Commentationes Mathematicae Universitatis Caroline

Jan Menu; Jan Pavelka
 A note on tensor products on the unit interval

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 1, 71--83
Persistent URL: http://dml.cz/dmlcz/105675

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
17,1 \text { (1976) }
$$

A NOTE ON TENSOR PRODUCTS ON THE UNIT INTERVAL
Jan MENU, Antwerpen \& Jan PAVELKA, Praha

Abstract

Closedness: atructures on the unit interval I viewed as a thin category are considered, in view of possible appilications in the calculus of fuzzy sets. The paper is concerned with the way in which continuity or discontinuity of a tensor product on I is affected by the behavior of its right adjoint.

Kev words: Closedness structure, tensor product, homproduct, fuzzy set.

AMS: 18D15, 22A15 Ref. Ž.: 2.7̌26, 2.721.67

Introduction. Fuzzy-set theoretists usually define the complement of a fuzzy subset $A: U \longrightarrow[0,1]$ of a universe U ∇ ia the formula

$$
\sim A(x)=1-A(x) .
$$

Although the above definition ensures the validity of de Morgan formulae for fuzzy sets, one loses the useful adjunction

$$
A \cap B C C \text { iff } A \subset \sim B \cup C \text {; }
$$

in particular, $\sim A$ is not a pseudocomplement in the lattice of all fuzzy subsets of U : This is due to the fact that the operations $x \wedge y,(1-x) \vee y$ do not constitute a closedness structure on the ordered set (I, \leqslant) viewed as a small thin category.

On the other hand, as A. Pultr showed in [4], any closed-
ness structure on I whose unit coincides with the greatest element 1 induces a closedness structure on the category $\mathcal{Y}(\mathrm{I})$ of all fuzzy sets which satisfies additional conditions enabling us to draw further analogies with set theory (e.g. to introduce counterparts of power-set functors). Moreover, the correspondence between structures on (I, \leq) and $\varphi(I)$, respectively, is one-to-one.

Since the small category (I, \leqslant) is skeletal, a closedness structure with unit 1 on it is completely determined by a couple (\square, h) where
(i) (the tensor product, shortly TP) is an orderpreserving binary operation on I such that ($I, \square, 1$) is a commutative monoid,
(ii) h (the hom-product, shortly HP) is a binary operation on I, order-reversing in the first and order-preserVing in the second variable,
(iii) the adjointness formula
(0.1)

$$
x \square y \leqslant z \text { iff } x \leqslant h(y, z)
$$

holds for any $x, y, z \in I$.
By associativity of a we obtain
(0.2)

$$
h(x a y, z)=h(x, h(y, z))
$$

for all $x, y, z \in I$. Also observe that
(0.3) $\quad l=h(y, z)$ iff $l \leqslant h(y, z)$ iff $y=10 y \leqslant z$.

From (0.1) it follows that all the increasing functions

- ax preserve suprema (note that preservation of sup \varnothing
means $x \square 0=0$ for any $x \in I$), the increasing functions
$h(x,-)$ preserve infima while the decreasing functions $h(-, x)$ transfer suprema to infima. A straightiorward disp cussion of the behavior of D and h on convergent sequences shows that, as a consequence of the monotonies, the above properties are equivalent to a being lower-semicontinuous and h being upper-semicontimous as real functions on $I \times I$ with the product topology.

On the other hand, since I is a complete lattice, any lower-semicontinuous operation a on I satisfying (i) and such that $x \square O=0$ for all x can be completed to a closedness structure on I. The right adjoint h is then given by the formula

$$
h(y, z)=\operatorname{Max} f x \mid x \square y \leqslant z\}
$$

We shall say that two $T P^{\prime} s \square$ and \square^{\prime} on I are equivalent if there existo a strictly increasing map φ of I onto itself such that

$$
\varphi(x \square y)=\varphi x \square^{\prime} \varphi y
$$

holds for all $x, y \in I$. Given a $T P$ on I and an automorphism φ of (I, \leqslant) the formula (0.4) $\times \square^{9} y=\varphi^{-1}(\varphi \times \square \varphi \rho)$
defines a TP \square^{9} on I equivalent to \square. Hor the right adjoint we have

$$
\begin{equation*}
h^{\varphi}(y, z)=\varphi^{-1} h(\varphi y, \varphi z) \tag{0.5}
\end{equation*}
$$

As stated above, the necessary and sufilicient condition for a commutative and associative operation on I with zero 0 and unit 1 to be a TP is lower-semicontinuity.

