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C0MMENTAT10NES MATHBMATICA1 UNIV1JSSITATIS CAROLIHA1 

19,1 (1978) 

SEMIGROUPS FOR WHICH EVBHX TOTALIS IRREDUCIBI.E S-SISTEM IS 

1NJ1CTIVE 

John K. U0ED1MAN and F.R. McMORRIS, Clemson, and 

SOON-KIONG Sill, Caracas 

Abstract: We characterize those semigroups for which 
every totally irreducible S-system is infective. Also obtain
ed are homological characterizations of semilattices of 
groups and commutative regular semigroups. 

Key words: Totally irreducible, regular, infective, 
p-injective. 

AMS: 20M10 Ref. 2.: 2.721.3 

0* Introduction. In recent years there have been many 

investigations into homological properties of semigroups and 

S-systems. Many of the questions asked are analogous to tho

se from ring and R-module theory. For example, Fountain £33, 

extending the work of Feller and Gantos C23, characterized 

those monoids S for which every S-system is infective. This 

corresponded to the well-known theorem that a ring R is se

mis imple Artinian if and only if every R-module is infecti

ve. The fact that another equivalent condition, namely that 

every cyclic R-module is infective, does not carry over to 

semigroups was shown by Johnson and McMorris in C5-U 

The present note is concerned with characterizing tho

se semigroups for which every totally irreducible S-system 

is infective. We obtain an analogous theorem to that of 
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Michler and villamayor C71. As a consequence we also obtain 

the analogue of a theorem of iCaplansky characterizing com

mutative regular rings. In addition we give a new homologi-

cal characterization of semilattices of groups which can 

then be added to the list as given by La/jos £63. 

In this paperf S is a monoid with zero. 

* wiital right S-system Mg with zero is a set M with 

a multiplication MnS—* M given by (m,s)t—-* ms such that 

m(s-jS2) = (ms^)a2 and satisfying m • 1
 s m for all me M and 

having a distinguished element 8 e M satisfying @s * B 

for all ae S. We will denote thia element, as well as the 

zero of S by 0. 

An S-aystem Mg is injective if for eveFy S-monomoFph-

iam f; A g—> Bg and S-homomorphiam g: A g—> Mg there is an 

S-homomoFphism h: B g—> Mg satisfying h-f = g. 

An S-aubayatem Ng of Mg is essential in Mg if every S-

congruence on M whose restriction to N is the identity, is 

itself the identity on M. Note that if Ng is essential in 

Mg then NgA Kg4. 0 for all non-zero S-subsystems IL of 1L. 

BeFthiauae £11 has shown that each S-system MU has a 

unique (up to iaomorphiam over Mg) essential extension ML 

called the injective hull of Mg. 

FOF a Fing H with identity, MichleF and Villamayor £71 

have shown that the following statemente are equivalents 

(1) EveFy proper right ideal is an intersection of maxi

mal right ideals; (2) Every simple right R-module is in

fective. 

A right S-aystem Mg is totally irreducible if the 
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only right S-congruences are the universal congruence «*>M 

and the identity congruence iM, and M^#0. Note that if Mg 

is totally irreducible then Mg haa no proper S-aubsystema, 

Also, aince S haa an identity, every congruence is modular 

ao theorem 6.2 of Hoehnke £4] reada that Mg is totality irre

ducible if and only if M = S/̂ a, where ̂  is a maximal right* 

congruence on S. 

Finally, if f: A«-—• Bg is an S-homomorphism, the 

kernel congruence, ker ff on Ag is given by 

ker f « *C(x,y) ) f(x) = f (y) } . Clearly ker f is an S-congru-

ence on Ag. 

1. Monoids, whoae totally irreducible S-aystema arc in

ject ive 

Given a congruence g> on S, let I(rt> ) denote the O-class 

of m : 

I(f» ) » fx€S J (Xf0) £ p | 

!•!* Theorem: The following conditions are equivalent: 

(1) For every proper congruence m on S, K * ) « 

* f\ 1(0* ) where C is the family of all maximal ri^ht con

gruences on S which contain f . 

(2) fvery totally irreducible S-system is infective. 

