Commentationes Mathematicae Universitatis Caroline

Pavel Tomasta
Decompositions of complete k-uniform hypergraphs into factors with given diameters

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 2, 377--392
Persistent URL: http://dml.cz/dmlcz/105702

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
17,2 (1976)

DECOMPOSITIONS OF COMPLETE k-UNIFORM HYPERGRAPHS INTO FACTORS WITH GIVEN DIAMETERS
 Pavel TOMASTA, Bratislava

Abstract

The aim of this paper is to find an upper estimate for the minimal n (if it exists) with the property that K_{n}^{k} is decomposable into factors with given diameters. It will be shown that this property is hereditary.

Key words: Complete graphs, factor, diameter of graph. AMS: 05C35 Ref. Ž.: 8.83

Introduction. The next considerations deal with k-uniform hypergraphs and give some generalizations of problems solved in [2d for graphs.

The purpose of this paper is to prove:

1. If a complete k-uniform hypergraph K_{n}^{k} with n vertices can be decomposed into m factors with given diameters (k, n, m are positive integers) then for any integer $N \geq n$ the hypergraph K_{N}^{k} can be also decomposed into m factors with the same diameters. This is a generalization of Theorem 1 of [2].
2. An upper estimate for the minimal n with the property that K_{n}^{k} is decomposa ble into factors with given diameters. This is an analogue of Theorem 4 of [2].

At first we give some definitions. A hypergraph is an
ordered pair of sets $G=(V, H)$ where $H \subset P(V)$ (the potence of V). Let k be a positive integer. The hypergraph G is said to be a k-uniform hypergraph if for each $h \in H$ we have $|h|=k$. For $k=2$ we obtain graphs. If the set H contains all the k-element subsets of V then G is said to be a complete k-uniform hypergraph and we denote G by k_{n}^{k} where $n=$ $=|\nabla|$. The distance $d_{G}(x, y)$ of two vertices x and y in G is the length of the shortest path joining them. The diameter of the hypergraph G is defined by

$$
d=\sup _{x, y \in \bar{V}} d_{G}(x, y) .
$$

The factor of G is a subhypergraph of G which contains all vertices of G. For unknown concepts see Berge [1].

The general case. Let $\mathrm{F}^{k}\left(\mathrm{~d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}\right)=\mathrm{t}$ be the smallest integer (if it exists) such that the hypergraph K_{t}^{k} is decomposable into m factors with diameters d_{1}, d_{2}, \ldots $\ldots, \mathrm{a}_{\mathrm{m}}$.

Agreement: We shall say that K_{n}^{k} is of type $T^{k}\left(d_{1}, d_{2}\right.$, \ldots, a_{m}) if it is decomposable into m factors with diameters $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}$.

The importance of the number $F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ follows from

Theorem 1: Let m, n and $k \geq 2$ be positive integers and let $d_{1}, d_{2}, \ldots, d_{m}$ be positive integers or symbols ∞. If $F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)=n$ then for every integer $N \geq n$ the complete k-uniform hypergraph K_{N}^{k} can be decomposed into m factors with diameters $d_{1}, d_{2}, \ldots, d_{m}$.

Remark: We denote the diameter of a disconnected hypergraph by the symbol ∞.

First we prove the following
Lemma 1: Let $2 \leqslant k \leqslant n$ be integers. Then the hypergraph K_{n}^{k} cannot be decomposed into more than $\binom{n-2}{k-2}$ factors with diameter d $=1$.

Proof of Lemma 1: Consider a factor of K_{n}^{k} with diameter one. Then every pair of its vertices belongs to at least one edge. There are $\binom{n}{2}$ pairs of vertices and every edge contains ($\frac{k}{2}$) pairs of vertices. Consequently the number of edges of this factor is at least

$$
\frac{\binom{n}{2}}{\left(\frac{k}{2}\right)}=\frac{n(n-1)}{k(k-1)}
$$

Thus for the number m_{I} of the factors of K_{n}^{k} with diameter $d=$ $=1$ we have

$$
m_{1} \quad \frac{\binom{n}{k}}{\frac{n(n-1)}{k(k-1)}}=\binom{n-2}{k-2} \text {. }
$$

The proof is completed.
Proof of Theorem 1: The induction on N will be used. Suppose $d_{1} \leqslant d_{2} \leqslant \ldots \leqslant d_{m}$.
I°. The first step of induction is evident: K_{n}^{k} is of type $T^{k}\left(d_{1}, d_{2}, \ldots, a_{m}\right)$ by the assumption.
2°. Let $N \geq n$ and K_{N}^{k} be of type $T^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$. our aim is to prove that K_{N+1}^{k} is also of type $\mathbb{R}^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$. Dénote its vertices by $1,2, \ldots, N, V$. The hypergraph K_{N}^{k} with
vertices $1,2, \ldots, N$ is of type $T^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ by the induction hypothesis. Denote its factors with diameters d_{1}, d_{2}, \ldots \ldots, d_{m} by $F_{1}, F_{2}, \ldots, F_{m}$.