Investigating topological semigroups on manifolds with boundary, P.S. Mostert and A.L. Shields described, in particular, all topological semigroups on a compact interval with the endpoints functioning as zero and unit, respectively. Since W. M. Faucett proved in [1] that any such semigroup operation is increasing with respect to the usual order, the (I)-semigroups of Mostert and Shields coincide exactly with those TP's on I which are continuous on $I \times I$.

In § 1 we shall review some results of [1] and [3] in this direction and describe the right adjoints of some TP's including the general continuous one. It turns out that the right adjoint of a continuous $T P$ is mostly discontinuous. Nevertheless, we may still ask what corresponds to the distinction between continuous and discontinuous $T P$'s in terms of the hom-product. The results of § 2 indicate that such a distinction cannot be based only on the discontinuity pattern of h.
§ 1 . We start with some examples of TP's. By D we denote the set of all points of $I \times I$ in which the HP h is discontimous.
1.0 Pct $x 口^{(0)} y=x \wedge y$. Then $h^{(0)}(y, z)=\left\{\begin{array}{ll}1 & \text { if } y \leqslant z \\ z & \text { otherwise }\end{array}\right.$, $D^{(0)}=\{(y, y) \mid y \in[0,1[\}$.

Observe that, whatever the TP \square, we always have

$$
x \square y \leqslant x a l=x, x a y \leqslant l \square y=y
$$

so that $\square^{(0)}$ is the greatest TP on I.
1.1 Let $\square^{(1)}$ be the usual multiplication of real numbers. Then

$$
h^{(1)}(y, z)=\left\{\begin{array}{ll}
1 & \text { if } y \leqslant z \\
z / y \text { if } z<y
\end{array}, \quad D^{(1)}=\{(0,0)\}\right.
$$

W. M. Faucett proved in [1] that any continuous TP on I with no idempotents other than 0,1 and no nilpotents (i.e. elements $x \neq 0$ such that $x^{n}=0$ for some n where the power is taken in the semigroup (I, \square)) is equivalent to $\square^{(1)}$.
1.2 Put $x \square^{(2)} y=\operatorname{Max}\{0, x+y-1\}$. Then the HP

$$
h^{(2)}(y, z)=\operatorname{Min}\{1,1-y+z\} \text { is continuous. As proved }
$$

in [3], any continuous TP on I with no idempotents other than 0,1 and at least one nilpotent is equivalent to $\square^{(2)}$.
1.3. Put $x \square^{(3)} y=\left\{\begin{array}{l}0 \text { if } x+y \leqslant 1 / 2 \\ x \wedge y \text { otherwise }\end{array}\right.$. Then $\square^{(3)}$
is a discontinuous TP on I with

$$
h^{(3)}(y, z)=\left\{\begin{array}{l}
1 \text { if } y \leqslant z \\
\operatorname{Max}\{1 / 2-y, z\} \text { otherwise }
\end{array}\right.
$$

$D^{(3)}=D^{(0)}$.
1.4. Put $x \square^{(4)} y=\left\{\begin{array}{ll}0 & \text { if } x+y \leqslant 1 \\ x \wedge y \text { otherwise }\end{array}\right.$. Again, the product is discontinuous and we have

$$
\begin{aligned}
& h^{(4)}(y, z)=\left\{\begin{array}{l}
1 \text { if } y \leqslant z \\
\text { Max } 1-y, z \quad \text { otherwise }
\end{array},\right. \\
& D^{(4)}=\{(y, y) \mid y \in] 0,1[\} .
\end{aligned}
$$

1.5. Now we shall desdribe a construction which was shown in [3] to generate all continuous TP's from those equivaJent with either $\square^{(1)}$ or $\square^{(2)}$.

Let $\left] a_{\alpha}, b_{\alpha}[\mid \alpha \in A\}\right.$ be a countable family of disjoint open subintervals of $[0,1]$. For every $\propto \in A$ let a TP a^{∞} on $\left[a_{\alpha}, b_{\alpha}\right]$ be given. With the family $\mathcal{F}=\left\{\left(a_{\alpha}, b_{\alpha}, \square^{\alpha}\right) \mid \propto \in A\right\}$ we associate the operation \square on I defined
(1.1) $\quad x \square y= \begin{cases}x a^{\dot{\alpha}} y & \text { if }(x, y) \in\left[a_{\alpha}, b_{\alpha}\right]^{2} \\ x \wedge y \text { if }(x, y) \notin \bigcup_{\alpha \in A}\left[a_{\alpha}, b_{\alpha}\right]^{2}\end{cases}$

It is easily verified that (1.1) is a correct definition of a TP on I whose set of idempotents cuntains $\left.F=I \backslash \bigcup_{\propto \in A}^{\prime}\right] a_{\alpha}, b_{\alpha}\left[\right.$. Furthermore, if all $a^{\alpha \prime}$ s are continuous, so is \square.

