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rølfflШTATIONES MATHEMATICAE ШБlERSITATIS CAROLINAE 

17,1 (1976) 

ON CONTINÜOUS IMAGES O.P EBERŁEIN OOMPACTS 

Petr SIШN , Pгaћa 

Abstract: J . Lindenstrauss (LL1) has ra i sed the ques
t i o n , whether each Hausdorff continuous image of an Eberlein 
compact i s an Eberlein compact again. The aim of the present 
paper is t o prove t h a t the answer is affirmative in two par
t i c u l a r cases. Since the nature of the problem i s purely t o 
pological , nothing about the re la t ionship with the theory of 
Banach spaces wi l l be mentioned, the reader i s recommended 
t o tL3 and [AA3, where he can find also further references. 

Key words? and phrases: Eberlein compact, diapersed spa
ce, po int- f in i te co l lec t ion, weakly separating col lect ion. 

AMS: 54B30 Ref. 2 . : 3.961.1 

0. Conventions and notat ions . In the whole paper, the 

word "space" wi l l mean "topological Hausdorff space", simi

l a r l y , "continuous image of a space X n wi l l be a Hausdorff 

space T which i s an image of X under a continuous onto 

mapping. The closed uni t in terva l [ 0 , 1 ] will be denoted by 

I f t h e two-point set (and the discrete two-point topologi

ca l space) w i l l be denoted by Z and i t s elements by 0 and 

1 . The symbols Open (X) (resp. Clopun(X) , resp . Coz(X) ) 

denote the set of a l l open (resp. clopen, resp* cozero) sub

s e t s of a space X . 

1. Definition (CL3>. A compact space X wi l l be cal-
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led an Eberlein compact, i f there exist® an embedding of X 

in to some cube I r such tha t for every x e X and for eve

r y r e a l r > © the set of a l l indices y e P with x ( y > V ^ 

i s f in i t e* 

H.P. Eosenthal baa proved tha t Eberlein compacts can be 

characterized using the specia l covering property: 

2 . Proposit ion (£12). A compact space X i s an Eberlein 

compact if and only i f the re exist® e & -point f i n i t e system 

*6 c Coz(X) which weaHy separates points of X , i . e . for 

any two different x , y e l the re i s a G e <C such that 

-tx,y? n C4»0 and i x t y 1 - C4>0 . 

Strengthening the condition i n Proposit ion 2 one obtains 

the following def in i t ion: 

3 . Definition* A compact space X wi l l be called a 

strong Eberlein compact, i f t he r e exis ts a po in t - f in i t e s j w 

tern %. c Goz(X) , weakly separat ing points of X . 

4* Oonvention. When dealing with an Eberlein compact X t 

which i s embedded into I (resp* into %v ) t we sha l l a l 

ways assume that the embedding s a t i s f i e s the condition d e s c r i 

bed in Definition 1 (resp. i n Proposition 8 ) , i *e . tha t for 

each x c X i s t rue tha t card - i f « r 1 x( 3" ) > r }< &0 toT 

each r > 0 (reap. c a r d - t ^ e P | x < y ) = 11 << &Q ) • 

We want to prove that the continuous image of a s trong 

Eberlein compact i s again a strong Eberlein compact* To t h i a 

end, we need some propositions* Let us r e c a l l tha t a space X 

i s called to be dispersed, i f X does not contain a non-void 
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perfect subspaee, that means $ each subspaee Z of X has 

at least one point isolated in Z • 

5m RropoajMoi^ Every strong Eberlein compact i s disper

sed* 

I¥o0f# Suppose the contrary, le t ZcX be a non-void 

peKfeet closed subsp«c« of X , le t 'C c Co&CX) be the 

point-f inite system weakly separating points of X • Let us 

choose a point x^e Z • .The set Ĉ  » f^-tCe^lx^C? 

i s * cozero set by point-finiteness of <t , l e t F^ be so

me closed perfect s e t , sueh that x^e F^e C^nZ • Since P^ 

i s compact and perfect, there i s some point vx^ i a F, d i f ~ 

ferent from x x , l e t (5̂  « A ( C « < | ^ € C } • ij weakly 

separates points, thus x^C2 • Let us choose closed per

fec t F^CC^AF-I with x^cFg, ; proceeding by the obvious 

induction we can find a s t r i c t l y decreasing sequenes of c lo

sed non-empty subsets i^ni • -P&e space X i s compact, thus 

the intersection r\4Wni i s non-void, each point of th is 

intersect ion belongs to inf in i te ly many c' s - a contradic

t i o n with point-finiteness of t • 

6r Proposition* Every non-void compact dispersed space i s 

0-dimensional. 

