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COШENTATIONIS MATHШâTICAB ШIIVIBSITATIS CABOШtAE 

19,1 (1978) 

TШOBEMS ON MAPPINOS SATISFÏІNG A B4TI0NAL INIQUAЫTÏ 

B. FISHIB, Leicester 

Abstract: Mappings S and T of a metric space X into 
itself : satisfying inequalities are shown to be either iden
tical constant mappings or to have a unique common fixed 
point. 

Key words; Constant mapping, fixed point. 

kmi 54H25 Bef. 2. 3.966.3 

The following theorem was given in a paper by M.S. Khan 

Í4] 

Theorem 1. Let S and T be mappings of the complete 

metric space X into itself such that 

dCSx Ty) 4 cdCxfSx)d(x1Ty) + d(ytIfr)d(ytSx) 
' d(xfTy) + d(y,Sx) 

for all xf y in X, where O i c ^ i , Then S and T have a unique 

common fixed point z. 

It was later shown in CI] that the theorem was incor

rect as stated ana needed the extra condition that d(xf!Py) + 

• d(yfSx) = 0 implies that d(Sxf!J:y) = 0 for the theorem to 

hold. 

In the following we consider mappings S and T satisfy

ing a similar inequality. First of all we have 
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Theorem 2, Let S and T be mappings of the metric spa.-

ce X into itself such that for all x, y in X, either 

cd(x,Sx)d(y,Ty) • bd(x,Ty)d(y,Sx) 
d(Sx,Tty) 6 • _ _ _ 

d(x,Sx) + d(y,Ty) 

if d(x,Sx) + d(y,Ty)+ 0, where b20 and 0^ c ̂ 1, or 

d(Sx,Ty) = 0 

otherwise. Then S and T are identical constant mappings on 

X. 

Proof: Let x be an arbitrary point in X. Then if 

d(STx,Tx)#0» we have 

cd(Tx,STx)d(x,Tx) 
d(STx,Tx) £ • — — — • 

d(Tx,STx) •#• d(x,Tx) 

It follows that 

d(STx,Tx)£ (c - l)d(x,Tx), 

giving a contradiction, since c ̂  1. We must therefore have 

STx * Tx for all x in X and so ST = T. 

We can prove similarly that TS = S. Thus 
d(Tx,STx) + d(Sy,TSy) = 0 

for all x, y in X, which implies that d(STx,TSy) = 0 for 

all x, y in X. It follows that ST and TS are identical con

stant mappings and so S and T are identical constant mapp

ings. This completes the proof of the theorem. 

We now prove 

Theorem 3. Let S and T be mappings of the complete 

metric space X into itself such that for all x, y in X, 
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e i t h e r 

ed(x fSx)d(y fTSr) * bd(x f Ty)d(y f Sx) 
d(Sx,!ty) * 

d(x f Sx) • d(y f Ty) 

i f d(x f Sx) * d(y f l :y)4-0 f where b z Q and l < c < 2 9 or 

d(Sx,Ty) * 0 

otherwise. Then each of S and T has a unique fixed point and 

these points coincide. 

Proof: Let x be an arbitrary point in X and put 

u
2jl
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n
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f
T(ST)

n
x)

f
 U 2

n + 1
 « d(T(ST)

n
x

f
 ( S T T ^ x ) 

for n * 0
f
l

f
2,... . 

Suppose first of all that u
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 f o r 8 0 m e n
* 

Then it follows immediately that z « (ST)n
x is a common fix

ed point of S and T. Similarly u
2
n-l
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 =
 °

 f o r 8 0 m e n 

implies that % » T(ST)n
" x is a common fixed point of S and 

T. 

Now suppose that u^ • ̂ +1+ 0 for n = 0
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f
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Since 1< c < 2
 f
 it follows that the sequence 
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f
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f
...,(ST)
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...! 

is a Cauchy sequence in the complete metric space X and so 

has a limit z in X. 
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If we now suppose that Tz # z then 

cn2n-1a(zfTz) • ba(T(ST)
Ii"*a>cfTz)a(zf(ST)

nx) 
d((ST)nxfTz) 

tt2n-l * ä < z i f z ) 

ana on letting n tend to infinity we have 

a(zfTz)& of 

giving a contradiction. It followa that z is a fixea point 

of T. 

fe can prove eimiiarly that z ie alao a fixed point of 

S and so z is a common fixed point of S and T. 

Now auppose that T haa a second fixea point z'» Then 

a(zfSz) * d(z%Tz') = 0 ana ao 

a(SzfTz
#) « o * a(Lfz

#). 

It followa that z « z# ana ao T haa a unique fixea point z. 

