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CONVERGENCE OF CONDITIONAL EXPECTATIONS
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tr ¢ A simple lemma in which uniform integrabili-
ty together with convergence in distribution implies conver=-
gence in probability is presented. The result provides a
generalization to that of D. Gilat (1971) and St&pén (1971).
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The purpose of this note is to present a result in which
uniform integrability together with convergence in distribu-
tion implies convergence in probability. The result, which
provides a generalization to that of D. Gilat (1971), is de-
signed to show that the sequence of Bayes estimators of a real
valued function is consistent with respect to Lr—conVergence
(r21) if and only if it is consistent with respect to conver-
gence in distribution. Our main result is

Lempa. Let 4X,3, {Yn§ be sequences of integrable ran-
dom variables such that xn,Yn are defined on a probability

1) Part of this work was performed while the author was visi-
ting the Mathematical Institute ot the University of Aar-

hus, Danmark.
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space (1, A ,P ). Suppose that ELX, | €] &Y, 1) where
€n€ Ay nZ1, are 6 -algebras and assume the sequences
{X;} , -iY;} to be uniformly integrable. If X, and Y, have
the same limiting distribution then X, - Y, >0 2),
Moreover, if
(1) E[X; | ey) =Y, nZ1 and | X |7 is uniformly integ-
rable for some rZ1,
so is | YnKr; hence this lemma implies E | X - Yn\r—-—>0 as
n—» 0.
Proof of Lemmg. First 3 consider the stronger set of
assumptions (1) putting there r = l. fix a positive integer

k and define & by

§ (t) = t° 0Ltk
= 2kt - &2 t>k
= & (-t) t< 0.

@ is continuous, linear for |t |Z k. Hence the uniform in-
tegrability argument (Loeve (1963), page 183) applies to con-
clude from our assumptions that E $ (X)) - E@ (Y )—>0 as

n—» 00 ,

1) Equalities and inequalities between random variables are
meant in the almost sure sense.

2) We write X, - rn—‘"l»o and mean that X, - Y,—> O in proba-
bility as n — o0 , i.e. Pn[lxn-Ynlz €)J— 0 as
n—>o00 for all € > O.

3) The method employed in the first part of this proof is due
to the referee of the present note. The author s original
proof was much more complicated.
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Further define ¥ by

Y(x,t) = 2xt - x° lx|4 k, te R
= 2kt - K° x>k, teR
= =2kt - k° x< -k, te RY;

i.e. t —> ¥ (x,t) is the unique linear runction which is
<« ® and equal $ at the point x. Moreover, for any gi-
ven € > O there is some J > O such that
Gt) - ¥ix,t) 2" iflx-tl2Z¢€ andlxlék =1,

Since

EL¥(Y,x) e 1 = &(y), nzl
we arrive at
[EQ(X,) -~ES(Y )l 2z dP, [IX, -Y (2 e ,I¥ [£k=-1]— O
as n—>» © . Letting k —> @0 it is easy to argue from the
tightness of the sequence {Yn} that X = Yn—ﬁ»o.

Finally, consider {X}, {In} satisfying the hypothe-
ses of Lemma. Take c>0 and put

A (t) t t<e

= ¢ t>c.

The conditional form of Jensen’s inequality (Loeve (1963),pa-
ge 348) provides the argument for the inequality

2, =E[A&)| e, 1&A(Y) nxl
since A 1is continuous concave and nondecreasing. From the
uniform integrability of £ X} ,{iY;} it follows that
EA(X,) -EDL (Y )—> 0 as n —> oo . Consequently
(2) z, - Alx) Lo,

To prove that A (xn) - A (Yn)—ﬁbo, which is obviously

sufficient for our purposes, we simply apply the proven part
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of this lemma to the sequences 4£2;% , 1A (X))} (A(X)

is uniformly integrable) amnd combine the result with (2).
The following example shows that our lemma is not ne-

cessarily true if its uniform integrability assumptions are

not satisfied. Let the (£1, A,P) be the closed unit interval

with Lebesgue measure. Denote by IA the indicator of a set A

and put for nz1l

o= 10,20, 2 = Ly B, 6y = Tha - 2o,

D, =[1 - 5,11,

Xy = -n.I“n + Icn + n.IDn y €n=8(avcCy, BiuD),

Y, =E[x le .

Simple computations show that the sequences Xn,fin have the
same limiting distribution but the sequence Xn - Yn fails to
converge in probability to zero.

A pair of random variables is said to be fair (subfair)
if E[XIY¥l=Y (ECX|Y14&Y), D. Gilat (1971) introduced
this.concept and proved that if (Y,X) is a subfair pair of
integrable random variables then Y and X have the same dist-
ribution if and only if X = Y, Obviously, our Lemms provides
a generalization to this result.

As a corollary we obtain the following comparison of
erconvergence and convergence in distribution:

Corollgry 1 (J. 3tZpén (1971)). Consider random variab-
les X,X;,X5,... whose r-th (rz1) absolute moments are fini-
te such that X ;—> X in distribution as n —» c© . Then
E|X, - X\"—> 0 1f and only 1£ E| ELX| X1 - T —>0 as

n-—» 00 ,
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Finally, consider a parameter-space © which is endow-
ed with a priori probability distribution o defined on a
6 -algebra J3 of its subsets and have a seqguence of statis-
tical problems where the n-th term of the sequence consists
of a measurable sample space (Zn, €,) and a family of proba-

bility measures 4P, 8 € ®  which are defined on €,
Moreover, suppose that the mapping Ppg (E): @ —> R is mea~-
surable for E ¢ €.

The objects under consideration determine a sequence of
probability spaces (Q ,,A,P,), nZ1 where

D,=2,x0, A==€, xR end

1>n(Ex13)=fBPma (E) m(a@) Eee,Bed .
Considering f: & —» Rl, a measurable and integrable

function, the sequence of conditional expectations

b, (£) =Epntflen1 nzl

is called the Bayes estimator of f£. (By €, we mean the na-

tural extension of the original & -algebra such that €_c

n
c Ay.)
Thus, we may apply the assertion of Lemma to get
Corollary 2. Consider rZ1 and a runction £: © —» RY

such that [£IT is integrable. Then the Bayes estimator con-
verges to £ in distribution if and only if
lm B | by(£)=£l" = 0.
m—» © n
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