Proof • We must show thst each point has arbitrarily small 

clopen neighborhood. Let X be the space in question, since 

3t i s dispersed, one can write X a U ^ I J i < oc ? where? 

X"u i s the set of a l l isolated points of LJ 4 X^ | u £ se «: ec S } 

and *c i s suitable ordinal* 
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The proof goes by t r a n s f i n i t e induction. For c -=- 0 , 

l e t x€XQ . I t means that x i s isolated i n X , thus -CxJ 

is the clopen neighborhood of x . 

Let t, <: oo and le t for every se -s L and for every 

ye X^ be true that y has a clopen neighborhood base. Let 

U be a neighborhood of x , xeX^ . Since x i s isola ted 

in U *££<«, Ji/A (t* -<: oo } . and since X i s regular , there 

i s some neighborhood V of x with the following proper t ies : 

clVerU , cl Tn L M x ^ |u £ £*,-<: ocj s 4 X ? . Thus the boundary 

bd V i s contained in UiX^ \& «* L, } , 

For a point ycbd V le t W be a clopen neighborhood of y 

which does not contain x (by the induction hypothesis such 

a neighborhood does e x i s t ) . The boundary bd V i s compact 

and so some f in i t e col lect ion -iW, ,WV , . . . ,W V % covers i t . 
y l *2 ^n 

I t i s self-evident that the set V - U - t W \ i =- 1 , 2 , . . . ,n$ 

i s the clopen neighborhood of x , contained i n U . 

1. Proposition. Let X be O-dimensional (resp» strong) 

Eberlein compact. Then there ex i s t s a 6*-poin t - f in i te ( reap , 

po in t - f in i te ) system £b e Clopen(X) , which weakly separa

t e s poin ts . 

The proof i s rou t ine . One needs only to r e a l i z e t h a t 

every cozero se t i n O-dimensional compact space i s a union 

of a po in t - f in i t e co l lec t ion of clopen sets» 

8. Proposi t ion. Every strong Eberle in compact can be 

embedded in to 2^ for some set of indices V i n such a man

ner that for every xcX the set if* ^ j x ( ^ ) as l } i a .fi

n i t e . 
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Proof* Let <£ c Clopen(X) be a? point-finite system, 

which weakly separates points of X , .For C e ? let fc-

: X—> 2 be the mapping which maps C onto 1 , X - C on-

t o 0 • Let f : X—*2 be defined by the rule f (x)(C) = 

* f^(x) * Then the mapping y i s t i i e desired embedding. 

(Easy.) 

9. Proposition* Let X be compact space and let there 

ex is t a point f in i t e system (X <z Open(X) , which weakly se

parates points of X * Then X i s a strong Eberlein compact. 

Proof* For x e X , denote 0 X = n - f O e C T j x e O ? , 

l e t Cx be a non-empty eozero set with x e Cxc 0X « Then 

^ ^ - C C ^ j x c X j c Coa(X) i s a point-finite system weakly 

separating points of X . 

Remark. .Proposition 9 cannot be generalized to the case 

of m & -point-f inite col lection and general Eberlein compact, 

as the following example shows: .For every x £ l denote by 

i.q (x)} some seque-nce of rational numbers in I f converg

ing to x in usual topology. Let • Q * A qn(x);| x e l f n e 

e o>0 I • Let .-F be the space, whose underlying set Is a d is 

jo int union of I and Q , and whose topology is defined as 

follow®- each q€® i s isolated, and the neighborhood base 

of x e l has members of form -fq^tx), Q^i/*)) q-.^^^'*0* 

. . . , x } , with k natural* Let X be the one-point compacti-

f i ca t ion of X . Then: X i s not an Eberlein compact, but X 

admits a & -point- f ini te collection of open se t s , which weak

l y separates points. The verif ication of both properties may 

be l e f t to the reader. 
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10. Definition. Let X c 2 r be a strong Eberlein com

pact, let X be i t s continuous image under the mapping f . 