We shall construct the factars $G_{1}, G_{2}, \ldots, G_{m}$ of K_{N+1}^{k} as follows:
(a) If $h \in F_{i}$ then $h \in G_{i}$ for every $i=1,2, \ldots$, m.
(b) Let p be an arbitrary but fixed vertex of K_{N}^{k} and let $p_{1}, p_{2}, \ldots, p_{k-1}$ be vertices of K_{N}^{k} different from p. Then the edge $\left\{v, p_{1}, p_{2}, \ldots, p_{k-1}\right\} \in G_{i}$ if and only if $\left\{p, p_{1}, p_{2}, \ldots\right.$ $\left.\ldots, p_{k-1}\right\} \in F_{i}$, for every $i=1,2, \ldots, m$.
(c) If $d_{1}=1$ then there are exactly $\binom{\mathrm{N}-1}{\mathrm{k}-2}$ edges of type $\left\{\nabla, p, q_{1}, q_{2}, \ldots, q_{k-2}\right\}$ in the hypergraph K_{N-1}^{k} and by Lemma 1 we can give into every factor with diameter one at least one edge of this type. The remaining edges can be given into any factor with diameter one.
(d) Assume $d_{1} \geq 2$. Let q be some fixed vertex of K_{N}^{k} and $p \neq q$. If $\left\{p, q, q_{1}, q_{2}, \ldots, q_{k-2}\right\} \in F_{i}$ then $\left\{p, \nabla, q_{1}, \ldots, q_{k-2}\right\} \in$ $\in G_{i}, i=1,2, \ldots, m$.

Now we prove that the factors $G_{1}, G_{2}, \ldots, G_{m}$ have diameters $d_{1}, d_{2}, \ldots, d_{m}$, respectively.
I. First we show that $d_{i}^{\prime} \leqslant d_{i}$ for every $i=1,2, \ldots, m$ where d_{i}^{\prime} is the diameter of G_{i}.

The edges $\left\{v, p_{1}, p_{2}, \ldots, p_{k-1}\right\} \in G_{i}$ and $\left\{p, p_{1}, p_{2}, \ldots\right.$ $\left.\ldots, p_{k-1}\right\} \in F_{i}$ will be called "mutually corresponding". Analogously for the edges $\left\{v, p, q_{1}, q_{2}, \ldots, q_{k-2}\right\}$ and $\left\{p, q, q_{1}\right.$, $\left.q_{2}, \ldots, q_{k-2}\right\}$. Further we say that the vertex x is "joined via $p^{\prime \prime}$ with the vertex y if there exists an edge containing x and p and an edge containing y and p.

Let G_{i} be an arbitrary factor and x, y be an arbitrary pair of vertices of K_{N+1}^{k}. If $\nabla \neq x, y$ then $d_{G_{i}}(x, y) \leq d_{i}$. Let now one of the vertices x, y be ∇. For example $x=\nabla$. If $d_{i}=$ $=\infty$ then evidently $d_{i}^{\prime} \leqslant d_{i}$. Thus it can be supposed $d_{i}<\infty$. We shall distinguish two cases.

1. $y \neq p$. Then there exists a chain connecting in F_{i} the vertices y and p. Take a shortest one. Let $\left\{p_{1} p_{1}, p_{2}, \ldots\right.$ $\left.\ldots, p_{k-1}\right\}$ be the last edge of this chain. Then from (b) it follows that the edge $\left\{v, p_{1}, p_{2}, \ldots, p_{k-1}\right\}$ belongs to G_{i}. Since $d_{G_{i}}\left(p_{j}, y\right) \leqslant d_{i}-1$ for some $j=1,2, \ldots, k-1$, we have $d_{G_{i}}(\nabla, y) \leq d_{i}-1+1=d_{i}$.
2. $y=$ p. If $d_{i}=1$ then $d_{G_{i}}(v, y)=1$, because some edge of type $\left\{v, p, q_{1}, q_{2}, \ldots q_{k-2}\right\}$ belongs to G_{i} (it follows from (c)).

