Commentationes Mathematicae Universitatis Caroline

Luděk Zajíček
 On the points of multiplicity of monotone operators

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 1, 179--189
Persistent URL: http://dml.cz/dmlcz/105844

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,1 (1978)

ON THE POINTS OF MULTIPLICITY OF MONOTONE OPERATORS
Inděk ZajfČEK, Praha

Abstract

We prove by a simple method that the set of points at which a monotone operator defined in a separable real Banach space is multivalued can be covered by countably many of Lipschitz hypersurfaces. By the same method we obtain several related results. Applications to singular boundary points of convex sets and normals in non-exposed points of convex sets are given. Our results improve theorems of H . Zarantonello and N. Aronszajn.

Key words: Points of multiplicity of monotone operators, Lipschitz surfaces in Banach spaces, singular boundary points of convex sets, normals in non-exposed points of convex sets.

$$
\begin{array}{rlr}
\text { AMS: }: & \text { Primary 47H05 } & \text { Ref. Ž.: 7.978.425 } \\
& \text { Secondary 52A20 } & 7.972 .252,3.918 .1
\end{array}
$$

1. Introduction. Let X be a real Banach space. If we say that $T: X \rightarrow X^{*}$ is a monotone operator, then we mean that T is (possibly) multivalued, the domain $D(T)$ is a nonvoid subset of X and T is monotone (if $y_{1} \in T x_{1}, y_{2} \in T x_{2}$ then $\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle \geq 0$). Zarantonello [9] has proved that if X is separable then the points of multiplicity of T form a set of the first category. In the connection with this theorem the following questions arise:
A. For which nonseparable spaces X does the statement of the Zarantonello's theorem hold?
B. For which spaces X any monotone operator $T: X \rightarrow$ $\rightarrow X^{*}$ is singlevalued and upper semicontinuous in any point except a set of the first category?
C. If X is separable, is it possible to say something more on the smallness of the set of points of multiplicity of T ?

For the theorems which concern the questions A and B we refer to [7] and [3] where also connections with the differentiation of convex functions are shown and further references are given. Note that in [4] it is proved that the spaces from the question B are precisely Asplund spaces.

The present article concerns the question C. Aronszajn ([1], p. 157, Theorem Z) stated that by the Zarantello's method it is possible to prove that the points of multiplicity of T in the separable case are contained in a set from the class \varkappa°. The class \mathcal{C}° of small sets was introduced in [1] in the connection with the study of differentials of convex functions and their generalizations. Any set from C° is of the first category, but there exist sets of the first category which are contained in no set belonging to Cr°.

In the second section of the present article we give a simple proof of a theorem (Theorem 1) which includes Theorem Z from [1]. Our method is different from that used in [9] and [1]. In the third section we classify (following [9]) the points of multiplicity of T according to the dimension and codimension of $T x$ and obtain two theorems (Theorem 2, Theorem 3) using the same main idea as in the proof
of Theorem 1. It would be possible to prove Theorem 2 in a more precise form and obtain Theorem 1 as the special case ($n=1$) of this theorem. We do not proceed in this way since the proof of Theorem 2 is somewhat technical and the proof of Theorem 1 is quite simple. Following [9] we obtain in the fourth section from the results of the third section some theorems concerning singular boundary points of convex sets and normals at non-exposed points of convex sets which generalize some results of [9].

Finally note that no the orem of the present article is the best possible. For example, it is probable that in Theorem 1 it is possible to write " (c - c)-hypersurface" instead of "Lipschitz hypersurface". By ($c-c$)-hypersurface we mean a Lipschitz hypersurface for which the function from the definition is the difference of two Lipschitz convex functions (cf. [8]).

Unfortunately we are able to prove this conjecture in the case of two-dimensional space X only. The Theorem 4 and Theorem 5 can be improved by the method of [8]. These questions will be investigated in a subsequent article.
2. We shall use the following natural definition.