For x cX le t us define 

dg x « card { tfe V | x( ^ ) « 1 J 

and for y 6 Y deflnir 

dg y -* min -fdg x | x € f~ (y) f • 

i | t Lemi s Let X c 2 r be a strong Eberlein compact, 

xcX , and -tx-jf a sequence of points converging to x , 

x n * x f o r a 1 1 n # ^ e n d g x n > d g x h o l < i 8 f o r a 1 1 DUt f*~ 
nitely many n • 

fhe proof i s easy - the set ijeX\ x( 'y) » 1 -*--» 

=-=--*> yt^r) - 1? i s a neighborhood of x and thus contains 

almost a l l x . 

}.>_> L^UJ^. Let Ica^ 1 be a strong Eberlein compact, X 

i t s continuous image under the mapping f, y € X . Then the 

set 

U U ^ t y l l y c I , d g y _ S d g y o J y * y 0 ? 

i s closed. 

.Proof. Let dg y « n ; denote by M the set above. 

Pick a point x e cl M • Since each Eberlein compact i s a 

Ĵ p ĉhet space, there i s a sequence i x . ^ ranging in M , 

which converges to x . I f in f in i t e ly many members of 4 xnJ 

belong to some f (y) , then x e f (y) and so x e M • 

In other case we may assume without loss of generality 

tha't x n € f" (yn) , a l l y n being distinct* and that the 

sequence *tyn? converges to y -» f (x) . Let us choose a 
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point t n € t~ (yn) with dg t n =- dg y n . Again we may assu

me tha t the sequence i*n% converges; denote by t i t s l i 

mit po in t . Since dg t n ^ n , when applying Lemma 11 we ob

t a i n tha t dg t < n • I t follows tha t xeUi f ^ t y ) ( yel , 

dg y<rdg y f c M , t h u s , x having been chosen from cl M 

a r b i t r a r i l y , cl McM • 

13. Theorem. A continuous image of a strong Eberlein 

compact is a strong Eberlein compact, too . 

Proof• Suppose X c 2 r be a strong Eberlein compactt 

t 9 continuous mapping from X onto I • Denote by Cx the 

s e t iyeX\ x(-y) = l « 4 y ( r ) * 15 f le t <T * i 0 X | x€ X? . 

The system (Y i s p o i n t - f i n i t e , consists of clopen s e t s and 

weakly separates po in t s . 

For a point x c X the set \J i f (y) | dg y-£dg fix) , 

y + f (x) } i s closed by Lemma 12, and the point x i s not i t s 

member. Thus we can find a neighborhood Vx of x , d is joint 

with the set U i f - 1 ( y ) | dg y ^ d g f(x) , y * f ( x ) J . 

Let us denote Ux » O xnV x , % » { Ux | x e X } . The co l lec -

tioifc % i s p o i n t - f i n i t e and weakly separating, because the 

co l lec t ion V i s . 

For every y £ T l e t us choose a f in i t e family 

-CHL. ,U-- , . . . , U Y } c % such that x., € f (y) and 
x l x 2 n(y) x 

U { U X J i s l , 2 , . . . , n ( y ) J D f - 1 (y ) . Let us denote the 

l a s t union by JJit^iy)) . 

a) The system 4u(f" 1 (y) ) | y e * } i s po in t - f in i t e : 

I f a point x belongs to i n f i n i t e l y many U(f ( y ) ) ' s , then 
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by the definition of U(f"'1(y)) i t must belong to inf in i te ly 

many different tfx a , which i s impossible, because % i s 

point - f in i te . 

b) For any **o Ji^y^c y $ ^ 1 + ^ • either 

U(f**1(y1))Af"1(y2)i » fj or f ' ^ y ^ n uCf^Cy^)) -* 0 : 

