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COMMENT AT IONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

18,3 (1977) 

THE SORGENFREY LINE HAS NO CONNECTED OOMPACTIFICATION 

A. EMERYK and W. KULPA, Katowice 

Abstract: We answer the question raised by Eric van Do-
uwen during the Conference at Stefanova*, February 1977t whe
ther there exists a connected compacfitication of the Sorgen-
frey line. We prove th3t there is no regular Hausdorff connec
ted space containing the Sorgenfrey line as a dense subspace. 
We give an example of Hausdorff connected space containing the 
Sorgenfrey line as a dense subspace. 
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AMS: 54D35, 54D05 Ref. 2.: 3.961.2 

!• Tfre statements of results. Let S be the Sorgenfrey 

line, i.e. the set R of reals with the topology generated by 

half-open intervals Cx,y) of R. If S is a subset of Y, then 

let UCx,y) be the greatest open subset of Y such that 

U Cx,y)n S * Cx,y). 

Theorem. There exists no regular space Y such that S is 

a dense subspace of Y and 

(* ) Cx,y)n S - Cx,y) + 0 for each Cx,y)c S. 

Remark. If Y is a connected space, or if Y - S is con

nected and Y is compact, then the condition (# ) holds. 

Corollary 1» There exists no regular connected Hausdorff 

space containing S as a dense subset. 
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Corollary 2. There exists no compactification of S with 

a connected remainder. 

2* The proofs. We begin from a 

Lemjaa. ^ t Y be a Hausdorff space containing S as a den

se subset. If p c Cx,y) n (Y - S), then there exists a q in S 

such that x--£q.&y and such that for each open neighbourhood W 

of p the open interval (q - e fq) intersects W for each e > 0. 

Proof of Lemma: Let q = sup-ireS: there exists an open 

neighbourhood W of p such that W n C xfr) = 0 { . Since Y is 

Hausdorff, there is an open neighbourhood W of p and there is 

a point r in S such that Cx,r)nW = 0. Therefore q>x. If 

q>y, then there, are r>y and an open neighbourhood W of p such 

that Ex,r)nW = 0. This contradicts the fact that p e [x,y)# 

Hence q-=y. It remains to show that Wn(q - e fq)4-0 for each 

e .> 0 and for each open neighbourhood W of p. Suppose not. 

Then there are e -> 0 and an open neighbourhood W^ of p such 

that W^n (q - e fq) = 0. from the definition of point q there 

is an open neighbourhood W 2 of p such that W2nCx,q-i-) = 0 . 

Since Y is Hausdorff, there is an open neighbourhood W-* of p 

such that ljO[q,q • £^) - 0 for any e^> 0. Hence W n C x , 

q • €^) = fb where W - W^A W ^ W - ^ T n i a contradicts the defi

nition of point q. 

Proof of the Theorem. Suppose that there is a regular 

Hausdorff space Y containing S as a dense subset and the con

dition (* ) holds. We first show that 

( * * ) for each xf y in S there exist p in Y - S and p^f p 2 

in (x,yJ such that p-̂ 4- p2 and Wn (p^ - e fp1)4-0 and 
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Wn (p^ - £ ,P^)4-0 for each e >• 0 and open neighbourhood W 

of p. 

Since Y i s regular, there i s a point z in (x ,y) such that 

f x , z ) c U Cx ,y ) . £Vom the cond i t ion ( # ) there i s a point p in 

Cx,z)n S - C X , Z ) . Then p e L x ,z ) c U C x ,y) and p € S - C x , z ) , 

and therefore for each open neighbourhood W of p we have 

04-WnU C x , y ) n (S - Cx,z)) - W A Cx,y) A ( S - Cx,z)) =- W n 

n C z , y ) . This imp l ies that p c C z , y ) . Hence there e x i s t s a 

point p in Y - S belonging to Cx,z) and Cz ,y ) . By the Lem

ma, there e x i s t p^ and p 2 in S such that ( * ) holds for the 

point p. 

