Commentationes Mathematicae Universitatis Carolinae

Jan Fried
Simulations of Pawlak machines as fuzzy morphisms of partial algebras

Commentationes Mathematicae Universitatis Carolinae, Vol. 18 (1977), No. 2, 343--350

Persistent URL: http://dml.cz/dmlcz/105778

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

$$
18,2 \text { (1977) }
$$

SIMULATIONS OF PAWLAK MACHINES AS FUZZY MORPHISMS OF PARTIAL ALGNBRAS

Jan RRIED, Praha

[^0]Intraduction: When studying automata of the non-deterministic type, M.A. Arbib and E.G. Manes introduced in [3] the notion of fuzzy theory over the category K. In fact, it is a category with the same class of objects as: K in which morphisms, i.e. fuzzy morphisms, from a to b are morphisms of the category K from a to the object $T(b) ; T(b)$ being interpreted as "the cloud of fuzzy states over the object of pure atates" (cf. [3]). Arbib and Manes show that when certain natural requirements for the composition of fuzzy morphisms and for the relation between b and $T(b)$ are fulfilled the category with fuzzy morphisms is a Kleisli category of suitable monad (cf. [3]).

Essentially, an analogous approach is that of H. Ehrig and col. in [6].

In [3],[4] are found many examples of fuzzy theories,
especially of fuzzy theories over the category of sets, which among other things make possible the study of the non-deterministic sequential machines, stochastic sequential machines, semiring automata etc.

In this paper we give another example of fuzzy theory we prove that simulations of Pawlak machines are fuzzy morphisms over certain category of unary partial algebras.
I. As mentioned in [3], fuzzy theories are closely related to coreflective subcategories with the same class of objects: let K be a coreflective subcategory of H , obj $\mathrm{K}=$ $=\mathrm{obj} H, P: H \rightarrow K$ be a coreflector and $J: K \longrightarrow H$ the inclusion functor. Put $T=P o J$. Let e be the natural transformation from 1_{K} to T, given by the adjoint situation, let 0 be the composition in the category H. Then (T, © ©) will be a fuzzy theory over K in the sense of [3] and H isomorphic to the category with fuzzy morphisms.

In fact, we prove that the category of all partial algebras and all their homomorphisms of a certain type (cf. below) is a coreflective subcategory of the category of all Pawlal machines and all their simulations. These two catagories have the same class of objects, as will become clear.
II. Let us recall that a Pawlak machine is an ordered pair (A, f) in which P is a partial mapping from A to A, i.e. (A, f) is a partial algebra with one unary operation (cf. [1] and [2]). In accordance with [5] a mapping $\alpha: A \rightarrow B$ is said to be a simulation of (A, f) in (B, g) if two following conditions are fulfilled:

$$
(\forall a \in A)(a \in D(f) \text { iff } \alpha(a) \in D(g))
$$

$\left.(\forall a \in D(f))\left(\exists k_{a} \geq 1\right)\left(\propto_{f}(a)\right)=g^{k^{a}}(\propto(a))\right)$,
where $D(f)$ and $D(g)$ are domains of f and g respectively, k_{a} is an integer and $g^{k_{2}}$ denotes the k_{a}-th iteration of g. (As far as we know this notion of a simulation was first conceived by Z. Pawlak, although to our knowledge he has not published as yet any paper in which this notion appears.)

An usual homomorphism of partial algebras $\propto:(A, f) \longrightarrow$ $\longrightarrow(B, g)$ which is also a simulation (and in that case the minimal $k_{a}=1$ for all $a \in D(f)$ is called s-homomorphism.

The aim of this note is to prove the following proposition.
proposition: The category of all Pawiak machines and all their s-homomorphisms is a coreflective subcategory of the category of all Pawlak machines and all their simulations.

III. The uroof of the woposition

Definition 1: A Pawlak machine ($\mathrm{J},+$) is said to be additive if J is either the set of all non-negative integers or $\{0, \ldots, k\}$ (k is non-negative) and if the partial mapping $+: J \longrightarrow J$ is defined in the following way:
(1) $i \in D(+)$ iff $i+l \in J$
(2) $(\forall 1 \in D(+))(+(1)=1+1)$.

Definition 2: A simulation (resp. s-homomorphism) of and additive Pawlak machine $(J,+)$ in (A, f) is said to be a path (resp. s-path) in (A, f).