Suppose dg yj£ &g y2 . Then for s l l %€ f""1(y1) , 

T X A ( U <£ f ^ f y ) | tig y£dg y x f y ^ J « 0 , 

hence U ^ A f " 1 ^ =* # . Thus U -t t^ | x c * " " 1 ^ ) J n f " 1 ^ ) » 

ae 0 , consequently U(f (y^JJnf ( y p ~ 0 • 

low i t suffices to define for each y e X the set C 

by the equality Cy, » X - f lx - UCf*"1^) >3 and to denote 

<£ -s- 4€Lj J€J i . <£ consist© of open s e t s , a) implies i t s 

point-f initeness, according to b) <€ weakly separates points 

of X , and i t remains to apply Proposition 9 to obtain that 

X i s a strong Eberlein compact* 

There i s another special case, when I can prove that a 

continuous image of an Eberlein compact i s an Eberleirf com* 

pact* I am very sorry that the proof of the following theo

rem i s very technical and long, but I don't know any better* 

14. Theorem. Let X be an Eberlein compact, KcX i t s 

closed subset. Then the quotient X/K i s an Eberlein compact* 

Proof* By Proposition 2 i t w i l l suff ice , i f one can f i n d 

in X some ff-point-finite col lect ion £ c CozCx) with 

the following properties: 

a) *£ weakly separates points of X - K 

b) U * € is disjoint with K 

c) *d covers X - K . 
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We may assume tha t X i s embedded in to 2V and the 

embedding s a t i s f i e s Definit ion 1, and that the point 0, C~ 

the point , whose a l l coordinates equal t o zero) belongs t o 

the set K • The se ts of the form D^ . „ » 

m srC- [ 3 / Y V J 4 I - - J A X (wher« sn̂ . i s the y - t h pro

j ec t ion ) are cozero s e t s and i t i s easy to check that the sys

tem i 2>ri^,m< l y e P , /tv € « 0 , 4&$.4:m,-4} i s 

p o i n t - f i n i t e , weakly separates points of X and covers X -

- i 0 1 • .Fix n for a moment, and l e t S)^ be a col lect ion 

of a l l in tersect ions of f i n i t e l y many ^Xi^>^ 5 &m, i s 

p o i n t - f i n i t e and S> -» U A S)^ \ nru e co0 } weakly separa

t e s points* 

For D e S)^ l e t us introduce the following notat ion: 

i f F ^^r^r^-i r*o^"« r , p » < ^ , ^ * " ^ ^ } 

f i n i t e col lect ion of na tura l numbs r s sat isfying the inequal i 

t y 

1 £ j r § £ n - 1 for a l l i , and i f D'» A 4 D^ ,^ ,** , | 

i = l , 2 , . . . , k } f then le t us denote D « D^ • 

Call a set G of indices to be remarkable with respect 

t o D ^ , i f 

( i ) Gf\F = 0 

( i i ) there ex i s t s a point x ^ c c l D̂ , nK such that 

x ^ C y ) ;> / n , for a l l y e Q , and x ^ y ! -£ 2 / n , for 

a l l r€ T1 - (F G) , fL& 

( i i i ) i f there i s some y & cl D | A K such that the 

s e t H * - t y e T - F j y ( r > > 2 ^ } i s contained in G , then 
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H =- • 0 . 

(The case G « 0 i s not excluded.) 

Now, some more nota t ion . 

Tfl (Dn \ w i l l be the set { G c V \ G i s remarkable 
a ,p » 

with respect t o Dn } , and L(Dn J ~ U Wl (Dn ) . JJ,P a ,p J? ,p 

Lemma A. For every Dn , the set 7)1 CD| ) i s f i 

n i t e . Of course, as a coro l la ry , the set --'(Dj? p ) i s f i n i 

t e , t o o . 

Put cf f p « Dn
jp n nitty it a, 2/4 0 I r * L Clf^) J - Denote 

Lemma B. For every x 6 X - K and for each D^ con

ta in ing x , there exist n^, F^, p^ such that 

* ' c * i , p i c D?,p and C°I»PI * **- • 
Then <£ » L^-C^^ Jtrte cD0 $ i s the desired syste-m, s i n 

ce i t s members are cozero s e t s , poin t - f in i teness of S>^ im

pl ies poin t - f in i teness of t ^ and thus <£ i s 6^-point-

f i n i t e . 

For x + y , both belonging to X - K , we can f ind a 

Dn separating them. Suppose x e D n , y$B™ p • Accor-
n l ding to Lemma B the set Cj, belongs to ^ and separa

tes x and y . 