Definition. Let X be a Banach space. We shall say that $A \subset X$ is a Lipschitz surface of dimension n (of codimension n, respectively), if there exists a subspace C of X of codimension n (of dimension n, respectively) and a Lipschitz mapping $f: H \longrightarrow C$, where H is a topological complement of C, such that $A=\{h+f(h) ; h \in H\}$. We shall say that A is a

Lipschitz surface associated with C (with c, if $C=\operatorname{Lin}\{c\}$). Lipschitz surface of codimension 1 is termed Lipschitz hypersurface.

Theorem 1. Let X be a separable Banach space and $\left(c_{n}\right) \subset X$ a comple te sequence. Let $T: X \rightarrow X *$ be a monotone operator and B the set of all points at which T is multivalued. Then there exists a sequence of Lipschitz hypersurfaces $\left(H_{n k}\right)_{n, k=1}^{\infty}$ such that $H_{n k}$ is associated with c_{n} and $B \subset \underbrace{\infty}_{n, n=1} H_{n k}$.

Proof. For positive integers n, K and rationals $r<s$ let $B(n, K, r, s)$ be the set of all $x \in D(T)$ for which there exist $a(x) \in T x, b(x) \in T x$ such that $\left\langle c_{n}, a(s)\right\rangle\left\langle r,\left\langle c_{n}, b(x)\right\rangle\right\rangle$ $>s,\|a(x)\|<K$ and $\|b(x)\|<K$. Since $\left(c_{n}\right)$ is complete, obviously $B=U B(n, K, r, s)$. Let n, K, r, s be fixed and H be topological complement of $\operatorname{Lin}\left\{c_{n}\right\}$. Let

$$
z_{i} \in B(n, K, r, s), z_{i}=h_{i}+y_{i} c_{n}, h_{i} \in H, \quad i=1,2
$$

We can suppose without any loss of generality that $y_{2} \geq y_{1}$. From the monotonicity of T then

$$
\begin{aligned}
0 \leqslant\left\langle z_{2}-z_{1}, a\left(z_{2}\right)-\right. & \left.\left.b\left(z_{1}\right)\right)\right\rangle=\left\langle h_{2}-h_{1}, a\left(z_{2}\right)-b\left(z_{1}\right)\right\rangle+ \\
& +\left\langle\left(y_{2}-y_{1}\right) c_{n}, a\left(z_{2}\right)-b\left(z_{1}\right)\right\rangle .
\end{aligned}
$$

Therefore

$$
\left|y_{2}-y_{1}\right| \leqslant 2 K(s-r)^{-1}\left\|h_{2}-h_{1}\right\|
$$

Since for every Lipschitz function defined on a subset of a metric space there exists a Lipschitz extension on the whole space (see e.g. [5]), there exists a Lipschitz function f on H such that $B(n, K, r, s) \in\left\{f(h) c_{n}+h: h \in H\right\}$ and
thus $B(n, K, r, s)$ is contained in a Lipschitz hypersurface associated with c_{n}. Since the system of all $B(n, K, r, s)$ is countable, it is easy to finish the proof.

Note. It is easy to see that Theorem 1 includes Theorem 2 from [1].
3. If we write Banach space (Hilbert space) we mean real Banach space (Hilbert space). The open ball of the centre c and radius r is denoted by $B(c, r)$.

In the subsequent we shall use the following well-known facts concerning extensions of Lipschitz mappings.

Theorem F. Let X, Y be metric spaces, $A \subset X$ and $f: \mathbf{A} \rightarrow$ $\rightarrow Y$ a Lipschitz mapping. In the following cases there exists a Y-valued Lipschitz extension of f defined on X :
(i) $\mathbf{Y}=\mathrm{R}^{\mathrm{n}}$
(ii) X, Y are Hilbert spaces
(iii) $X=R$ and Y is a Banach space

Note. For (i) see e.g. Mc Shane [5], for (ii) see e.g. Minty [6]. The proof of (iii) is easy.