Proof: If 1 = Of there is nothing to prove, ao we shall 

assume that 1^0, 

(1) «ss» ( 2 ) : Let M be a t o t a l l y i r r e d u c i b l e S-system, 

l e t O ^ z e M where M i s the i n f e c t i v e h u l l of Mf and define 

X :S—* M by X(B) = XS . Then ker X i s a proper r i g h t con-
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gruence on S. Let 4 6 ^ joe € A i be the family of maximal 

right congruences on S which contain ker X • Let M^ « 

= S/0^ and define ^ :xS —* TL M^ by ^(xs) « C^8-^ 

where ^ s ] ^ is the equivalence class of s in M^ . Consi

der p^ o AM where p^ s TT\ M ^ —# M^ is the projection 

mapping. Suppose that p^ o M, is not one-to-one for all 

oc a A . Since M is essential in i and is totally irredu

cible, (0)4»M « MHxSS xS and so ker (p^ • <u, ) | M « «> M for 

all oc e A • Thus if xsc MflxS, AA<(XB) « 0 and so icl( fl^c -* 

for all cc e A . Thus s c H . ICC*- ) - I (ker (A)) and 00 

X (s) = xs = 0, Consequently M • xSHM • (0) f a contradic

tion. Thus there exists an ec c A such that p^ 0 (U, is one* 

to-one. Then xS a. M^ and so xS is totally irreducible* Hen

ce M = xSflM » xS and xeM, therefore M * M, 

(2) =-d> (1): Let p be a proper right congruence on S 

and let C be the family of all maximal right congruences on 

S which contain m . Let xeS \ I ( ^ ) f and fQ be a right con

gruence on S maximal with respect to <t> £ m0 and (xf0) ^ ®Q # 

Let j£s be the right ideal of S which is a union of m0 

classes such that J/ * Ixl S where [x3 is the p0 elaae 

of x. Then J , is totally irreducible for if € is a con* 
/5°o 

gruence on Jf C | f>0 f then QT « 6* u f0 t g_j is a congru

ence on S properly containing ®Q . Thus (xf0) a 3** and 00 

co 0 Thus J/̂  is totally irreduciblej and 00 
J/$=0 ' l n U° V f 0 

J/ is infective• Then we have the diagram 

ro 
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s/ 

OC î" 
To ^o 

where ©c is the inclusion mapping. Let 6 » 4Ca,b)eSxS | 

| <^£a3= ^ C b 3 , then 6 2 fQ is a congruence on S. If 

® 4= f 0 ,then(x»O)€0 and C x 3 • ̂  C x] « C 0 J and 

(x,0) fc f 0 , a contradiction. Thus 5 » fQ and ker <)> » 
= h/m * Therefore, S/ M J ^ and S / ^ is totally 

irreducible, and p 0 is a maximal congruence on S contain

ing f . Hence x£ I( $>Q ) so x ^ f"V I( 6^ ). Bms 

Remark: Using methods similar to those above, we can 

prove that if each proper congruence p on S is the inter

section of the family of all maximal congruences containing 

J* , then every totally irreducible S-system is infective. 

However the converse is false as seen by considering a group 

with zero. 

The next theorem is the semigroup analogue of Kaplan-

sky's result which states that a commutative ring R with 

identity is regular if and only if every simple R-module is 

injective. 

1»2« Theorem: Let S be a commutative monoid. S is re

gular if and only if each totally irreducible S-system is 

injective. 

Proof: Suppose each totally irreducible S-system is 
2 2 2 

injective. Let a e S \ t S and eC * (a S K I S)ui g. Let t© be 
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a maximal congruence containing ot> . If (a,0) + f , then 

t a 3 S « S/m since S/p i s to ta l ly i r reducible , thus ClJ * 

= [at] s = [ a s ] fop some s e S , and so ( l f as ) e <p • Since go 

i s a congpuence (a fa s)c{p f but then ( a , 0 ) € p since 

(a s f0) e ©& fi 0 9 a contradiction. Hence, (a ,0)e <p for eve

ry maximal congruence p 2 oo so 

a * r v I(<? ) * Koo) s a2S where 
|) € w # 

C » 4 ^ 2 o c ) ^ i s a maximal right congruence on S } . Thus 

ae a S for all acS so S is regular. 