Similarly, we can prove that z ia a unique fixed point of S# 

This completes the proof of the theorem* 

fe now note that theorems 2 and 3 do not hold without 

the condition that d(Sxf^y) * 0 if d(xf Sx) • d(y,Ty) « 0. 

Thia ia eaaily aeen by letting X be any complete metric apay-

ee with at leaat two points and letting S • T be the identi

ty mapping on X. Then d(xfSx) + d(y,3:y) * 0 for all xf y in 

X and so it followa that theorems 2 and 3 cannot hold with

out thia extra condition* 

fe finally prove the following theorem for compact met

ric spaces 

Theorem 4. Let S and T be continuous mappings of the 
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compact metric space X into itself such that for all xf y in 

X, either 

2a(x,Sx)a(y,%) • ba(xf!l?y)a(yfSx) 
a ( sx f %)< » 

a(x fSx) • a(y ffty) 

i f a(x fSx) • a ( y f ^ ) # 0 f where tozQ, or 

a(sxf%) * o 

otherwise* Then each of S ana f has a unique fixed point ana 

these points coincide. 

Proofs Let us suppose that a(xfSx) • a (y f T :y)>0 for all 

x, y in X# Then it follows from the conditions of the theo

rem that we must have 

2a(xfsx)a(yf^r) • ba(xfi^)a(yfsx)> o 

for all xfy in X. Hence the function f :Xx X—> R aefinea by 

a(Sxffy)Ca(xfsx) • a(yfTy)3 
t(xfy) * 

2a(x fSx)a(y f1:y) + M(xf%)a(yfSx) 

is continuous ana less than 1 on the compact metric space 

XxXf ®iis implies that there exists c<l such that f(xfy)fg 

6 c on X* X# It follows that 

2©a(xfSx)a(yffSr) • bca(xffy)a(yfSx) 
a(Sxff$r) £ • 

a(xfSx) • a(yf5ftr) 

£or all xf y in X ana so by theorem 3 there exists x in X 

swch that x » fx » Sxf giving a contradiction. Hence we must 

have a(x,Sx) • a(yffjr) * 0 for some xf y in X ana so x » fx » 

* % a y# fhus x is a common fixea point of S ana f• 

The uniqueness of x follows easily* This completes the 

proof of the theorem* 

41 -



For further results on two mappings S and T satisfy

ing a rational inequality see 12] and [3]# 

Remarks, We finally note the following variations of 

theorems 2f 3 and 4 respectively 

Theorem 2#. Let X be a set and ds Xx X —-y [ Ofoo ) a func

tion such that d(xfy) = d(yfx) for all xf y in X and d(xfy)
 a 

» 0 if and only if x * y* Let S and T be mappings of X into 

itself such that for all xf y in Xf either 

cd(x,Sx)d(yfTy) + bd(xfTy)d(yfSx) 
(Sx,TSr) * • 

d(xfSx) + dCytTy) 

i f d(x,Sx) + d(y,TSr) + Of where b2r0 and 0 £ c * l , or 

d(Sxf1:y) = 0 

otherwise. Then S and T are identical constant mappings on 

X* 

Theorem 3#* Let X and d be as in theorem 2'. Let S and 

T be mappings of X into itself such that for all xf y in X, 

either 

cd(x,Sx)d(yfTy) + bd(x,Ty)d(yfSx) 
d(SxfTSr)x • 

d(xfSx) + d(yf1ry) 

i f dCxfSx) • dCy,%)#O f where b > 0 and l < c < 2 , or 

d(Sx f1ir) « 0 

otherwise. Assume that the following condition is also sa

tisfied : 

if 4 x^l is a sequence in X such that dCx̂ XL̂ ..,) £ 
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4z Cc - DaC-tL̂ -if-%) for all n>l t then there exists a point 

x in X such that dCx^x) —•* 0 ana dCx^-fx) — > dCxfTx) as 

n—> oo . Then each of S ana T has a unique fixed point ana 

these points coincide. Purther, if this point is s, then for 

each x in Xf a(yaCx)f2)—> 0, where y-̂ Cx) * xf H^^1^ a 

* *2n-l a M y2n*l(x) s %2nC x )-

Theorem 4#. Let X be a compact topological apace ana 

let a be as in theorem 2*. Let S ana T be mappings of X into 

itself such that 

2dCxfSx)dCyfTy) * bdCx f^)dCy fSx) 
acsxf^)*s 

aCx,Sx) -> aCy,T5r) 

if aCxfSx) * d(y9!fy)+09 where b2:0f or 

dCSxfTy) = 0 

otherwise. Assume that the function f Csee the proof of theo

rem 4) is upper-semicontinuous over its domain. Then each of 

S and T has a unique common fixed point and these points 

coincide. 
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