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A NOTE ON TENSOR PRODUCTS ON THE UNIT INTERVAL

Jan MENU, Antwerpen & Jan PAVELKA, Praha

¢ Closedness structures on the unit interval
I viewed as a thin category are considered, in view of
possible apfilications in the calculus of fuzzy sets. The
paper is concerned with the way in which continuity or dis-
continuity of a tensor product on I i1is affected by the be-
havior of its right adjoint.

KQ.Y_H‘EL Closedness structure, tensor product, hom-
product, zzy set.

AMS: 18D15, 22415 Ref. Z.: 2.726, 2.721.67

I tion. Fuzzy-set theoretists usuaslly define the
complement of a fuzzy subset A: U —>[0,1] of a universe
U via the formula

~Alx) =1 - Alx) .
Although the above definition ensures the validity of de Mor-
gan formulae for fuzzy sets, one loses the useful adjunction

AnBecC iff Ac~BuC ;

in particular, " ~A 1is not a pseudocomplement in the lattice
of all fuzzy subsets of U . This is due to the fact that
the operations xAy , (1 = x)vy do not constitute a closed-
ness structure on the ordered set (I, £ ) viewed as a small
thin category.

On the other hand, as A. Pultr showed in [4], any closed-
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ness structure on I whose unit coincides with the greatest
element 1 induces a closedness structure on the category
¢ (I} of all fuzzy sets which satisfies additional condi-
tions enabling us to draw further analogies with set theory
(e.g. to introduce counterparts of power-set functors). More=-
over, the correspondence between structures on (I,4) and
¢ (1} , respectively, is one-to-one.
Since the small category (I,4) 1is skeletal, a closed—

ness structure with unit 1 on it is completely determined

by a couple (D,h) where

(1) o (the tensor product, shortly TP) is an order=—
preserving binary operation on I such that (I, o,l) is
a commutative monoid,

(11) n (the hom~-product, shortly HP) is a binary ope—

ration on I , order-reversing in the first and order-preser-—
ving in the second variable,

(iii) the adjointness formula
(0.1) xayéz iff x<&hiy,z)
holds for any x,y,z€Il .
By associativity of O we obtain
(0.2) ' hixay,z) = hix,h(y,2z))
for all x,y,z&€Il . Also observe that
(0.3) 1 =nhiy,z) iff léhly,z) iff y =laycz .
From (0.1) it follows that all the increasing functions
- o x preserve suprema (note that preservation of sup "

peans x00 =0 for any xel ), the increasing functions



h(x, = ) preserve infima while the decreasing functions
h(- ,x) transfer suprema to infima. A straightlorward dis=
cussion of the behavior of g and h on convergent sequen-
ces shows that, as a consequence of the monotonies, the abo-
ve properties are equivalent to o being lower-semiconti-
nuous and h being upper-semicontimous as real functions
on IxI with the product topology.

On the other hand, since I 1is a complete lattice, any
lower-semicontinuous operation o on I satisfying (1)
and such that x00 =0 for all x can be completed to a
closedness structure on I . The right adjoint h is then
given by the formula

h(y,z) = Max{x| xayéz % .

We shall say that two TP's O and o’ on I are equi-
valent if there exists a strictly increasing map ¢ of I
onto itself such that

g(zxoy) = gx 0’ ¢y
holds for all x,y€I . Given a TP o on I and an auto-
morphism ¢ of (I,£) the formula

(0.4) xo? y= qz""(cyx o gy)

defines a TP 0% on I equivalent to O . ror the right

adjoint we have
(0.5) 1% (y,2) = ¢ 'nlgy,g2)

As stated above, the necessary and sufrficient conditi-~
on for a commutative and associative operation on I with

zero O and unit 1 to be a TP is lower-semicontinuity.
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Investigating topological semigroups on manifolds with boun-
dery, P.S. Mostert and A.L. Shields described, in particular,
all topological semigroups on a compact interval with the
endpoints functioning as zero and unit, respectively. Since
W.M. Faucett proved in [1] that any such semigroup operation
is increasing with respect to the usual order, the (I)-semi-
groups of Mostert and Shields coincide exactly with those
TP's on I which are continuous on Ix I ,

In § 1 we shall review some results of {1] and [3] in
this direction and describe the right adjoints of some TP’s
including the. general continuous one. It turns out that the
right adjoint of a continuous TP is mostly discontinuous. Ne—
vertheless, we may still ask what corresponds to the distinc—
tion between continuous and discontinuous TP's in terms of
the hom-product. The results of § 2 indicate that such a dia-
tinction cannot be based only on the discontinuity pattern
of he.

