Commentationes Mathematicae Universitatis Caroline

Jaroslav Nešetřil; Vojtěch Rödl
Van der Waerden theorem for sequences of integers not containing an arithmetic progression of k terms

Commentationes Mathematicae Universitatis Carolinae, Vol. 17 (1976), No. 4, 675--681
Persistent URL: http://dml.cz/dmlcz/105727

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
17,4 \text { (1976) }
$$

> VAN DER WAERDEN THEOREM FOR SEQUENCES OF INTEGERS NOT CONTAINING AN ARITHMETIC PROGRESSION OF k IERMS Jaroslav NESETRIL, Vojtěch RÖDL, Praha

Abstract: A theorem stated in the title is proved by a direct construction.

Key words: Partitions, sequences.
AMS: 05A99, 10ILO
Ref. Z. ${ }^{2}$: 8.83

Introduction. As analogy to [3] and [1] it was conjectured by P. Erdos the following (see [0]): For every k, r there exists a set of integers N not containing an arithmetic progression of $r+1$ terms with the property that for every partition of the set N into k classes there exists an arithmetic progression with r terms in one of the classes. The purpose of this note is to prove this theorem. In fact we prove here a stronger theorem ("the prototype theorem" in [4]) from which one can deduce the characterization theorem for partition properties of classes of sets if integers which do not contain "long" arithmetic progressions.

After this paper was written we were informed that J. Spencer in about the same time solved independently the Erdơs's problem. Meanwhile the Spencer's solution was published in [71. His method uses strongly a theorem of Hales-

Jewett [8]. Our proof is by a direct construction and as it gives a slightly stronger result we decided to publish it anyway.

Results: For ratural numbers $a, b, a \leqslant p$ put $[a, b]=$ $=\{a, a+1, \ldots, b\}$. Let $M=\left\{m_{0}, \ldots, m_{r}\right\}, N=\left\{n_{0}, \ldots, n_{g}\right\}$ be sets of natural numbers (these sets will be always considered with the relativized ordering of \mathbb{N} and the notation will be always chosen with respect to this ordering; i.e. we assume $m_{0}<m_{1}<\ldots<m_{1}$).

A mapping $f: H \rightarrow N$ is said to be sequential iff there exists a positive constant d such that $f\left(m_{i}\right)=f\left(m_{0}\right)+$ $+d\left(m_{i}-m_{0}\right)$ and $m_{i}=m_{0}+a \in M \Longleftrightarrow P\left(m_{0}\right)+d a \in N$. The van der Waerden theorem [6] then states that for every k, r there exists a finite set of natural numbers N such that for every mapping $c: N \rightarrow[1, k]$ there exists a sequential mapping $f:[I, r] \longrightarrow N$ such that $c o f$ is a constant mapping (wt write $c \circ f=\S$ if the actual value of the constant is of no importance).

Denote by Seq the class of all finite subsets of \mathbb{N} and by $\operatorname{Seq}(r), r \geq 2$, the class of all finite subsets of \mathbb{N} which do not contain an arithmetic progression with $r+1$ terms (equivalently $M \in \operatorname{Seq}(r) \Longleftrightarrow$ there exists no sequential mapping $P:[1, r+1] \longrightarrow M)$.

We prove:
Theorem 1: Let $r \geq 2, k \geq 1$ be fixed. For every $M \in$ $\in \operatorname{Seq}(r)$ then there exists a set $N \in \operatorname{Seq}(r)$ such that for every mapping $c: N \longrightarrow[1, k]$ there exists a sequential mapping $f: M \longrightarrow N$ such that $c \otimes f=\S$.

Clearly this thear om inplies:
Corollary: Let $r \geq 2$ be fixed. Then the class Seq (r) with sequential mappings) has A-partition property $\Longrightarrow|\mathbb{A}|=$ $=1$. (See $[4,5]$ for the definition of A-partition property.) To see this, one has only to observe that for every $r \geq 2$ one can colour by two colours all arithmetic progressions with r terms in \mathbb{N} in such a way that each arithmetic progression with $r+1$ tems contains aritlunetic progressions of both colours. (This is well known.) Thus we have the perfect analogy with the situation in graphs: the characterization theoren of partition properties of classes Seq (r), compare [4].

The proof of the theorem 1 is a convenient modification of the Graham-Rothschild proof of van der Waorden theoren [2]. We introduce now parameters and on each step of the induction procedure we check that the resulting set belongs to Seq (r).