If $d_{i}>1$ then $d_{G_{i}}(v, y) \leq 2$. Thus $d_{i} \leq d_{i}$ and we proved the first part.
II. We shall show that $d_{i} \leq d_{i}^{\prime}$. Let $d_{i}=\infty$ and $d_{i}^{\prime}<$ $<\infty$. Then we can find two vertices $x, y \neq v$ such that there exists a chain $x, h_{1}, x_{1}, h_{2}, \ldots, h_{t}, x_{t}=y$ in G_{i} but no chain joining x and y in F_{i}. Every edge $h_{r} \notin F_{i}$ in this chain can be replaced by the "mutually corresponding" edge in F_{i} ensuring the joining between x and y. This is a contradiction to the assumption that there is no chain between x and y in F_{i}.

Let now $1<\mathrm{d}_{\mathrm{i}}<\infty$. Then there exist two vertices x and y with the property $d_{F_{i}}(x, y)=d_{i}$. Let x°, y° be the vertices from a shortest chain between x and y in G_{i} which are "joined via $v^{\prime \prime}$ and either $d_{G_{i}}\left(x^{\prime}, y^{\prime}\right)=2$ or $d_{G_{i}}\left(x^{\prime}, y^{\prime}\right)=1$.

Then x^{\prime} and y^{\prime} are "joined via p " by the chain of length either 2 , if $d_{G_{i}}\left(x^{\prime}, y^{\prime}\right)=2$, or 1 if $d_{G_{i}}\left(x^{\prime}, y^{\prime}\right)=1$ with "mutually corresponding" edges in F_{i}. Consequently, $d_{G_{i}}(x, y)=d_{i}$. Let now $d_{i}=1$. From the case I we have $d_{i}^{\prime} \leq d_{i}$ what implies $d_{i}^{\prime}=d_{i}=1$.

Since $d_{i} \leq d_{i}^{\prime}$ and $d_{i}^{\prime} \leqslant d_{i}$ we have $d_{i}=d_{i}^{\prime}$ for every $i=$ $=1,2, \ldots$, m and this completes the proof.

Corollary 1: Let $F_{1}, F_{2}, \ldots, F_{m}$ be factors of a decomposition of $\mathrm{K}_{t}^{\mathrm{k}}$ with diameters $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{m}}$, respectively. Then there exists a decomposition of K_{t+1}^{k} into factors G_{1}, G_{2}, \ldots \ldots, G_{m} with diameters $d_{1}, d_{2}, \ldots, d_{m}$ such that $F_{i} \in G_{i}, l \leqslant i \leqslant m$.

Proof: It is evident.

Decompositions with the diameter one. Theorem I does not ensure the existence of the number $\mathrm{F}^{\mathrm{k}}\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}\right)$. Our aim in this section is to ensure it in the case that at least one of the diameters is one. .

Lemma 2: Let $k \geq 3$ be an integer. Then

$$
\begin{aligned}
& F^{k}(1,1)=k+1 \text { if } k \geq 5 \text { and } \\
& F^{k}(1,1)=k+2 \text { if } k=3,4 .
\end{aligned}
$$

Proof: If $k=3$ then we consider K_{5}^{3}. Let G_{1} contain the edges $\{1,2,3\},\{1,2,4\},\{1,3,5\},\{2,4,5\},\{3,4,5\}$ and G_{2} contain all the remaining edges. Then evidently both of them have diameters equal to one.

We show that $F^{3}(1,1)>4$. Consider a decomposition of K_{4}^{3} into two factors G_{1} and G_{2} with diameters equal to one. Since G_{1} has the diameter one it must contain at least three edges.

Hence G_{2} contains only one edge. Thus $d_{G_{2}}=\infty$ and $F^{3}(I, I) /$ >4.

If $k=4$ then let $G_{1}=\{\{1,2,3,4\},\{1,2,5,6\},\{3,4,5,6\}\}$ and G_{2} be its complement. Evidently $d_{G_{1}}=d_{G_{2}}=1$.

Now let $F^{4}(1,1) \leq 5$. Then one of the factors G_{1} and G_{2} contains two or less edges. Hence it cannot have the diameter one.

If $k \geq 5$ then le $t G_{1}=\{\{1,2, \ldots, k\},\{1,2, \ldots, k-1, k+1\}$, $\{2,3, \ldots, k+1\}\}$ and G_{2} be its complement. The factors G_{1}, G_{2} have the diameters equal to one and the proof is finished.

It will be said that a decomposition R of K_{t}^{k} has the property (P) if each factor of R covers all vertices of K_{t}^{k}.

We shall prove some trivial but useful statements for our further considerations.