§ 1. We start with some examples of TP's. By D we
denote the set of all points of IxI 4in which the HP h is

discontimious.
1 if y<«2z ,

0)

1.0 Pt x 0 'y =%XAY . Then hm(y,z) = {

z otherwise
= i(y,y) |yelo,1L3.

Observe that, whatever the TP O , we always have
x0y4x0l = x , xay£loy=y

(-

so that 0O is the greatest TP on I .
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l.1 Let t:lm be the usual ‘multiplication of real numbers.
Then

1 if yéz

2 (y,2) = { , D =400,01.
z/y if z<y

¥.M. Faucett proved in [1) that any continuous TP on I

with no idempotents other than 0,1 and no nilpotents (i.e.
elements x#0 such that x2 =0 for some n where the
power is taken in the semigroup (I,Q) ) is equivalent to
D(’l)

1.2 Put x 0¥ y =Max {0, x + y = 1} . Then the HP

h(m(y,z) = Min {1,1 = y + z} is continuous. As proved

in [3], any continuous TP on I with no idempotenta othep
than 0,1 and at least one nilpotent is equivalent to u"") o

0 if x+y £1/2
3 { + Then D(”

l3. Put x o 'y=
x Ay otherwise

is a discontinuous TP on I with

1 if y4z
h® (y,2) = {

Max £1/2 - y,2 § otherwise ’
D(%)= D(O) .

) 0 if x+y£1
ld4. Put x O 'y = { « Again, the pro<
x Ay otherwise

duct is discontinuous and we have

1l if yéz
h(") (y,2) = { ’
Max 1 - y,z otherwise
o
D =4(y,y)|yelo,af} .,
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1.5 Now we shall desdribe a construction which was shown
in [3] to generate all continuous TP’s from those equiva~

@ o o 2) .

lent with either o
Let {la, , by L[[xe A} be a countable family of
dis joint open subintervals of [0,1] . For every oc € A
let a TP 0% on [a g, byx ] be given. With the family
F=4(ay4by,0%)| x € A} we associate the operation

O on I defined

o 2
xao%y if (x,y)e La_,b_]
(1.1) xuy={ ’ ! e

xAy if (x,y) éxkaJA[ax,waD‘

It is easily verified that (1.1) is a correct defini-
tion of a TP on I whose set of idempotents contains

F= I\‘%A]a«_,b“[ « Furthermore, if all 0% ‘s are

continuous, so is O .

On the other hand, given a contingous TP on I , deno-—
te by E the closed set of all its idempotents and consi-
der the tomily £ 1] a“_,bxflccelt‘ef of its complementary
intervals. For any &« &€ A the restriction no%¥ of m to
[ag sbe 12 is a continuous TP on [ay ,be ] with no
idempotents other than 8o 9 Dog o Thus the ordered semi-—
group (La, ,byl, &, 0%) 1is isomorphic to either
(1,£,a“Y) or (1,24,0%) = we shall speak of type 1
and type 2 cowmponents, respectively. Now it is easy to

prove thit xOy = xAy whenever (x,y) #o:ke)A Cacsbyd 2

e conclude that O coincides with the TP derived from the
vmily F o=4lag ,by, %) |« e€ 4t (cr.[3], Theorem

f ). We shall eall F the decomposition of O .
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l.Gg Let the TP O Dbe obtained from a family
¥ ={(ax,b“, o% ) I o« € A7 by construction l.5. A
straightforward computation yields the following form of the

HP:

1l if y#4z
z if z<yeIN U, la_,b_[ or
hiy,z) = ' €A T T
z<a < y<b, Zfor some o« € 4,

h*(y,z) if a, £ z<y<b, .