Proofs: We write shortly (x_{i}) for ($x_{i} ; i \in[1, m]$) if there is no danger of confusion. Let r, n be positive integers, $\varnothing \neq \omega \subseteq x \in \operatorname{Seq}(r)$, moreover, let ω and x satisfy: $x \in \omega, y<x, y \in x \Longrightarrow y \in$ $\epsilon \omega$. Denote by $S(\omega, x, r, m)$ the following statement:

For every positive integer k there exists a set $N=$ $=N(\omega, x, r, m, k)$ with the following properties: 1) $N \in \operatorname{Seq}(r)$;
2) For every mapping $c: N \rightarrow[1, k]$ there are numbers a, d_{1}, d_{2}, \ldots, d_{n} such that

AI: $\quad c\left(a+\sum_{i=1}^{m} x_{i} d_{i}\right)=c\left(a+\sum_{i=1}^{m} y_{i} d_{i}\right)$ whenever

$$
\left(x_{i}\right) \in \omega^{m},\left(y_{i}\right) \in \omega^{n} ;
$$

A2: $\left(x_{i}\right) \in x{ }^{m} \Longleftrightarrow \sum_{i=1}^{m} x_{i} d_{i} \in N$.
We prove
Theorem 2: Tre statement $S(\omega, \notin, r, m)$ is valid for each admissible choice of parameters.

Proof: The proof will be by induction on $|\omega|$ and m (for each admisaible choice of x, and r). Clearly $S(\omega, x, r, 1),|\omega|=1$, is always valid. The induction step will follow fron two claims:

Clain 1: Let $S\left(\omega, \notin, r, m^{\prime}\right)$ be valid for each $n^{\prime} \leq m$. Then there holds $S(\omega, x, r, m+1)$.

Proof: Let k be fixed. Let $N_{1}=N(\omega, x, r, m, k),\left|N_{1}\right|=$ $=a$ and $N_{2}=N\left(\omega, x, r, 1, k^{a}\right)=\left\{n_{i} ; i \in[1, b]\right\}$ be fixed (both sets exist by induction hypothesis). Define N by $N=U\left\{N_{1}+\left(n_{i}-n_{1}\right) D ; i \in[1, b]\right\}$ where $D=a r$ and $N_{1}+\left(n_{i}-n_{1}\right) D=\left\{n+\left(n_{i}-n_{1}\right) D ; n \in N_{1}\right\}$. We prove $N=N(\omega, x, r, m+1, k)$.

1) Assume $N \notin \operatorname{Seq}(r): \operatorname{let} P=\{a+j d ; j \in[c, r]\}$ be an arithmetic progression in N. Then either there exista if $\in[1, b]$ such that $\left|P \cap\left(N_{1}+\left(n_{i}-n_{1}\right) D\right)\right| \geq 2$ and in this case $P \subseteq N_{1}+\left(n_{i}-n_{1}\right) D$ (by the choice of D) which is a contradiction with the properties of N_{1} or $\mid \mathrm{P} \cap\left(N_{1}+\right.$ $\left.+\left(n_{i}-n_{1}\right) D\right) \mid \leqslant 1$ for each $i \in[1, b]$ and in this case we get a contradiction with the properties of N_{2}.
2) Let $c: N \longrightarrow[1, k]$ be a fixed mapping. We have an induced mapping $c^{\prime}: N_{2} \longrightarrow[1, k]^{N_{1}}$ defined by $c^{\prime}(i)=c \mid N_{1}+\left(n_{i}-n_{1}\right) D^{\text {. }}$. By the properties of N_{2} there are n_{A}, D_{1} such that
3) $e^{\prime}\left(n_{k}+i D_{1}\right)=\S$ for all $i \in \omega$;
4) $n_{A}+i D_{1} \in N_{2} \Longrightarrow i \in x$.

Furthermore (by the properties of N_{1}) there are a, d_{1}, d_{2}, \ldots \ldots, d_{n} such that

1) $c\left(a+\sum_{i=1}^{m} x_{i} d_{i}+\left(n_{4}+x D_{1}-n_{1}\right) D\right)=$ $=c\left(a+\sum_{i=1}^{m} x_{i}^{\prime} d_{i}+\left(n_{A}+x^{\prime} D_{1}-n_{1}\right) D\right)$ whenever $\left(x_{i}\right) \in \omega^{m}$, $\left(x_{i}^{\prime}\right) \in \omega^{m}, x \in \omega, x^{\prime} \in \omega$,
2) $a+\sum_{i=1}^{m} x_{i} d_{i}+\left(n_{A}+x D_{1}-n_{1}\right) D \in N \Longleftrightarrow\left(x_{i}\right) \in x^{m}$, $x \in \mathfrak{r e}$.