Lemma 3: Let $n \geq 1$ be integer and $t=5.2^{n-1}$. Then there exists a decomposition of K_{t}^{2} into 2^{n} factors with property (P).

Proof: If $n=1$ then $t=5$ and K_{5}^{2} can be evidently decomposed into two factors with the property (P). If $n \geq 2$ then t is even and there exists a decomposition of K_{t}^{2} into $5.2^{n-1}-$ - 1 1-factors. Since $5.2^{n-1}-1>2^{n}$ the proof is finished.

Corollary 2: Let $n \geq 1, k \geq 2$ be integers and $t=$ $=(k+2) 2^{n-1}$. Then there exists a decomposition with property (P) of K_{t}^{k-1} into 2^{n} factors.

The proof follows immediately.
Theorem 2: Let m and $k \geq 3$ be integers. Then $F_{m}^{k}(1)$ exists and

$$
F_{m}^{k}(1) \leq(k+2) 2^{\left\{\log _{2} m\right\}-1}
$$

Proof: We shall show that $F_{2^{k}}^{k}(1)$ exists and $F_{2^{n}}^{k}(1) \leqslant$ $\leq(k+2) 2^{n-1}$ for every integers $n \geq 1$ and $k \geq 3$. The induction on n will be used.
1^{0}. Let $\mathrm{n}=1$. Then from Lemma 2

$$
F_{2}^{k}(1) \leq k+2=(k+2) 2^{0}
$$

20. Suppose $F_{2^{n}}^{k}(1) \leq(k+2) 2^{n-1}$. Put $t=(k+2) 2^{n-1}$ and consider $K_{2 t}^{k}$ with the vertex set $V=V_{1} \cup V_{2}=\left\{1_{1}, 1_{1}, \ldots\right.$ $\left.\ldots, t_{1}\right\} \cup\left\{1_{2}, 2_{2}, \ldots, t_{2}\right\}$. Let $\left\{T_{1}^{1}, T_{2}^{1}, \ldots, T_{2 n}^{1}\right\}$ and $\left\{T_{1}^{2}, T_{2}^{2}\right.$, $\left.\ldots, T_{2^{n}}^{2}\right\}$ be decomposition with property (P) of the hypergraph X_{t}^{k-1} with the vertex set ∇_{1} and ∇_{2}, respectively. Such decompositions are warranted by Corollary 2.

Let $\kappa_{1}=\left(1_{1}, 2_{1}, \ldots,\left(2^{n}\right)_{1}\right)$ and $\alpha_{2}=\left(1_{2}, 2_{2}, \ldots,\left(2^{n}\right)_{2}\right)$ be permutations. By the induction assumption the hypergraph K_{t}^{k} with the vertex set V_{1} and V_{2}, respectively can be decomposed into 2^{n} factors with diameters equal to one. Denote these factors by F_{j}^{1} and $F_{j}^{2}, j=1,2, \ldots, 2^{n}$.

Now we chall construct the decomposition of $K_{2 t}^{k}$ into 2^{n+1} factors with diameters equal to one.
(1) If $\left\{\left(v_{1}\right)_{1},\left(v_{2}\right)_{2}, \ldots,\left(v_{k-1}\right)\right\} \in X_{i}^{1}$ then

$$
\left\{\left(v_{1}\right)_{1},\left(v_{2}\right), \ldots,\left(v_{k-1}\right),\left(\infty_{2}^{j}(i)\right)_{2}\right\} \in G_{j}^{1} .
$$

$$
\text { If }\left\{\left(\nabla_{1}\right)_{2},\left(\nabla_{2}\right), \ldots,\left(\nabla_{k-1}\right)\right\} \in T_{i}^{2} \text { then }
$$

$$
\left\{\left(\nabla_{1}\right)_{2},\left(v_{2}\right), \ldots,\left(v_{k-1}\right),\left(\infty_{1}^{j}(i)\right)_{1}\right\} \in G_{j}^{2}
$$

for every $l \leqslant i \leqslant 2^{n}, \quad l \leqslant j \leqslant 2^{n}$.
(2) If $\left\{\left(v_{1}\right),\left(v_{2}\right), \ldots,\left(v_{k-1}\right)\right\} \in T_{i}^{1}$ then

$$
\begin{aligned}
& \left\{\left(v_{1}\right)_{1},\left(v_{2}\right)_{1}, \ldots,\left(v_{k-1}\right), s_{2}\right\} \in G_{i}^{1} \\
& \text { If }\left\{\left(v_{1}\right)_{2},\left(v_{2}\right)_{2}, \ldots,\left(v_{k-1}\right)\right\} \in \mathbb{T}_{i}^{2} \text { then } \\
& \left\{\left(v_{1}\right)_{2},\left(v_{2}\right)_{2}, \ldots,\left(v_{k-1}\right), s_{1}\right\} \in G_{i}^{2}
\end{aligned}
$$