1.7. From (1.2) we can now derive the discontinuity pattern
D of the right adjoint to a general continuous TP po . Let
F =4(ay ,by, 0% ) | &c € A} be the decomposition of O -
Assume O has at least one idempotent distinct from 0,1 .
Let Dy ={(y,am)‘a“4= 0, 0% is a type 2 component,
ye& lag,b L3 .
Then

(1) 4if there exists o € A with by =1 we have

D=4(y,y) |0éyba, 3v D, ,

(2) otherwise

D=4(y,y) |y elo,L3 0D, .

§ 2.

2.1, Propositjon. Let © be aTPon I . for any z €
e [ 0,1, the function h(- ,z) d4s continuous iff its res-
triction h, to L 2,11 is an involutory antiisomorphism
of ([z,11,4).

-77-



Proof. (1) Assume h(- ,z) is continuous. Since h,
is decreasing it suffices to show that y = hzhz(y) for any
ye [z,1] . Next observe that

(2.1) y<h(n(y,z),2)

holds even without the assumption of continuity. Indeed, (2.1)
is equivalent to yoh(y,z) 42z which, by the commutativity
of o , amounts to h(y,z)£4h(y,z) . It remains to prove the
reversed inequality. Since h, is continuous with hz(z) =

1,n{(1) =2, any y € [2,1] can be expressed as y =

h,(u) for some u € [z,1] . Then

¥y = h,(u)Zhhh (u) = hh,(y)
where the middle inequality is obtained by applying the or-
der-reversing function h, to (2.1) with y replaced by u .

(2} Any antiisomorphism of ([ z,1],4) is continuous.

Now recall h(y,z) =1 whenever y£z .

In particular, h, is continuous 1iff it is an involu-

tory antiisomorphism of I . As for the fuzzy-set motiva-

tion, this is exactly the case when we have far any ScI ,

beside hy(VS) = A ho(S) , also the other de Morgan formu-
_ i

la h (AS) = V n(s).

For instance, the above condition is satisfied by two

of the examples in § 1, namely
) _ L -1 -
hy (x) =h " (x) =1-x.

Moreover, it clearly remains valid for any TP equivalent to

“ because in that case

either I::“"‘> or O
_ -1
(2.2) ho(x) = @7 (1 - g (x))
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where @ 1s an automorphism of (I, &) .
Now it is natural to ask which involutory antiisomorph-
1isms of (I, &) can be obtained as h, for some TP on I .

In view of (2.2) this question is settled by the following

2.2. Proposition. For any involutory antiisomorphism
£ of (I,&) there exists an automorphism ¢ of (I,&)
such that

P+ o £=1.,

Proof. Given a strictly decreasing function f£: I—»1I
such that fof = 14 , there is exactly one point ael
with f£(a) = a . Clearly O<a<l .

Choose any isomorphism 4 : [0,al 2 [ 0,1/2] and
put !
(x) if O<xéa
@ (x) ={
1~y o £(x) if agx£l

R e

Since f(x)4a iff xZa , and ¥(a) =1/2 =1 - y o £la) ,
the definition is correct and it is easy to see that ¢ 1s

an automorphism of (I,&) . Finally, for any x€I we have

{xéa then @(x) + o £(x) = y(x) +1 - goforlx) =1
x2a then <(x) + @ £(x)

1- yo £(x) + o £lx) = 1.

Now we are going to discuss the extent to which the dis-
continuity pattern D of a hom~product h determines the be-
havior of its left adjoint O .

2.3. Proposition. If h 1is continuous then O 1is

continuous and egquivalent to 0(2) .
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Broof. (a) Since h, d4s continuous, it is an involu-

tion so that
xay = h(h(xay,0),0) = h(n(x,h(y,0),0)

holds for all x,y€éI , and O 1s continuous.

