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FUNCTIONAL CHARACTERISTICS OF P -SPACES

A.I, VEKSLER, Leningrad

Abg;ggggz A topological gspace T is said to be P-space
(resp. P’-space) iff te int E (resp. te ¢l int E) for a

teT and Gr—-set Eat. N. Onuchic (1] ~ K. Iseki [2) th:zrem
states that T is P-gpace iff a pointwise limit of any sequen-
ces of resl=-valued continuous functions on T is a real-valued
continuous function on T. In thjs paper there are given the
functional characteristics of P -spaces.

Lgx wordg: P-space, P-point P'-point P'-apace upper
(lower) semicontinuous f\;nctiom ’ ! '

AMS: 54G10, 54G99, 54C30 Ref. %.: 3.961

All the considered spaces are supposed to be completely
regular. We recall that a point t«T is a P-point [31,(4],
iff teint E for any Gy -set Eat, A space T is P-space iff
any point in T is a P-point. A point te€ T is a P -point (5]
iff tecl int E for any Gy -set Emt. A space T is P'-gpace
iff any point in T is a P'-point.

P'-spaces have a good deal or significant properties.
For instance, in any P'-space, any meager set is nowhere dem
se and a non-empty open set cannot be covered by a family of
X 1 nowhere dense sets. If B is compact P'-space and the
weight of B is 251, then B contains P-points. The most im—
portant case of compact P'—space is RN\ N; the correspond-

ing results for (& N\ N were obtained by I.I. Parovichenko
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[61 and W. Rudin [ 71. Some topological characteristics of
P’-spaces were studied in [51. Besides in [ 5] using proper-
ties of the vector lattice C(B), some characteristies of a
compact P'-space B were presented.

Note that the class of-P'-spaces is much wider than
the one of P-spaces. Any compact P-space is finite, where-
@8 all B D\ D (for discrete D), all one-point compactifi-
cations e D of uncountable discrete D, all (3 T\T (for lo-
cally compact, realcompact, but not compact T), all the boun-
daries of zero-sets in compact P-spaces (in particular all
nowhere dense zero-sets in basically disconnected compact
spaces) are compact P'-spaees.

Let £ be an extended real-valued function on T, Let

£ . (t) =sup inf £(t”)
min (1) tea(t)

£ _(t) = inf su £(t7)
mex alt) trealt)

(where {G(t)} is the family of all the open neighbourhoods
of the point t). A function £ is said to be lower (upper)
semicontinuous iff £ = £, (resp. £ =£ . ). £ is normally

lower (upper) semicontinuous iff £ = (£__ ) (resp., £ =

max’ min
= (£0in) ey’ *

Theorem. For any completely regular space T the fol-
lowing conditions are equivalent:

1) T is P -space;

2) 1if 4£,% 1is a sequence of real-valued continuous
functions on T and £ is its pointwise limit, then

(fmax)min‘ & (fmin)max;
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3) 1ir 1f,1 is an increasing (resp. decreasing) se-
quence of real-valued continuous functions, then its point-
wise limit £ is a normally lower (resp. upper) semicontim-=-
ous function.

Proof. 2)==3). Let £(t) = 1im £, (t) and {f;iis in-
creasing. Then £(t) = sup rn(t) and £ is lower semicontim

ous (cf. [81), d.e. £ = f3. It means (£, ) . =L, =£;
2) implies (fmax)min = f. Therefore 3) holds.

3)=>1). Let us suppose that T is not a P -space. In
virtue of [5] there is a nowhere dense zero-set BE. Let E =
= M4 G,: neN3, where G, are open and decreasing, and
to€ B Then let us construct a sequence {fn} of increas-
ing continuous functions on T such that

£,(PNGy) =41}, £,(t,) =0 and 04 £, (t)<41 (teT).
Let £(t) = lim £, (t). Then £(t ) =0, £(TNK) =41}, but
(fmax)min(t) =1 for any te T, It means (£ . ) ., >f.

1)=> 2). ILet T be a P'-space, £(t) = 1lim f£(t). Let us
fix up a point teé T. Then

Ve>03n,eX®Vnzn, 36,(t)V teq (t) [£(t)&e(t) +¢].

Let G, = int M 4 G (t)3 : neN. Since t 1s a P -point, then
teel G, and £,(t"J££(t) + & for all.nzn, t'e G_.
It means £(t7)& £(t) + ¢ and £, (t)42(t) + & .

Since (£ __. ) +n(t) = sup inf £ (t°) and te cl G_, then
max’ min G(t) t’%e G(t) meX o’

G(t)N G # @ and inf £ (t)4f(t) + € . It implies
o] t’GG(t) max plie

(fpaxdmin(t) € £(t) &+ & and (£, )0y ()& 2(t), (2 ). <2,

Likewise, (fpin)pey £, It means 2) holds.
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