All the members of *£ are dis joint with K - see the 

def in i t ion of ^ -

Final ly , since each point of X - K i s d i s t i nc t from 
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the origin 0, , there must be some D™ containing i t . 

Again we may apply Lemma B t o obtain that <£ covers X - K • 

Thus the conditions a ) , b)» c) are ver i f ied and i t remains 

t o show the v a l i d i t y of both Lemmas, then the proof wil l be 

complete. 

Proof of Lemma 'A. Suppose the contrary. Let D^ be
long t o Sbn, and l e t for t h i s par t icu la r DJjJ the col lec
t i o n ItMV* ) (denote i t by %, ) be i n f i n i t e . For every 

* >P 

Q 6 fTl l e t us choose a point XQ having the properties 

from ( i i ) . Since (by £ i i i ) l the members of HI are d i s t i n c t , 

the set AXQ\ G e /ffl 1 i s i n f i n i t e , l e t z be i t s accumu

l a t i o n point ( X i s compact! )• The point z belongs to 

c l D« r\K because a l l x^ belong to t h i s in tersec t ion . 

Let us denote E * -itf s V ~ ¥ \ z (y) z» ^/^ 5 , Choose 

r e a l r > 0 , r -< /Zm an<* define an open neighborhood ¥ 

of a point z by the following: 

-ry. CU3 =, ] * * % , **• A > [ for r* « J 

^ r r C U l a ] / r t , 1 ] for r s I 

*ry CU] « [ 0 , 4 3 for r f c f - C F ^ B ) . 

By ( i i i ) there i s at most one XJ* with G * H and % 

i s an accumulation point , so there must be some XQ with 

G4-.H , which belongs to TJ ; then obviously GuH . But by 

( i i i ) the sharp inc lus ion G | I contradicts to the assu

med remarkabili ty of G . Thus 7H i s f i n i t e . As a conse

quence ( a l l members of Wl (D^ ) are f i n i t e ) , the set of 
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indices? UlE ) is finite, too* 
* iP 

Proof of Lemma B* Pick a point xeX - K and & set 

D^ ̂  e <Z^ which is a neighborhood of x • 

Only two cases may occur: 

li There are n', F', p', such that xeD«, .c D 5 ̂  
, *>F *»P 

and cl ^ A K - £5 • 

Then the only set of ind ices remarkable with respect t o 

D w ^ i s the empty set and thus cEs-s = D!L , . I t remains 
£ >P -PfP * » P 

t o write n-̂  = n ' f F^ = F ' , p-̂  =- p ' • 
2) For every t r i p l e n ' f F ' , p ' s a t i s fy ing xeD^^c 

c D„ _ the set cl DS*-^,A K i s always non-void. F , p i* fp 

In t h i s case, l e t Z be the i n t e r s ec t i on of a l l such 
n' i 

cl D„y - • One can immediately observe tha t Z =* -CyeXj i f 
* iP 

x(y)jrO , then y ( y ) ~x(y)} • 

For G c r - ( y I x (y) => 0 5 and for r e a l r > 0 

l e t l | * 4. y 6 X J <y e G «-> y( <y) £ r ? • Because Z a O flj| = 

= 4 r ? as may be eas i ly checked (the i n t e r s e c t i o n i s taken 

over a l l r > 0 and a l l G f i n i t e , *"G c V - -£ $~ I x ( ^ ) > 

> 0? ) , the in te rsec t ion H a H I J A K i s empty^ Since X 

is compact, WQ are closed, there exis t some r > 0 and some 

f i n i t e G c -C r € P | x(-y) = 0 J such tha t ZrvW^nK = 0 • 
The set Z i s an in te r sec t ion of a centered system: using 

n 
the same argument, we obtain tha t there i s some D« such 

n n o , p o 
tha t cl D«° _ o w£nK =- 0 , and x c D ® n c DS „ • 

F 0 i P G <* * o , p o F , p 

Let n^ be a natural number, sa t i s fy ing the following i n e 

q u a l i t i e s : 
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1^-* Vztoto+di*t<*(rh l-*rl^#J^r*Tol > 

Denote F-̂  » i y | xC'yJ > /n. I • Then there is a f i n i 

te sequence of natural numbers, p^ , Indexed by members of 
n l n l n o 

Ft such that xeD^ „ and Dp _ c V r* • Construct 
r * l , p l „ F 1 , P 1 *o , po 
L̂ n l n l 