Put $\bar{a}=a+\left(n_{A}-n_{1}\right) D, \bar{d}_{i}=d_{i}$ for $i \in[1, m], \bar{d}_{m+1}=D_{1} D$. For these parameters the statements $A 1$ and $A 2$ are valid.

Claim 2: Let $S(\omega, *, r, m)$ be valid for each m. Assume $\omega \neq x$, let $q \in x \backslash \omega$ be the minimal number, put $\bar{\omega}=$ $=\omega \cup\{q\}$. Then there holds $S(\bar{\omega}, x, r, 1)$.

Proof: Let k be a fixed positive integer. Take $\dot{N}=$ $N(\omega, x, r, k, k) \in \operatorname{Seq}(r)$. Let $c: N \longrightarrow[1, k]$ be a fixed mapping. By the properties of N there are a, d_{1}, \ldots, d_{k} such that

1) $c\left(a+\sum_{i=1}^{k} x_{i} d_{i}\right)=c\left(a+\sum_{i=1}^{k} y_{i} d_{i}\right)$ whenever $\left(x_{i}\right) \in \omega^{k},\left(y_{i}\right) \in \omega^{k}$
2) $a+\sum_{i=1}^{x} x_{i} d_{i} \in N \Longleftrightarrow\left(x_{i}\right) \in \omega^{k}$.

Consider the numbers $a, a+q d_{1}, \ldots, a+i \sum_{i=1}^{k} q d_{i} \in N$. Using Dirichlets principle there are $0 \leqslant u<v \leqslant k$ such that
$c\left(a+\sum_{i=1}^{\mu} q d_{i}\right)=c\left(a+\sum_{i=1}^{v} q d_{i}\right)$. But then
$f(x)=a+\sum_{i=1}^{\mu} q d_{i}+x \sum_{i=1}^{N} \sum_{i} d_{i}$ for $x \in \bar{\omega}$ is a desirable sequential mapping $\bar{\omega} \longrightarrow N$ with the property cof $=\S$.

Moreover, $a+\sum_{i=1}^{\omega} q d_{i}+x \sum_{i=1}^{v} a_{i} \in N \Longleftrightarrow x \in \varepsilon$. This finishes the proof of Claim 2 and of Theoren 2.

Now the theoren 1 is equivalent to the statement $S(M, M, r, 1), M_{E} \operatorname{Seq}(r)$. Let us state explicitly:

Corollany: For every r and k positive integers there exists a set N of natural numbers auch that:

1) N does not contain an arithmetic progression with $r+1$ terms;
2) for every partition of N into k classes there exists an arithmetic progression with r terms in one of the classes.

Remark: Given r, the bound given by the above proof on the size of the set $N([1, r],[1, r], r, k)$ is extrenely large. However as the above proof is closely related to the proof of van der Waerden theoren we obtain similar bourds for these two theorems. This is one of the indications of weakness of the proof of van der Waerden theorem.

References

[0] P. ERDOS: Problems and results in combinatorial number theory, Société Mathématique de France, Astérisque 24-25(1975), 295-310.
[1] J. FOLKMAN: Graphs with monochromatic complete subgraphs in every edge colouring, SIAM J. Applied Math. 18(1970), 19-29.
[2] R.L. GRAHAM, B.I. ROTHSCHILD: 4 short proof of van der Waerden's theorem on arithmetic progressions, Proc. Amer. Math. Soc. 42(1974), 385-386.
[3] J. NES゙ETRIL, V. RÖDL: Ramsey property of graphs with
forbidden complete subgraphs, J. Comb. Th. (B), 20,3(1976), 243-249.
[4] J. NEŠETRILL, V. RÖDL: Type theory of partition probleme of graphs, in: Recent advarces in graph theory, Academia, Prague (1975), 405-412.
[5] J. NEŠETŘIL, V. RÖDL: Partitions of finite relational and set systems, to appear in J. Comb.Th.(A).
[6] B.L. van der WAERDEN: Beweis einer Baudetschen Vermatung, Nieuw Arch. Wis. 15(1928), 212-216.
[7] J. SPENCER: Restricted Ramsey configurations, J. Conb. Th. 19,3(1975), 278-286.
[8] A. HAIES, R.I. JEWETT: Regularity and positional games, trans. Amer. Math. Soc. 106(1963), 222-229.

Matematicko-fyzikślni fakulta
Karlova universita
Sokolovaka 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 3.4. 1976)