On the other hand, given a contingous TP on I, denote by E the closed set of all its idempotents and consider the ímmily $\left]_{\alpha}, b_{\alpha}\left[\alpha_{\mathcal{A}} \in\right\}\right.$ of its complementary intervals. For any $\alpha \in A$ the restriction D^{∞} of \square to $\left[a_{\alpha}, b_{\alpha}\right]^{2}$ is a continuous $T P$ on $\left[a_{\alpha}, b_{\alpha}\right]$ with no idempotents other than a_{∞}, b_{∞}. Thus the ordered semigroup $\left(\left[a_{\alpha}, b_{\alpha}\right], \leqslant, \square^{\infty}\right)$ is isomorphic to either ($I, \leqslant, \square^{(1)}$) or ($I, \leqslant, \square^{(2)}$) - we shall speak of type I nnd type 2 components, respectively. Now it is easy to prove that $x a y=x \wedge y$ whenever $(x, y) \&_{\alpha \in A}\left[a_{\infty}, b_{\infty}\right]^{2}$ Te conclude that a coincides with the TP derived from the $\dot{\sim} \quad \underset{\sim}{*}=\left\{\left(a_{\alpha}, b_{\alpha}, a^{\alpha}\right) \mid \propto \in A\right\}$ (cr. [3], Theorem A). We shall call \mathfrak{F} the decomposition of a.
1.6 Let the TP \square be obtained from a family $\mathcal{F}=\left\{\left(a_{\alpha}, b_{\alpha}, a^{\alpha}\right) \mid \propto \in A\right\}$ by construction 1.5. A straightforward computation yields the following form of the HP:

$$
h(y, z)=\left\{\begin{array}{l}
1 \text { if } y \leq z \\
z \text { if } z<y \in I \backslash \bigcup_{\alpha \in A} I a_{\alpha}, b_{\alpha}[\text { or } \\
z<a_{\alpha}<y<b \alpha \text { for some } \alpha \in A \\
h^{\alpha}(y, z) \text { if } a_{\alpha} \leq z<y<b_{\alpha} .
\end{array}\right.
$$

1.7. From (1.2) we can now derive the discontinuity pattern D of the right adjoint to a general continuous TP \square. Let $\mathcal{F}=\left\{\left(a_{\alpha}, b_{\alpha}, \square^{\alpha}\right) \mid \propto \in \mathbb{A}\right\}$ be the decomposition of $口$. Assume \square has at least one idempotent distinct from 0,1. Let $D_{z}=\left\{\left(y, a_{\alpha}\right) \mid a_{\alpha} \neq 0, \square^{\alpha}\right.$ is a type 2 component, $y \in] \cdot a_{\alpha}, b_{\alpha}[\}$.

Then
(1) if there exists $\alpha \in A$ ith $b_{\alpha}=1$ we have $D=\{(y, y) \mid 0 \leqslant y \leqslant a \alpha\} \cup D_{2}$,
(2) otherwise

$$
D=\left\{(y, y) \mid y \in\left[0,1[\} \cup D_{2} .\right.\right.
$$

§ 2.
2.1. Proposition. Let D be a TP on I . For any $z \in$ $\in[0,1[$, the function $h(-, z)$ is continuous iff its restriction h_{z} to $[z, 1]$ is an involutory antiisomorphism of $([z, 1], \leqslant)$.

Proof. (1) Assume $h(-, z)$ is continuous. Since h_{z} is decreasing it suffices to show that $y=h_{z} h_{z}(y)$ for any $y \in[z, 1]$. Next observe that

$$
\begin{equation*}
y \leqslant h(h(y, z), z) \tag{2.1}
\end{equation*}
$$

holds even without the assumption of continuity. Indeed, (2.1) is equivalent to $\operatorname{yah}(y, z) \leqslant z$ which, by the commatativity of \square, amounts to $h(y, z) \leqslant h(y, z)$. It remains to prove the reversed inequelity. Since h_{z} is continuous with $h_{z}(z)=$ $=1, h_{z}(1)=z$, any $y \in[z, I]$ can be expressed as $y=$ $=h_{z}(u)$ for some $u \in[z, 1]$. Then

$$
y=h_{z}(u) \geq h_{z} h_{z} h_{z}(u)=h_{z} h_{z}(y)
$$

where the middle inequality is obtained by applying the or-der-reversing function h_{z} to (2.1) with y replaced by u.
(2) Any antiisomorphism of $([z, 1], \leqslant$) is continuous. Now recall $h(y, z)=1$ whenever $y \leqslant z$.

