphere with the cepter S «

Proof. On m , consider a field of orthonormal frames
{m,v;,v5,v33 « Then

2 ,
(6) dm = colvl +a V5, dvy = cofvz +c.>]3.v3 ’

e = mey 3y, = ;
dvz- “’1'1*“’3'3’ dv3— @3N 4’273'2

with the usual integrability conditions. From a)3 =0,

n wisawl+sbw?, 03=twlscw?



with

{8} 2H=a+c, K=ac-1b .
Write
(9) V =XV + ¥, +PV3;

from (1) and dS =0 ,
(10} dx-ycof—po)
2

3
1l
dy +x w7y ~ w3 +0?=0
1-P%2 =Y
3
2

dp+xwi+yca

On G , introduce isothermic coordinates (u,v) such that

(11) 1 =r%aw? + av®) , rlu,v)>0,4i.e., ©' = rdu,
w 22 rdv .

Then

(12) w S = r-l(-rvdu +rdv) .

N

From (10) and (7),

(pa - 1)r , x, - r'lruy = pbr ,

(13) x, + r"lrvy

1

- -1
Jpy=T T,X = pbr , Jpr T

rx = (pc - r.
Fron (132’3),

(14) Xy = ¥y

= -r'lrvx + r'lruy .

Multiplying (13, , 4) by Mcp + N, =2 Mbp , Map + K
t Jagt |
resp. and adding them together, we get



(15) (Mep + N)x‘1 - 2 Mbpx, + (Map + N)yv +

*> r-lru(uap +Nx + {r (Mcp + N) + 2 r Mbp} r-ly
=2 r{Mp(Kp - H) + N(Hp - 1)} .
Now, 62 =x% + 3% , and the right-hand side of (15) may

be written, because of (4), a8 2 r xF . x +2 ry F.y .
Thus (15) takes the form

(16)  (Mep + N)x, - 2 Mbpx, + (Map + My, = C)x + (y .

Consider the system (14) + (16). It has the form

A7) agyxy * agp%y + byy¥y + byp¥y = 04X ¥ 057
(1=1,2).

Recall that (17) is called elliptic if the form

= - 2 _ -
(18) @ = (apby; = applyp) @™ = lay;bpp = 8y 0yp +

2
+ apbyy = aybyy) @ + (aybyy = ayybyy) Y

is definite; (17) being elliptic, x =y =0 on JG

induces x =y =0 in G . In our case,
(19) & = (Map + M}uZ + 2 Mbpuy + (Mep + W)» % ;

the discriminant of (19) being exactly the left-hand side
of (5), the system (14) + (16) is elliptic. From (i),
x=y3y=0 on 909G . Thus x=y='o in G and p =

= const. because of (103). QED.

Corollary. Let the situstion be gs_in the introduc—
tion, apd let F: G u 3G—>E> be g function, Suppose:

-4 -



(1) 6(g) =0 for each ge 3G ; (ii) on Gu 8 G ,

(20) Hp - 1= 6%
or
(21) Kp° -1=062F, KpP+2Hp+1>0

reap. Thep m is a part of g sphere.
Proofe In our Theorem, take M=0, N=1 or M=

=N=1 resp. QED.
Thus we get natural generalizations of the Hp= and

Kp~-theorems resp.
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