We shall need also the following simple lemmas which we state without a proof.

Lemma 1. Let X be a separable Banach space and DcX a countable dense subset of X. Let \mathscr{S} be the system of all n-dimensional subspaces of X which are generated by n vectors from D. For any $S \in \mathscr{S}$ denote by \mathbb{N}_{S} a countable dense subset of S^{*} and by \mathscr{L}_{S} the countable subset of $X * / S^{\perp}$ which corresponds to N_{S} in the natural isomorphism $S^{*} \cong x^{*} / S^{\perp}$. Put $\mathscr{E}=\left\{\mathscr{L}_{S}: S \in \mathscr{Y}\right\}$ and $\mathcal{V}=\left\{S^{\perp} ; S \in \mathscr{Y}\right\}$.

Then
(i) Any n-dimensional subspace $\mathrm{P} \subset \mathrm{X}^{*}$ has a topological complement $\nabla \in \mathcal{V}$.
(ii) If P, V are as in (i), cex* and $\varepsilon>0$, then there exists $t \in(c+P) \cap B(c, \varepsilon)$ such that $L=t+V \in \mathscr{L}$.

Lemma 2. Let X^{*} be a separable Banach space and $D \subset X^{*}$ a countable dense subset of X^{*}. Let V be the system of all n-dimensional subspaces of X^{*} which are generated by n vectors from D. Denote $\mathscr{L}=\{d+V ; d \in D, V \in V\}$. Then
(i) Any subspace $\mathrm{Pc} \mathrm{X}^{*}$ of codimension n has a topological complement $\nabla \in V$.
(ii) If P, V are as in (i), $c \in X^{*}$ and $\varepsilon>0$, then there exists $t \in(c+P) \cap B(c, \varepsilon)$ such that $L=t+V \in \mathscr{L}$.

Note. Lemma 2 holds for a general separa ble Banach space X^{*} but we shall use it for dual spaces and it is the reason for our notation.

Theorem 2. Let X be a separable Banach space and T : $: X \rightarrow X^{*}$ a monotone operator. For any positive integer n denote by B_{n} the set of all points x for which the convex cover of Tx is at least n-dimensional. Then B_{n} can be covered by countably many Lipschitz surfaces of codimension n.

Theorem 3. Let X be a Banach space with the separable dual space X^{*} and $T: X \rightarrow X^{*}$ a monotone operator. For any positive integer n denote by B_{n} the set of all points x for which the convex closure of $\mathbf{T x}$ contains a ball of codimension n (a relatively open ball in an affine manifold of codimension n). Then B_{n} has σ-finite n-dimensional Hausdorff measure and if X is a Hilbert space or $n=1$, then B_{n} can
be covered by countably many Lipschitz surfaces of dimension n.

Note. The part of Theorem 3 which concerns Hausdorff measure is the consequence of Theorem 3 from [9] in the case X is a Hilbert space.

Proof of Theorem 2 and Theorem 3. Since any monotone operator has a maximal monotone extension we can suppose in the proof of Theorem 2 (Theorem 3, respectively) that for $x \in B_{n}$ the set $T x$ contains a ball of dimension n (of codimension n, respectively). (Remind that if T is a maximal monotone operator then $T x$ is a convex closed set for any $x \in D(T)$ (cf. [2]).)

If we put in the subsequent proof $\propto=n(\propto=\infty-n$, respectively) we obtain the proof of Theorem 2 (Theorem 3, respectively). Instead of subspace of codimension n we shall write (∞ - n)-dimensional subspace. By Lemma we shall mean Lemma 1 if $\propto=\mathrm{n}$ and Lemma 2 if $\propto=\infty-\mathrm{n}$.