In particular, h_{0} is continuous iff it is an involutory antiisomorphism of I . As for the fuzzy-set motivation, this is exactly the case when we have for any SCI, beside $h_{0}(V S)=\Lambda h_{0}(S)$, also the other de Morgan formula $h_{0}(\wedge s)=V h_{0}(s)$.

For instance, the above condition is satisfied by two of the examples in $\S 1$, namely

$$
h_{0}^{(2)}(x)=h_{0}^{(4)}(x)=1-x
$$

Moreover, it clearly remains valid for any TP equivalent to either $\square^{(2)}$ or $\square^{(4)}$ because in that case

$$
\begin{equation*}
h_{0}(x)=\varphi^{-1}(1-\varphi(x)) \tag{2.2}
\end{equation*}
$$

where φ is an automorphism of (I, \leqslant).
Now it is natural to ask which involutory antiisomorphiisms of (I, \leqslant) can be obtained as h_{0} for some TP on I. In $\begin{aligned} & \text { iew of (2.2) this question is settled by the following }\end{aligned}$
2.2. Proposition. For any involutory antiisomorphism 1 of (I, \leqslant) there exists an automorphism φ of (I, \leqslant) such that

$$
\varphi+\varphi \circ \mathrm{f}=1
$$

Proof. Given a strictly decreasing function $f: I \rightarrow I$ such that $f \circ f=i d$, there is exactly one point $a \in I$ with $f(a)=a$. Clearly $0<a<1$.

Choose any isomorphism $\psi:[0, a 1 \xrightarrow{\sim}[0,1 / 2]$ and put

$$
\varphi(x)= \begin{cases}\psi(x) & \text { if } 0 \leqslant x \leqslant a \\ 1-\psi \circ f(x) \text { if } a \leqslant x \leqslant 1\end{cases}
$$

Since $f(x) \leqslant a$ iff $x \geq a$, and $\psi(a)=1 / 2=1-\psi \circ f(a)$, the definition is correct and it is easy to see that φ is an automorphism of (I, \leqslant). Finally, for any $x \in I$ we have $\left\{\begin{array}{l}x \leqslant a \text { then } \varphi(x)+\varphi \circ f(x)=\psi(x)+1-\psi \circ f \circ f(x)=1 \\ x \geq a \text { then } \varphi(x)+\varphi \circ f(x)=1-\psi \circ f(x)+\psi \circ f(x)=1 .\end{array}\right.$

Now we are going to discuss the extent to which the discontinuity pattern D of a hom-product h determines the behavior of its left adjoint \square.
2.3. Proposition. If h is continuous then \square is continuous and equivalent to $a^{(2)}$.

Proof. (a) Since h_{0} is continuous, it is an involution so that
$x \square y=h(h(x \square y, 0), 0)=h(h(x, h(y, 0), 0)$
holds for all $x, y \in I$, and a is continuous.
(b) Suppose \square has an idempotent a with $0<a<1$. Let $x \geq a, y \leqslant a$. By continuity of \square there exists $u \in I$ such that $y=a q u$, hence

$$
a q y=a \square(a \square u)=(a \square a) a u=a q u=y \text {. }
$$

Therefore also

$$
y \leqslant a \square y \leqslant x a y \leqslant I a y=y .
$$

Thus $h(x, b)=b$ for any $b<a, x \geq a$, and none of the functions $h_{b}, b<a$ is one-to-one which, by Proposition 2.1, contradicts the assumption on h. We conclude that a hasi no idempotent other than 0,1 and is therefore equivalent to $\square^{(1)}$ or $\square^{(2)}$. The HP $h^{(1)}$ is, however, discontinuous which completes the proof.
2.4. Proposition. If h is continuous in $I^{2} \backslash\{(0,0)\}$ and discontinuous at (0,0) then \square is continuous and equivalent to $\square^{(1)}$

Proof. (a) First we prove a continuous in all points (x, y) such that $x \square y>0$. Take $0<\varepsilon<x \square y$, then
$x \square y=h_{\varepsilon} h_{\varepsilon}(x \square y)=h(h(x, h(y, \varepsilon)), \varepsilon)$.
In the expression on the right, $x \neq 0, \varepsilon \neq 0$ hence \square is continuous at (x, y).
(b) h_{0} is discontinuous at 0 because otherwise the monotony of h and the fact that $h(0,-)$ is a constant equal to 1 would render h continuous at $(0,0)$. Thus

$$
\begin{equation*}
1=h_{0}(0)>\lim _{y \rightarrow 0^{+}} h_{0}(y)=a \tag{2.3}
\end{equation*}
$$

We shall prove $a=0$. Suppose that, on the contrary, $a>0$.
First we show $h_{0}(x)<a$ for any $x>0$. Let $h_{0}(b)=a$ and $b>0$. Then we have $x \square y=0$ iff $y \leqslant a$ for any $0<x \leqslant$ $\leqslant b$ so that $h_{0}(a) \geq b$ while $h_{0}(x)=0$ for any $x>a$ which contradicts the continuity of h at ($a, 0$).