.Prom the cond i t ion ( * * ) i t fol lows that a family JP 

consis t ing of open intervals (PxtP2^ where p^ and p^ are 

points defined as in ( * * ) , i s a or -base on R. Since R i s 

complete, there i s a point xQ on R such that the family & i s 

the base at xQ . Now l e t y > x Q be given. Since Y i s regular, 

there i s a point z such that CxQ,z) - U C x , z) c U C x 0 , y ) . From 

the fact that (P i s a base of R at the point xQ i t follows 

that there are p in Y - S and Pxtp£ * n s such that (pxtP2) c 

c (xQ - l , z ) and xQe (pxtP2) and the cond i t ion (* * ) ho ld s . 

From the cond i t ion ( # * ) we infer that p€ C x , z ) and p € 

€ C xQ - l , x Q ) (because W A C X Q - l ^ b W A t p ^ - e ^X^tA 

and W A C X Q , Z ) 3 WA (p.^ ~ €• , p 2 ) # $ for each open neighbourhood 

W of p and for any e > 0 ) . But p€U Cx0 ,y) and U CxQ,y) i s 

the open neighbourhood of point p such that UC xQ ,y) AC X -

- l , x 0 ) * Cx0 ,y) A C x 0 - l , x 0 ) = t. Hence p £ CxQ - l f x Q ) ; a 

contradict ion. 
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3« Example. There e x i s t s a connected Hausdorff space Y 

containing S as a dense subset . 

For each x e R , l e t Dx « i d i » d 2 , # *# ^ ^e a n a r b--trary s e 

quence such that d^e R, d^< d.+-. < x and x = #lim d^ for i = 

= 1 , 2 , . . . . By the Sierp inski s Theorem there e x i s t s a family 

3)x of the card ina l i ty of continuum consist ing of i n f i n i t e 

subsets of Dx the union which i s Dx and each two members of 

3)^ have only f i n i t e l y many points in common. Observe that 

each member of 3># i s d i screte and closed in S. Let Z = Ax A, 

where A i s an arb i trary subset of S which i s dense in S. By a 

t rans f in i t e induction we can define s e t s D(x,y) of the form 

Kt/L, where K e 3>x and L c 3^ , such that D(x,y)r\ D ( t , s ) are 

f i n i t e or empty for ( x , y ) + ( t , s ) . Let Y « S u Z . Now we define 

the topology i n Y. I f p e s , then l e t the c o l l e c t i o n of a l l sub

s e t s of S of the form Cp,x) be a base in Y at the point p» I f 

p =- (x ,y )€ Z, then l e t the c o l l e c t i o n of a l l subsets W of Y of 

the form W ^ - i p l u G C D - F J b e a base in Y at the point p* 

where F i s a f i n i t e subset of S and for each subset B of S 

GC B l denotes an arb i trary open neighbourhood of the subset B 

in S and D = D (x ,y) . Clearly, S i s a dense and open subspace 

of Y. 

Now we prove that Y i s Hausdorff. I f p ,qe S and p4»qt say 

p < q , then Cp,q) and Cq,q + 1) are two mutually d i s j o i n t 

open subsets in Y containing p and q. If p ,qe Z and p4*q* then 
D p n Dq s ¥ i a a f i n i t e subset of S. Hence D - F and D - F 

are closed and mutually d i s j o i n t subsets of S. Since S i s a 

normal space, there are mutually d i s j o i n t open subsets 

G [ D p - F3 and G I D - FJ in S. Hence Wp « i p}v G C Dp - FJ 
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and W - s 4 q ? u G [D - FJ are mutually d i s j o i n t open subse t s 

containing p and q. I f pe Z and qc S, then a lso t he re are mu

t u a l l y d i s j o i n t open subsets G [ D - { q $ 3 and [q ,q -t- e ) con

t a i n i n g p and q. 

The space Y i s connected, because for each two mutually 

d i s j o i n t open subse t s U and V of Y the re are po in t s x , y be

longing t o A and e, :> 0 such tha t x e (x - & ,x + e ) < r U n S and 

y& (y - & ,y + e ) c VnS and the re fo re there i s a point p ~ 

= (x,y) in Y such t ha t p € U n V . 

Remark. If , in a d d i t i o n , the se t A defined above i s a 

countable subspace of S (for example the se t Q of r a t i o n a l num

bers) , then the space Y i s Lindelof and a subspace AxAuA of 

Y i s an example of countable connected space. 
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