For any $x \in B_{n}$ choose $c_{x} \in T x$, a rational $r_{x}>0$ and an α-dimensional subspace P_{x} of X^{*} such that $B\left(c_{x}, r_{x}\right) \cap$ $n\left(c_{x}+P_{x}\right) \subset \mathrm{Tr}$. Choose further a rational X_{x} such that $\left\|c_{x}\right\| \leqslant M_{x}$. Let V and \mathscr{L} be the systems from Lemma. Choose by Lemma, (i), topological complement $\nabla_{x} \in V$ of P_{x}. Let π_{x} be the projection of X^{*} onto P_{x} parallel to V_{x} and q_{x} a rational such that $\left\|\pi_{x}\right\|<q_{x}$. Choose further by Lemma, (ii), $t_{x} \in X^{*}$ and $L_{x} \in \mathscr{L}$ corresponding to c_{x} and $\varepsilon_{x}=$ $=r_{x} / 2$.

Let $B(r, M, V, q, L)$ be the set of all points $x \in B_{n}$ for which $r_{x}=r, M_{x}=M, V_{x}=V, q_{x}=q, L_{x}=$ L. Obviously
$B_{n}=U B(r, M, V, q, L)$ and the family of the sets $B(r, M, V, q, L)$ is countable.

Let r, M, V, q, L be fixed. If we put $Z=\perp V, Z$ is $\propto-d i-$ mensional subspace of X. Denote by W a topological complement of Z.

Let now x_{1}, x_{2} be from $B(r, M, V, q, L), x_{1}=z_{1}+w_{1}, x_{2}=$ $=z_{2}+w_{2}, z_{1}, z_{2} \in Z, w_{1}, w_{2} \in w_{\text {. Put }} z=z_{2}-z_{1}$ and choose $h \in X^{*}$ such that $\|h\|=1$ and $\langle z, h\rangle>\|z\| / 2$. If $h=v+p$, $\nabla \in V, p \in P_{x_{2}}$, then $\left.\langle z, p\rangle=\langle z, h\rangle\right\rangle\|z\| / 2$ and $\|p\|<q$. Put $u=t_{x_{2}}-(r / 2 q) p$. Then we have $\left\|u-c_{x_{2}}\right\| \in\left\|c_{x_{2}}-t_{x_{2}}\right\|+$
$+(r / 2 q)\|p\|<r$ and therefore $u \in T x_{2}$. Hence from the monotonicity of T it follows that $0 \leqslant\left\langle x_{2}-x_{1}, u-t_{x_{1}}\right\rangle=$ $=\left\langle w_{2}-w_{1}, u-t_{x_{1}}\right\rangle+\left\langle z, u-t_{x_{1}}\right\rangle=\left\langle w_{2}-w_{1}, u-t_{x_{1}}\right\rangle+$ $+\left\langle z, t_{x_{2}}-t_{x_{1}}\right\rangle-(r / 2 q)\langle z, p\rangle$. Since $\left.t_{x_{2}}-t_{x_{1}} \in V,\langle z, p\rangle\right\rangle$ $>1 / 2\left\|z_{2}-z_{1}\right\|$ and $\left\|u-t_{x_{1}}\right\| \leq 2(M+r)$ we obtain

$$
\left\|z_{2}-z_{1}\right\| \leqslant \frac{8 q(M+r)}{r}\left\|w_{2}-w_{1}\right\| .
$$

Using well known facts concerning Hausdorff measure and Theorem F it is easy to finish the proof.

Theorem 3 can be further generalized in the following way.

Theorem 3^{*}. Let X be a Banach space and $Y c X *$ a separable closed weak* dense subspace of $X *$. Let $T: X \longrightarrow I$ be a monotone operator. For any positive integer n denote by B_{n} the set of all points x for which the convex closure of Tx contains a ball of codimension n. Then B_{n} has σ-finite n-dimensional Hausdorff measure and if X is a Hilbert space
or $n=1$, then B_{n} can be covered by countably many Lipschitz surfaces of dimension n.