Next we claim $h_{0}(x)>0$ iff $x<a$. Indeed, from $h_{0}(b)=0, b<a$ we obtain $h_{0}(t) \leqslant b$ for any $t>0$ which contradicts (2.3). On the other hand, since $h_{0}(x)<a$ for $x>0$ we have $a \quad a x>0$ whenever $x>0$, hence $h_{0}(a)=0$. Finally, ana=a. Indeed, the assumption a0a<a yields $h_{0}(a, a)>0$, and by repeated use of $h_{0}(a)=0$ we obtain

$$
0<a 0\left(a \square h_{0}(a 口 a)\right)=(a \square a) \Delta h_{0}(a \square a)=0
$$

which is a contradiction.
The statement $h_{0}(a)=0$ together with (a) imply that the function - $\square a$ is continuous in $10, a]$. Now the argument of part (b) in the proof of Proposition 2.3 leads to discontinuity of h at (a, a).

Thus $a=0$ and $x \square y=0$ iff $x=0$ or $y=0$. For any $\varepsilon>0$ we take the open neighborhood $U=\{(s, t) \mid$ ant $<$ $<\varepsilon\}$ of the set $Z=\{(x, y) \mid x \square y=0\}$. We have sot $t \leqslant \wedge$ $\wedge t<\varepsilon$ for any (s,t) $\in U$ which completes the proof that口 is continuous.
(c) Again we can use part (b) of the proof of the preceding Proposition to show that \square has no other idempotents than 0,1 .

Since h is discontinuous at $(0,0)$, is equivalent to $0^{(1)}$

It turns out that $D=\varnothing$ and $D=\{(0,0)\}$ are the only discontinuity patterns which appear exclusively for the adjoints of continuous TP's. More exactly:
2.5. Proposition. For any continuous TP a on I with at least one idempotent distinct from 0 and 1 there exists a discontinuous TP \square^{\prime} on I with the same HPdiscontinuity pattern.

Proof. (1) If the decomposition $\boldsymbol{\}}=\left\{\left(a_{\alpha}, b_{\alpha}\right.\right.$, $\left.\square^{\propto}\right)\{\alpha \in A\}$ of \square contains a type 2 component \square^{α} with $b_{\alpha}<1$ we can replace it by a TP $\tilde{\square}^{\propto}$ on $\left[a_{\alpha}, b_{\propto}\right]$ isomorphic to $\square^{(4)}$ and obtain a family \mathcal{F}^{\prime}. It is easily seen from 1.4 and 1.7 that Construction 1.5 applied to the family \mathcal{F}^{\prime} yields a TP \square^{\prime} whose HP-discontinuity pattern coincides with that of \square - Furthermore, since $\tilde{\square} \propto$ is discontinuous, so is \square^{\prime}.
(2) If there are no components of type 2 with $b_{\alpha}<1$, choose an idempotent $0<e<1$ and a TP $\tilde{\square}$ on [0,e] isomorphic to $\square^{(3)}$. Now define

$$
x \square^{\prime} y=\left\{\begin{array}{l}
x \tilde{\Delta} y \text { for } x, y \leq e \\
x \square y \text { for } x, y \geq e \\
x \wedge y \text { otherwise }
\end{array}\right.
$$

Again, we obtain a discontinuous TP \square^{\prime} on I with the same HP-discontinuity pattern as \square.

We would like to thank A. Pultr who suggested the to-
pics and whose comments and encouragement were very much appreciated.

References

[1] FAUCETT W.M.: Compact semigroups irreducibly connected between two idempotents, Proc. Amer. Math. Soc. 6(1955), 741-747.
[2] MACLANE S.: Categories for the working mathematician, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
[3] MOSTERT P.S. and SHIELDS A.I.: On the structure of semigroups on a compact manifold with boundary, Annals of Math. 65(1957), 117-143.
[4] PULTR A.: Closed categories of L-fuzzy sets, to appear.

University of Antwerpen
2020 - Antwerpen
Middleheimlaan 1
Belgium

Matematicko-fyzikání
fakulta Karlovy
university
Sokolovská 83
18600 Praha 8
Ceskoslovensko
(Oblatum 9.9. 1975)