for every $2^{n}<s \leqslant t, l \leqslant i \leqslant 2^{n}$.
(3) If $h \in F_{j}^{2}$ then $h \in G_{j}^{1}$ and if $h \in F_{j}^{l}$ th $\in n \in G_{j}^{2}$ for every $1 \leqslant j \leqslant 2^{n}$.
(4) All the remaining edges can be added into an arbitrary factor.

Now it will be verificd that the diameters of the factors G_{j}^{1} and G_{j}^{2} are equal to one. Let G_{j}^{1} be an arbitrary of them.
(i) If $a_{1}, b_{1} \in V_{1}$ then there exists i such that
$\left\{a_{1}, b_{1},\left(x_{1}\right)_{1},\left(x_{2}\right), \ldots,\left(x_{k-3}\right)\right\} \in T_{1}^{1}$ for some x_{1}, x_{2}, \ldots \ldots, x_{k-3}. Since (1) holds we have for $s=\propto \frac{j_{2}}{(i)}$:

$$
\left\{a_{1}, b_{1},\left(x_{1}\right)_{1},\left(x_{2}\right)_{1}, \ldots,\left(x_{k-3}\right)_{1}, s_{2}\right\} \in G \frac{1}{j} .
$$

Thus the distance between a_{1} and b_{1} is equal to one.
(ii) If $a_{1} \in V_{1}$ and $b_{2} \in V_{2}$ then two cases are possible.

1. $1 \leqslant b \leqslant 2^{n}$. Then there exists $i, \propto_{2}^{j}(i)=b$. From the property (P) it follows that there exists
$\left\{a_{1},\left(x_{1}\right)_{1},\left(x_{2}\right), \ldots,\left(x_{1 k-2}\right)\right\}_{1} \in \operatorname{ri}_{i}^{1}$ for some x_{1}, x_{2}, \ldots \cdots, x_{k-2}. Since (1) holds we have

$$
\left\{a_{1},\left(x_{1}\right)_{1},\left(x_{2}\right)_{1}, \ldots,\left(x_{k-2}\right), b_{2}\right\} \in G_{j}^{I}
$$

Thus the distance between a_{1} and b_{2} is equal to one.
2. $2^{n}<b \leq t$. From the property (P) we have that there exists
$\left\{a_{1}\left(x_{1}\right)_{1},\left(x_{2}\right)_{1}, \ldots,\left(x_{k-2}\right)\right\} \in T_{j}^{1}$ for some $x_{1}, x_{2}, \ldots, x_{k-2}$.
Since (2) is true we obtain

$$
\left\{a_{1},\left(x_{1}\right)_{1},\left(x_{2}\right), \ldots,\left(x_{1-2}\right), b_{2}\right\} \in G \frac{1}{j}
$$

Thus the distance between a_{1} and b_{2} is equal to one.
(iii) If $a_{2}, b_{2} \in V_{2}$ then there exists in F_{j}^{2} some edge which contains both of these vertices. Since (3) holds this edge is also in G_{j}^{1}. Thus the distance between a_{2} and b_{2} is equal to one.

The verification for the factors G_{j}^{2} can be made analogously.

We showed that $F_{2^{n+1}}^{k}(1) \leq(k+2) 2^{n}$ and the induction is completed. Put $q=\left\{\log _{2} m\right\}$. Since $F_{m}^{k}(1) \leq F_{q}^{k}(1)$ the proof is finished.

Lemma 4: Let $m \geq 2, k \geq 3$ and $1 \leqslant d_{1}, d_{2}, \ldots, d_{m}$ be integers. If $F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}, I\right)$ exists then

$$
F^{k}\left(d_{1}+1, d_{2}, d_{3}, \ldots, d_{m}, 1\right) \leq F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}, 1\right)+k-1 .
$$

Proof: Put $t=F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}, 1\right)$ and consider a decomposition of K_{t}^{k} with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$ into factors $F_{1}, F_{2}, \ldots, F_{m+1}$ with diameters equal to $d_{1}, d_{2}, \ldots, d_{m}$, , respectively. Add the vertices $y_{1}, y_{2}, \ldots, y_{k-1}$ to K_{t}^{k}.