Conversely, let Mg be totally irreducible. Then there 

is a maximal right congruence p on S with M fit? S/p . A theo

rem of Oehmke C 93 says that S/f is either a group or the 

two element semilattice. Sehein till defines an order a .6 b 

on M if ae bl whepe E is the set of idempotents of S. Mope-

ovep, B£M is compatible if for eveî r bcB there is an e^€ 1 

with b eb • b and b ec • e e^ for all c e B. A face of B£ M is 

an element a e M with a 2: b for all b&B and as s at whenever 

Bs » Bt for s, te S. Sehein C11J proved that M is injective 

if and only if every compatible subset of M has a face. Clear

ly every group and the two element semilattice are infective 

by Sehein's result and thus M-M S/p is injective. 

2. A generalization. In the theory of pings with iden

tity, an It-module M is infective if and only if each R-homo-

mopphism fpom a Pight ideal of H to M has an extension to all 

of B. These two concepts do not coincide in the theopy of se-

migpoups as shown by Berthiaume [!]• 
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Definition: An S-system Mg is weakly infective if each 

S-homomorphism f :A — • M from a right ideal of S to M has an 

extension f:S—^M. 

An S-system MU is p-infective if each S-homomorphism 

f:aS—•S from a principal ri#it ideal of S to M has an ex

tension fsS—*M. 

Note that since S has an identity 1, if f(1) * m, then 

f(s) « ms and f is given by Is ft multiplication by m. In this 

section we characterize monoids S each of whose cyclic S-sy-

stems is p-injeetive and use this to generalize Theorem 1.2* 

2*1« theorem (Ming t8l): For a monoid S, the following 

are equivalent: 

(1) S is regular. 

(2) Ivery S-system i s p-injective. 

(3) Ivery cyclic S-system is p-injective. 

The proof found in [8 l carr ies over d i rec t ly . 

2«2« Theorem; s i s regular and SaSaS for a l l a * S i f 

and only i f every to ta l ly irreducible S-system is p - in jec t i 

ve and every r ight ideal i s two-sided. 

Proofs If S is regular, then every S-system is p- injec

tive by Theorem 2 . 1 . Moreover, i f J i s a r i ^ i t ideal of S and 

a c J , then SaSaSSJ and J i s two-sided. 

Oonversel/y, i f every r ight ideal i s two-sidedf then aS 

is a r i # i t ideal , ae&S and so SaSaS. To see that S i s r e 

gular, l e t be S. If b i s not regular , then ( l ,b ) # « » 

« (bSxbS)u i g for otherwise ( l f b) * QC implies that (l fO) e 

c <sc and ©c * 0 s* Thus 1 * bs for some s « S and b * bsb. 
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Likewise if X :S—> bS is given by Jl Cs) = bs, then Clfb) $ 

<| ker^, for otherwise Cl,b)6 ker 2t applies b = b and so b 

is regular. Let f be a congruence maximal with respect to 

f ^ ceo kerX and Clfb) $ f . If f | r % Cl.b) € 9*- but 

CbfO) i «t £ p c ^ so f s 63g} thus f is a maximal ri$b.t 

congruence, and so S/f is totally irreducible. Let ysbS~» 

—•» S/jp be defined by t|r Cbs) « C s 1 , the equivalence class 

of s determined by f . Since S/p is p-infective, there is 

some ecS with f Cbt) » [eJ bt for all teS. Thus CcJ b » 

= f Cb) « fCb» 1) » [1] or Cl,eb) c §3 . Now cbc Sb£ bS so 

Ceb,0) € otSjD and so Cl,0) e f . Then ^2<^g, a contra

diction. 

Remarks The conditions of Theorem 2.2 are equivalent to 

the fact that every N-class of S is a right group CPetrich 

tlOl, p. 118). 

2*3« Corollary: S is a semilattice of groups if and on

ly if every totally irreducible S-system is p-injective and 

every one sided ideal is two sided. 

2«4. Corollarys Let S be commutative, then S is regular 

if and only if every totally irreducible S-system is infecti

ve. 

In a future note, we plan to investigate those semigroups 

for which every cyclic S-syatem is infective. 
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