Lemma 1: Let $ᄂ:(J,+) \rightarrow(A, f)$ be an s-path. Then
（i）$\left.(\forall k \in J)(し k)=f^{k}(し(0))\right)$
（ii）$(\forall k>0)\left(k \in J\right.$ iff $L(0) \in D\left(f^{k}\right)$ ．
Proof：（i）we prove easily by induction．
（ii）Let us have $k>0$ ．By definition $1 k \in J$ iff $k-1 \in$ $\epsilon D(+)$ ．L is a simulation，thus $k-l \in D(+)$ iff $L(k-1) \epsilon$ $\in D(f)$ ．From（1）it follows that $k-1 \in D(+)$ iff $f^{k-1}(し(0)) \in$ $\in D(f)$ iff $u(0) \in D\left(f^{k}\right)$ ．Hence，$k \in J$ iff $u(0) \in D\left(f^{k}\right)$ ．

Lemme＿2：Let (A, f) be a Pawlak machine，let $a \in \mathbb{A}$ ．Then there is only one s－path L_{a} in (A, P) such that $L_{a}(0)=a_{0}$

Proof：1．Let us have $a \in A$ ．Define $J_{a}: i \in J_{a}$ iff a \in $\in D\left(f^{i}\right)\left(f^{0}=1\right)$ ，and $+: J_{a} \longrightarrow J_{a}: i \in D(+)$ iff $i+l \in J_{a}$ ， $+(i)=i+1$ ．Define $u(i)=f^{i}(a)$ ．Obviously，L_{a} is an s－path．

2．Now，let $L: J \rightarrow A$ be an s－path，let $L(0)=$ a． By Lemma $1 \quad k \in J$ ife $L(0) \in D(f)\left(i(0)=a \in D\left(f^{0}\right)\right)$ and $L k=$ $=f^{k}(L(0))$ ．Hence，$J_{a}=J$ and $L_{a}=L$ ．

Construction．Let (A, f) be a Pawlak machine．Define $P((A, f))=\{\langle i, L\rangle \mid L$ is a path in $(A, P), i \in D(し)\}$ ， $f^{\prime}: P((A, f)) \longrightarrow P((A, f)): 1 .\langle 1, l\rangle \in D\left(f^{\prime}\right)$ iff $L(i) \in D(f)$

$$
\text { 2. } f^{\prime}(\langle 1, l\rangle)=\langle 1+1, l\rangle \text {. }
$$

Then $\left(P((A, f)), f^{\prime}\right)$ is a Pawlak machine．Now we define the binary relation R on $P((A, P))$ ：
$\left\langle i, l_{1}\right\rangle R\left\langle j, l_{2}\right\rangle$ if there are J and a pair of s－paths $c_{1}^{\prime}, c_{2}^{\prime}$ such that $c_{1}^{\prime}(0)=i, c_{2}^{\prime}(0)=j$ and the diagram is commutative：

R is obviously reflexive and symmetric. It is also transitve: let $\left\langle i, L_{1}\right\rangle R\left\langle j, L_{2}\right\rangle R\left\langle k, L_{3}\right\rangle$. Then there is a commutative diagram

in which $i_{1}^{\prime}, L_{2}^{\prime}, L_{2}^{\prime \prime}$ and $L_{3}^{\prime \prime}$ are a-paths and $i_{2}^{\prime}(0)=j=$ $=L_{2}^{\prime \prime}(0), l_{1}^{\prime}(0)=i, \quad c_{3}^{\prime}(0)=k$. Hence $c_{2}^{\prime}=c_{2}^{\prime \prime}, J_{4}=$ $=J_{5}$ by Lemma 2^{\prime} and $L_{1} L_{1}^{\prime}=L_{2} L_{2}^{\prime}=L_{2} C_{2}^{\prime \prime}=L_{3} L_{3}^{\prime \prime}$. Thus $\left\langle i, L_{1}\right\rangle$ H $\left\langle l_{k}, L_{3}\right\rangle$ 。
R is a congruence on $P\left(((A, f)): \operatorname{let}\left\langle i, L_{1}\right\rangle R\left\langle j, L_{2}\right\rangle\right.$ and $\left\langle i, L_{1}\right\rangle \in D\left(f^{\prime}\right)$ (then $\left\langle j, L_{2}\right\rangle \in D\left(f^{\prime}\right)$ because $C_{1}(i)=$ $\left.=L_{2}(j)\right)$. Then there is a commutative diagram

in which $C_{1}^{\prime}, C_{2}^{\prime}$ are s-paths. By Lemma 2 there is an o-path $L: J_{3} \rightarrow J$, such that $\mathcal{C}(0)=1$. Now define $C_{1}^{\prime \prime}=C_{1}^{\prime} \circ C$, $c^{\prime \prime}=c_{2}^{\prime} \circ L$ 。 Obviously, $L_{1} \circ L_{1}^{\prime \prime}=c_{2} \circ L^{\prime \prime}$ and $c_{1}^{\prime \prime}(0)=$ $=1+1, \quad c_{2}^{\prime \prime}(0)=j+1$. Thus,

$$
f^{\prime}\left(\left\langle 1, L_{1}\right\rangle\right)=\left\langle 1+1, L_{1}\right\rangle R \quad f^{\prime}\left(\left\langle j, l_{2}\right\rangle\right)=\left\langle j+1, L_{2}\right\rangle .
$$

Now, define $\tilde{f}: ~ P((A, f)) / R \longrightarrow P((A, f)) / R:$

1. $[\langle 1, ᄂ\rangle] \in D(\tilde{f})$ iff $\langle 1, レ\rangle \in D\left(f^{\prime}\right)$
2. $\tilde{f}([\langle 1, ᄂ\rangle])=\left[f^{\prime}(\langle 1, ᄂ\rangle)\right]=[\langle i+1, \iota\rangle]$. $(P((A, f)) / R, \widetilde{f})$ is a Pawlak machine, too. Let us define $\varepsilon_{(A, f)}: P((A, f)) / R \rightarrow A \quad \varepsilon_{(A, P)}([\langle i, L\rangle])=L(i)$. Obviously, this definition is correct and $\varepsilon_{(A, P)}$ is a simulation of $(P((A, f) / R, \tilde{f})$ in (A, f).