(b) Suppose O has an idempotent a with O<ca<l .
let x2a, y£a . By continuity of O there exists uel
such that y = agu , hence

apy = aplagn) = (aga)laou=apgu=y.

Therefore also
Y<£a0y<xoy£lay =y .

Thus h(x,b) = b for any b<a, x2a , and none of the fune-
tions hy , b<a is one-to-one which, by Proposition 2.1,
contradicts the assumption on h . We conclude that o has
no idempotent other than O,1 and is therefore equivalent
to o or u‘m . The P h is, however, disconti-
nuous which completes the proof.

2.4. Proposition. If h 4s continuous in I\§(0,0)3

and discontinuous at (0,0) then O 1is continuous and equi-

valent to 'l:l('"

k Proof. (a) ~First we prove o continuous in all points
(x,y) such that x0y>0 . Take O< € < xOy , then
xny = he he (xoy) = h(h(x,h(y, e)),e) .

In the expression on the right, x%0 , € % 0O hence O
is continuous at (x,y) .

(b) h, is discontinuous at O because otherwise the
monotony of h and the fact that h(0O, = ) is a constant

equal to 1 would render h continuous at (0,0) . Thus
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(2.3) 1=h,(0) > I’:E_:l'.’mo*ho(y) =a

We shall prove a =0 . Suppose that, on the contrary, a>0 .
First we show h,(x)<a for any x>0 . Let h, (b) =&
and b>0 . Then we have xQy =0 1ff y<a for any O<x£
£b 8o that ho(a)Zb vhile h (x) =0 for any x>a
which contradicts the continuity of h at (a,0) .
Next we claim ho(x)>o iff x<a . Indeed, from
hy(b) =0, be<a we obtain h (t)&b for any t>0 which
contradicts (2.3). On the other hamd, since h (x)<a for
x>0 we have aax>0 whenever x>0 , hence ho(e) =0,
Finally, aba = a . Indeed, the assumption aDa<a
yields ho(ana)>o , and by repeated use of ho(a) =0 we
obtain

O<a0(auh°(ans)) = (aoa)oh (ape) =0

which is a contradiction.

The statement ho(a) =0 together with (a) imply that
the function - pa is continuous in 1 0,al . Now the argu-
ment of part (b} in the proof of Proposition 2.3 leads to dis~
contimuity of h at (a,a) .

Thus a=0 and x0y =0 iff x=0 or y=0. For
any € > 0 we take the open neighborhood U ={(s,t) | sAt<
<€3% of the set Z =4(x,y)| xoy =0} . We have sntgs A
At<c & for any (s,t)&€ U which completes the proof that
O is continuous.

(¢) Again we can use part (b) of the proof of the prece-
ding Proposition to show that @0 has no other idempotents
than 0,1 .
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Since h is discontinucus at (0,0), O 4is equivalent to

D('l) .

It turns out that D=@ and D =4(0,0)}% are the
only discontinuity patterns which appe ar exclusively for the

adjoints of continuous TP s. More exactly:

2.5, Proposition. For any continuous TP a on I
with at least one idempotent distinet from O and 1 the-
re exists a discontinuous TP 0/ on I with the same HP-
discontinuity pattern.

Proof. (1) If the decomposition 3 = {(a, ,b, ,

0% ) ]x€A} of D contains a type 2 component D
with b <1l we can replace it by a TP T on

) and obtain a family %’ .
It is essily seen from l.4 and 1.7 that Construction l.5

[a, sbyl isomorphic to ©

applied to the family &’ yields a TP O’ whose HP-dis-
continuity pattern coincides with that of o . Furthermo—
fe, since B % 1is discontinuous, so is o .

(2) If there are no components of type 2 with
by < 1, choose an idempotent O<e<l and a TP § on

[0,e1 isomorphic to 0 . Now define

xﬁy for x,y€e
xa' y= X0y for x,y2e

xAy otherwise

Again, we obtain a discontinuous TP o’ on I with the
same HP-discontinuity pattern as g .

We would like to thank A, Pultr who suggested the to-
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pics and whose comments and encouragement were very much
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