Now we shall construct a decomposition of K_{t+k-1}^{k} into factors $G_{1}, G_{2}, \ldots, G_{m+1}$ with diameters $d_{1}+1, d_{2}, d_{3}, \ldots, a_{m}, 1$, respectively.

Since the diameter of F_{1} is d_{1} there exist two vertices ∇_{p} and v_{q} with $d_{F_{1}}\left(v_{p}, \nabla_{q}\right)=d_{1}$. By Theorem 1 there exists a decomposition of $\mathrm{K}_{t+\mathrm{k}-1}^{\mathrm{k}}$ into factors $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{m}+1}$ with ciameters $d_{1}, d_{2}, \ldots, d_{m}, l$, respectively. Consider accurately this decomposition. Moreover, using Corollary 1 we have $F_{i} \subset H_{i}$ for every $i=1,2, \ldots, m+1$.

Now put $G_{x}=H_{x}$ for every $2 \leqslant x \leqslant m$ except such $x_{0} \neq 1$ for which $\left\{\nabla_{p}, y_{1}, y_{2}, \ldots, y_{k-1}\right\} \in H_{x_{0}}$.

Let G_{1} contain the factor F_{1} and the edge $\left\{\nabla_{p}, y_{1}, y_{2}, \ldots\right.$ $\left.\ldots, y_{k-1}\right\}$. Let G_{m+1} contain the factor H_{m+1} and the edges from $H_{I}-F_{1}$. Let $G_{x_{0}}=H_{x_{0}}-\left\{v_{p}, y_{1}, y_{2}, \ldots, y_{k-1}\right\}$. The diameter of G_{1} is equal to $d_{1}+1$, because $d_{G_{1}}\left(y_{k-1}, \nabla_{q}\right)=$ $=d_{1}+1$.

It is easy to see that the factors $G_{1}, G_{2}, \ldots, G_{m+1}$ form the required decomposition of K_{t+k-1} and this comple tes the proof.

Theorem 3: Let $m, k \geq 3,1 \leqslant d_{1}, d_{2}, \ldots, d_{m}$ be integers and at least one $d_{i}=1$. Then.
(N) $\quad F^{k}\left(d_{1}, d_{2}, \ldots, a_{m}\right) \leqslant F_{m}^{k}(1)+(k-1) \sum_{j=1}^{m}\left(d_{j}-1\right)$.

Proof: From Theorem 2 it follows that $F_{m}^{k}(1)$ exists. Then by Lemma $4 F^{k}\left(d_{1}, d_{2}, \ldots, a_{m}\right)$ exists, too. The inequality (N) follows immediately from Lemma 4 and the proof is comple ted.

The upper estimate of the number $F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ can be improved for some values of parameters $d_{1}, d_{2}, \ldots, d_{m}, m$.

Theorem 4: Let $k \geq 3, q \geq 3, q<m, 2 \leqslant d_{1} \leqslant \ldots \leqslant d_{q}$ be integers and $d_{q+1}=d_{q+2}=\ldots=d_{m}=1$. Then
and

$$
\begin{aligned}
F^{k}\left(d_{1}, d_{2}, \ldots, d_{m}\right) & \left.\leqslant \max \left\{F^{2}\left(d_{1}, d_{2}, \ldots, d_{q}\right), F_{m-q}^{k}(1), m-q\right)\right\}+ \\
& +\max \left\{(k-2) d_{q}, 3(m-q)\right\} . \\
\text { Proof: Put } m_{1} & =\max \left\{F^{2}\left(d_{1}, d_{2}, \ldots, d_{q}\right), F_{m-q}^{k}(1), m-q\right\} \\
m_{2} & =\max \left\{(k-2) d_{q}, 3(m-q)\right\} .
\end{aligned}
$$

Let M_{1} and M_{2} be sets of cardinality m_{1} and m_{2}, respectively. Lemma 2 of [3] implies that there exists a decomposition of $K_{m_{1}}^{2}$ with the vertex set M_{1} into factors $F_{1}, F_{2}, \ldots, F_{q}$ with diameters $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{q}}$. Now we shall construct the factors $G_{I}, G_{2}, \ldots, G_{q}$ of the hypergraph $K_{m_{1}+m_{2}}^{k}$ with diameters $d_{1}, d_{2}, \ldots, d_{q}$.

Choose from M_{2} any $(k-2) d_{r}$ vertices $\nabla_{i}^{j}, l \leqslant j \leqslant k-L$, $1 \leqslant i \leqslant d_{r}, l \leqslant r \leqslant q$. Let x_{r} and y_{r} be vertices of M_{I} such that $d_{F_{r}}\left(x_{r}, y_{r}\right)=d_{r}$.