Lemma 5: Let $(B, G),(A, f)$ be Pawlak machines, let \propto be a simulation of (B, g) in (A, f). Then there is the unique s-homomorphism $\bar{\propto}:(B, g) \longrightarrow(P((A, f)) / R, \tilde{P})$ such that the following diagram is commutative

Proof: Let us define $\bar{\alpha}(a)=\left[\left\langle 0, \propto \circ L_{a}\right\rangle\right]\left(c_{a}\right.$ is an s-path such that $\left.L_{a}(0)=a\right)$. 1. $\bar{\alpha}$ is an s-homomorphism:
(1) $a \in D(g)$ iff $\propto(a) \in D(f)$ iff $\left[\left\langle 0, \propto \bullet L_{a}\right\rangle\right] \in D(\tilde{f})$
(2) Let $a \in D(g)$ ard $b=g(a)=L_{a}(1)$. By Lemma 1 we have $j \in J_{b}$ iff $b \in D\left(g^{j}\right)$ iff $a \in D\left(g^{j+1}\right)$ iff $j+l \in J_{a}$. Define $L: J_{b} \rightarrow J_{a}, L(1)=1+1$. Then $L_{a} \circ\llcorner(0)=$ $=L_{b}(0)$. Hence, $L_{a} \circ L=L_{b}$ by Lemma 2 and the diagram

is commutative and $\tilde{f}(\bar{\alpha}(a))=\left[\left\langle 1, \downarrow \circ \iota_{a}\right\rangle\right]=$ $=\left[\left\langle 0, \cup \cdot \iota_{b}\right\rangle\right]=\bar{\alpha}(g(a))$.

Obviously, $\quad \varepsilon_{(A, f)} \circ \bar{\alpha}=\propto$.
2. Let $\tilde{\boldsymbol{\alpha}}$ be an s-homomorphism such that $\varepsilon_{(A, P)} \circ \tilde{\sim}=\propto$.

Let $a \in B$, let $\tilde{\propto}(a)=[\langle i, ᄂ\rangle]$. By Lemma $1 \quad j \in J_{a}$ iff $\tilde{\propto}(a) \in D\left(\tilde{f}^{j}\right)$, for $\tilde{\propto} \circ L_{a}$ is an s-path. By the definition of $\widetilde{f}: \tilde{\propto}(a) \in D\left(f^{j}\right)$ iff $i+j \in D(L)$. Thus, $L(i+j)=$ $=\varepsilon_{(A, f)} \circ \tilde{\alpha} \circ \iota_{a}(j)=\propto \circ \iota_{a}(j)$. Now, if we define $c^{\prime}: J_{a} \rightarrow J \quad c^{\prime}(j)=i+j$, the diagram

is commutative. Hence, $\left\langle 0, \propto \circ \iota_{a}\right\rangle R\langle i, \iota\rangle$, i.e. $\bar{\propto}(a)=$ $=\tilde{\alpha}(\mathrm{a})$.

References
[1] Z. PAWLAK: Maszyny programowane, Algorytmy 10(1969), 7-22
[2] M. NOVOTNY: On some problems concerning Pawlak's machines, Math. Foundations of Computer Science 1975, Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg-New York, 1975, 88-100
[3] M.A. ARBIB, E.G. MANES: Fuzzy machines in a category (preprint)
[41 M.A. ARBIB, E.G. MANES: Fuzzy morphisms in automata theory, Proceedings of the first International Symposium: Category Theory Applied to Computation and Control, Lecture Notes in Computer Science 25, Springer-Verlag, 1975;
[5] M. NOVOTN: On simulations of Pamlak's machines (preprint)

[6] H. EHRIG and col.: Universal Theory of Automata: a Categorical Approach, Teubner, 1974

Matematicko-fyzikálnf fakulta
Karlova Universita
Sokolovská 83, 18600 Praha 8
Ceskoslovensko

(Oblatum 23.3. 1977)

[^0]: Abstract: Simulations of Pawlak machines are shown to be fuzzy morphisms (in the sense of Arbib and Manes) over certain category of unary partial algebras.

 Key vorde: Pawlak machine, simulation, fuzzy theory, coreflective subcategory.

 AMS: 18B20
 Ref. Z. : 8.713.2