Proof. It is sufficient to write Y instead of X^{*} in the proof of Theorem 3. The crucial point is the existence of h . From this reas on we suppose that Y is weak* dense in X* 。
4. Zarantonello in [9] obtained some theorems concerning singular elements of convex sets as corollaries of his theorems on monotone operators. Since our theorems generalize and make Zarantonello's results on monotone operators more precise, we obtain by the same method as in [9] some new theorems concerning singular elements of convex sets.

We use the terminology of [9]:
Definition. Let K be a convex subset of a Banach space X and $x \in K$. We shall say that $y \in X^{*}$ is a normal of K at x if $\langle x, y\rangle=\sup _{t}\langle t, y\rangle$. The set $V_{K} x$ of all normals of K at x is called the vertex of K at x. If $y \in X^{*}$ we mean by the face perpendicular to y the set $F_{K} y$ of all $x \in K$ for which y belongs to the vertex of K at x.

It is the well known easy fact that the operators $y \rightarrow F_{K}$ (the support mapping of K) and $x \rightarrow \nabla_{K} x$ are monotone. Therefor our Theorem 2, Theorem 3, Theorem 3* yield immediately the following theorems.

Theorem 4. Let X be a separable Banach space and $K \subset X$ a convex set. Then the set of points $x \in K$ having a vertex containing a ball of dimension n can be covered by countably many Lipschitz surfaces of codimension n_{0}

Proof. It is sufficient to use Theorem 2 for $T x=V_{K}$.
Theorem 5. Let X be a Banach space with the separable dual space X^{*}, and K a convex subset of X. Then the set of normals to K at faces which are at least n-dimensional can be covered by countably many Lipschitz surfaces of codimension n.

Proof. It is sufficient to use Theorem 2 for $T y=F_{K} \mathbf{y}$.
Theorem 6. Let X be a Banach space with the separable dual space X^{*} and K a convex subset of X. Then the set of points $x \in K$ having a vertex containing a ball of codimension n has σ-finite n-dimensional Hausdorff measure and if X is a Hilbert space or $n=1$ then this set can be covered by countably many Lipschitz surfaces of dimension n.

Proof. It is sufficient to use Theorem 3 for $T x=V_{K} \mathbf{x}^{\text {. }}$
Theorem 7. Let X be separable Banach space and K a convex subset of X. Then the set of normals to K at faces which contain a ball of codimension n has σ-finite n-dimensional Hausdorff measure and if X is a Hilbert space then this set can be covered by countably many Lipschitz surfaces of dimension n.

Proof. It is sufficient to use Theorem 3 for $T x=V_{K}$. Here we use that X is weak*dense in $X_{*}^{* *}$

References

[1] N. ARONSZAJN: Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57(1976), 147-190.
[2] F.E. BROWDER: Multivalued monotone nonlinear mappings
and duality mapping in Banach spaces, Trans. Amer. Math. Soc. 118(1965), 338-351.
[3] M. FABIKN: On singlevaluedness and (strong) upper semicontinuity of maximal monotone mappings, Comment. Math. Univ. Carolinae 18(1977), 19-39.
[4] P.S. KENDEROV: Monotone operators in Asplund spaces, preprint.
[5] E.J.Mc SHANE: Extension of range of functions, Bull. Amer. Math. Soc. 40(1934), 837-842.
[6] G.J. MINTY: On the extension of Lipschitz, LipschitzH8lder continuous and monotone functions, Bull. Amer. Math. Soc. 76(1970), 334-339.
[7] R. ROBERT: Une généralisation aux operateurs monotones des théoremes de différentiabilité d'Asplund, Lecture Notes in Economics and Math. Systems vol. 102, Springer-Verlag 1974, 168-178.
[8] L. ZAJICEK: On the differentiation of convex functions in finite and infinite dimensional spaces, to appear in Czechoslovak Math. J.
[9] E.H. ZARANTONELLO: Dense single-valuedness of monotone operators, Israel J. Math. 15(1973), 158-166.

Matematicko-fyzikalnf fakulta
Universita Karlova,
Sokolovská 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 27.10. 1977)