C™ _ , obviously x e C™ „ .We must show that Cp ... be-
l t P l ^ l , p l ^1^1 

longs to *&,. ; to th i s end i t i s sufficient to verify that 
n l 

Before i t , let us show that the empty set of indices 
n, 

i s not remarkable with respect to D^ • Suppose the con-
trary. Then by ( i i ) there i s a point Xgj belonging to 

c l D ^ A K , for which x ^ r ) -* An* tor a l l y £ T -

- F-_ , thus X-JCWQ , because G c F - F-̂  and r > ~/^ • 

I t follows that x,e c l V9 rs^n^c cl D ° n n WlnJC -* # , 
p * l iPl Q *o , po 

a contradiction. 
n. 

Thus L ( D / n )4»d . 
* x n. 

We want to prove that Cp „ A K = 0 , suppose the con-
1 , P1 n l trary: let y c C™ _ A K • From the previous we know that 

* l , p l 
cl D ° A WEAK * 0 , a * c D-° _ and y e CL1 _ A K : 

F0 ,P0 G F l»Pl ^o^o * l , p l 
i t follows that y + Q̂ t and consequently, the set of indices 

H=- < ^ c ? | y ( -y ) .> *-/#i } Is non-void. Now, since y £ 
n l € c l D™ A K , we may use ( i i i ) , there is some H e H , re-

markable with respect to B-, n . Because 0 is not remark-
F l fPL 
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n l able, HO4P0 . By the def init ion of Ĉ , , for y c 
% EU 

« IftogT _ ) and for a l l 2 e Or „ i t i s true that z ( y ) < 
l f ^ l **l ,pl 

^ / a • ^ ^ assuming y e Cj-T p we see that HQ n 

n l n LCD« ~ ) = IS , which contradicts to the definit ion of 
*1,PX 

L(Dp n J : H~ i s remarkable, disjoint with L ( D / __ ) , 
^l '^l ° 1*^1 

n l nevertheless? L(DB _ ) was defined as the union of a l l re -
*l»Pi 

markable sets* 

The proof of Theorem 14 i s complete. 

.Finally, the following theorem about the general case of 

Lindenstrauss5 problem may - by the author's opinion - show 

that there i s some relationship between Theorem 13 and the 

general case* 

^.5. Theorem. The following statements are equivalent: 

(a) 'Every continuous image of an Eberlein compact i s an 

Eberlein compact. 

(b) Every continuous image of a countable product of strong 

Eberlein compacts i s an Eberlein compact* 

Proof, (a)--=---> (b) is obvious* 

.For the reverse implication, le t X be an Eberlein comp ct f 

Y a compact space, f: X-—*X a continuous onto map* Suppo

se X to be embedded into some cube I • Since the Cantor 

discontinuum D can be mapped continuously onto I , there 

i s a compact subset ZcD and a mapping h from Z onto 

X , moreover h and Z can be defined in such a way that 2 a 
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when considered with identical embedding D into I i s 

again an Eberlein compact by Definition 1. Z i s sere-dimen

s ional , thus there i s a family «£ m KJ <£„, c Clopen(Z) , 

which weakly separates points of Z f with each <£„,, point-

f i n i t e (Proposition 7 ) . Define an embedding of Z into 2* 

as i n the proof of Proposition 8 and denote i t y * Now, 

consider the projection at^ s 2 >• 2 '*' • ^nen 

tft^ £ V £ Z 1 3 » Z ^ i s a strong Eberlein compa ct since 

^ i s point- f in i te , and, obviously, y C Z ) c HiZm\m>6oQ} . 

One may eas i ly define a map g and a compact Hausdorff 

space Y* , such that Y e t ' f g £ TTZ^J » Y* and 

g / y £ Z ] =* f • g • t p - 1 . Finally, i f (b) holds, l ' is an 

Eberlein compact and Y , as a compact subspace of Y# , i s 

an Eberlein compact, too* 

Problem* Every strong Eberlein compact i s dispersed. Is 

i t true that each dispersed Eberlein compact i s strong? 

Added in proof. After this paper was submitted for the 

publication, the author received a l e t ter by Y. Benyamini, 

where he announced similar resul ts (not published yet)* 
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