1. If the edge $\{a, b\} \in F_{r}$ and if $d_{F_{r}}\left(x_{r}, n\right)=d_{F_{r}}\left(x_{r}, a\right)=$ $=d$ then $\left\{a, b, v_{d}^{1}, v_{d}^{2}, \ldots, v_{d}^{k-2}\right\} \in G_{r}$.
2. If the edge $\{a, b\} \in F_{r}$ and if $d_{F_{r}}(x, b)=d_{F_{r}}\left(x_{r}, a\right)=$ $+1=d$ then $\left\{a, b, v_{d}^{l}, v_{d}^{2}, \ldots, \nabla_{d}^{k-2}\right\} \in G_{r}$.
3. If $\left\{x_{0}, y_{0}\right\} \in F_{r}$ is some fixed edge and if
$M_{3}=M_{2}-\left\{\nabla_{i}^{j} \mid l \leq j \leq k-2, l \leq i \leq d_{r}\right\}$
has cardinality $\left|M_{3}\right| \geq k-2$ then
$\left\{x_{0}, y_{0}, v_{1}, v_{2}, \ldots, v_{k-2}\right\} \in G_{r}$ for every ($k-2$)-tuple $\left\{v_{1}, \ldots, v_{k-2}\right\} \in M_{3}$.

If $\left|M_{3}\right|=s<k-2$ then
$\left\{x_{0}, y_{0}, v_{1}, v_{2}, \ldots, v_{s}, v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{k-2-s}\right\} \in G_{r}$ where
$\left\{v_{1}, \ldots, v_{8}\right\}=M_{3}$.
It is easy to see that the diameter of G_{r} is equal to d_{r}. For example $d_{G_{r}}\left(\nabla_{1}^{l}, \nabla_{d_{r}}^{l}\right)=d_{r}$.

Now we shall construct the factors $G_{q+1}, G_{q+2}, \ldots, G_{m}$. Sin$c \in F_{m-q}^{k}(1) \leqslant m_{1}$ there exist the factors $F_{q+1}, F_{q+2}, \ldots, F_{m}$ of $K_{m_{1}}^{k}$ (on the vertex set M_{1}) with diameters equal to one. Let $\left\{T_{q+1}, T_{q+2}, \ldots, T_{m}\right\}$ be a decomposition with the property (P) of the hypergraph $K_{m_{2}}^{k-1}$ with the vertex set M_{2}. Such a decomposition exists from Lemma 3.

Let us have $q+1 \leqslant r \leqslant m$.

1. If $h \in F_{r}$ then $h \in G_{r}$.
2. Let \propto be a permutation on vertices $p_{1}, \ldots, p_{m-q} \in M_{1}$
with $\propto\left(p_{1}\right)=p_{2}, \quad \propto\left(p_{2}\right)=p_{3}, \ldots, \propto\left(p_{m-q}\right)=p_{1}$.
If $\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\} \in T_{i}$ then $\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right.$,
$\left.\alpha^{r}\left(p_{i}\right)\right\} \in G_{r}$.
3. If $\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\} \in T_{r}$ then $\left\{y_{1}, y_{2}, \ldots, y_{k-1}, x\right\} \in$ $\in G_{r}$, where $x \in M_{1}-\left\{p_{1}, p_{2}, \ldots, p_{m-q}\right\}$.

The remaining edges of $K_{m_{1}+m_{2}}^{k}$ can be inserted into an arbitrary factor with diameter one.

The factors $G_{2}, G_{2}, \ldots, G_{m}$ evidently form the required
decomposition of $K_{m_{1}+m_{2}}^{k}$ and this completes the proof.

The case $m=2$. In this section there is obtained a complete solution of the problem of decomposing complete $k-$ uniform hypergraphs into two factors with given diameters.

Lemma 5: Let G be a k-uniform hypergraph with diameter $\mathrm{d} \geq 2$. Then its complement $\overline{\mathrm{G}}$ has the diameter

$$
d_{\bar{G}} \leq 2 \text { if } k=3 \text { and }
$$

$$
d_{\bar{G}}=1 \text { if } k \geq 4 .
$$

Proof: Let x_{0} and y_{0} be vertices of G such that $d_{G}\left(x_{0}, y_{0}\right) \geq 2$. All the edges containing x_{0} and y_{0} belong to \bar{G}_{0} Let x and y be arbitrary vertices of \bar{G}. If $k \geq 4$ then there exists an edge in \bar{G} containing x_{0}, y_{0}, x, y. Thus $d_{G}(x, y)=1$. If $k=3$ then $\left\{x_{0}, y, y_{0}\right\} \in \bar{G}$ and $\left\{x_{0}, x, y_{0}\right\} \in \bar{G}$. Hence $d_{G}(x, y) \leq$ ≤ 2 and the proof is finished.

Lemma 6: Let G be a 3-uniform hypergraph with diameter $d \geq 3$. Then its complement \bar{G} has diameter equal to one.

Proaf: Let x_{0}, y_{0} be vertices of G such that $d_{G}\left(x_{0}, y_{0}\right) \geq$ 23. Then let x, y be any pair of vertices in G. There evidently exists a vertex z_{0} such that $\left\{x, y, z_{o}\right\} \notin G$. Hence $\left\{x, y, z_{0}\right\} \in \bar{G}$ and this completes the proof. These lemmas imply the following results:

Theorem 5:

1. If $d_{1}=I$ and $d_{2}=\infty$, then $F^{k}\left(d_{1}, d_{2}\right)=k$.
2. If $d_{1}=1$ and $d_{2}=1$, then $F^{k}\left(d_{1}, d_{2}\right)=k+1$ if $k \geq 5$,

$$
F^{k}\left(d_{1}, d_{2}\right)=k+2 \text { if } k=3,4
$$

3. If $d_{1}=1$ and $d_{2}=2$, then $F^{k}\left(d_{1}, d_{2}\right)=k+1$ if $k \geq 4$,

$$
F^{k}\left(d_{1}, d_{2}\right)=5 \text { if } k=3
$$

4. If $d_{1}=2$ and $d_{2}=2$, then $F^{k}\left(d_{1}, d_{2}\right)$ does not exist if $k \geq 4$,
$F^{k}\left(d_{1}, d_{2}\right)=4$ if $k=3$.
5. If $d_{1} \geq 2$ and $d_{2} \geq 3$, then $F^{k}\left(d_{1}, d_{2}\right)$ does not exist.
6. If $d_{1}=1$ and $3 \leqslant d_{2}<\infty$, then
$F^{k}\left(d_{1}, d_{2}\right)=\frac{k d_{2}}{2}+1$ if d_{2} is even,
$F^{k}\left(d_{1}, d_{2}\right)=\frac{k\left(d_{2}+1\right)}{2}$ if d_{2} is odd.
Proof: We shall denote the vertices by naturals and the factors of a decomposition by G_{1} and G_{2}.
7. G_{1} contairs $\{1,2, \ldots, k\}$ and G_{2} is empty.
8. If follows from Lemma 2.
9. If $k \geq 4$, then it follows from Lemma 5 .

If $k=3$, then $G_{1}=\{\{1,2,3\},\{1,2,4\},\{1,3,5\},\{2,4,5\}$, $\{3,4,5\},\{1,2,5\}\}$. Put $G_{2}=\bar{G}_{1}$ 。
4. If $k \geq 4$, then it follows from Lemma 5.

If $k=3$, then $G_{1}=\{\{1,2,4\},\{1,3,4\}\}$ and $G_{2}=\bar{G}_{1}$.
5. It follows from Lemmas 5 and 6.
6. It directly follows from the construction of a chain of length equal to d_{2}.

It remains to prove the existence of the number
$F^{k}\left(d_{1}, \ldots, d_{m}\right)$ for arbitrary d_{1}, \ldots, d_{m} and to give an upper estimate for this. This problem is partially solved in [4] for the case $m>k$. In [5] it is proved that if $m \in k$ and $3 d_{1}, d_{2}, \ldots, d_{m}$ then such a number does not exist.

References
[1] C. BERGE: Graphs and hypergraphs, North Holland Publ. Comp., Amsterdam,1970.
[2] J. BOSAK, A. ROSA, S. ZNAM: On decompositions of complete graphs into factors with given diameters, Theory of graphs, Proc. of the Colloq. held in Tihany, Hung., Sept. 1966 (Akadémiai Kiadó, Budapest, 1968), 37-56.
[3] J. BOSAK, P. ERDÖS, A. ROSA: Decompositions of complete graphs into factors with diameter two, Mat. Čas. 21(1971), 14-28.
[4] P. TOMASTA: On decomposition of comple te k-uniform hypergraphs, Czechoslovak Math. J. (to appar).
[5] P. TOMASTA: Decompositions of graphs and hypergraphs into isomorphic factors with a given diameter, Czechoslovak Math. J. (to appear).

Matematický ústav SAV
Obrancov mieru 49
Bratislava
Československo
(Oblatum 8.3.1976)

