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C0MMENTATI0N1S MATHEMATICAB UNI1T11SITAT1S CA10LINA1 

19,1 (1978) 

ON TH1 POINTS OP MULTIPLICITY OP MONOTONE OPERATORS 

Luděk ZAJÍČEK, Praha 

Abstract: We prove by a simple method that the set 
of points' at which a monotone operator defined in a separ
able real Banach space is multivalued can be covered by 
countably many of Lipschitz hypersurfaces• By the same met
hod we obtain several related results. Applications to sin
gular boundary points of convex sets and normals in non-ex
posed points of convex sets are given. Our results improve 
theorems of H. Zarantonello and N. Aronezajn. 
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1. Introduction. Let X be a real Banach space. If we 

say that T:X—• X * is a monotone operator, then we mean 

that T is (possibly) multivalued, the domain D(T) is a non-

void subset of X and T is monotone (if y,€ Tx-j, y 2 c T x 2 tJien 

< %2 " x\*%2 ~ y l ^ 2 ° ^# z® r a i r t o n #H° J-9-1 has proved that 

if X is separable then the points of multiplicity of T form 

a set of the first category. In the connection with this 

theorem the following questions arise: 

A. For which nonseparable spaces X does the statement 

of the Zarantonello's theorem hold? 
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B. For which spaces X any monotone operator T:X —* 

— P X* is singlevalued and upper semicontinuous in any 

point except a set of the first category? 

C. If X is separable, is it possible to say some

thing more on the smallness of the set of points of multi

plicity of T ? 

For the theorems which concern the questions 4 and B 

we refer to [73 and [33 where also connections with the 

differentiation of convex functions are shown and further 

references are given. Note that in [43 it is proved that 

the spaces from the question B are precisely Asplund spaces* 

The present article concerns the question C. 

Aronszajn ([13, p. 157, Theorem Z) stated that by the Za-

rantello's method it is possible to prove that the points 

of multiplicity of T in the separable case are contained in 

a set from the class CC°. The class 01° of small sets was 

introduced in [1] in the connection with the study of diffe

rentials of convex functions and their generalizations. Any 

set from CC° is of the first category, but there exist 

sets of the first category which are contained in no set be

longing to (Jl° * 

In the second section of the present article we give 

a simple proof of a theorem (Theorem 1) which includes Theo

rem Z from til. Our method is different from that used in 

[93 and [13. In the third section we classify (following 

[93) the points of multiplicity of T according to the di

mension and eodimeneion of Tx and obtain two theorems (Theo

rem 2, Theorem 3) using the same main idea as in the proof 
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of Theorem 1. It would be possible to prove Theorem 2 in a 

more precise form and obtain Theorem 1 as the special case 

(n - 1) of this theorem. We do not proceed in this way sin

ce the proof of Theorem 2 is somewhat technical and the 

proof of Theorem 1 is quite simple. Following [93 we obtain 

in the fourth section from the results of the third section 

some theorems concerning singular boundary points of convex 

sets and normals at non-exposed points of convex sets which 

generalize some results of [93. 

Finally note that no theorem of the present article is 

the best possible. For example, it is probable that in Theo

rem 1 it is possible to write w (c - c)-hypersurfaceH instead 

of "Lipschitz hypersurface". By (c - c)-hypersurface we mean 

a Lipschitz hypersurface for which the function f from the 

definition is the difference of two Lipschitz convex func

tions (cf. [83). 

Unfortunately we are able to prove this conjecture in 

the case of two-dimensional space X only. The Theorem 4 and 

Theorem 5 can be improved by the method of £83. These ques

tions will be investigated in a subsequent article. 

2. We shall use the following natural definition. 

Definition. Let X be a Banach space. We shall say that 

Ac X is a Lipschitz surface of dimension n (of eodimension 

n, respectively), if there exists a subspace C of X of co-

dimension n (of dimension nf respectively) and a Lipschitz 

mapping f:H—• Cf where H is a topological complement of C, 

such that A = 4 h • f(h); h€ H} * We shall say that A is & 

181 



Lipschitz surface associated with G (with c, if C • Linicf )• 

Lipsehitz surface of codimension 1 is termed Lipschitz hy-

persurface. 

Theorem 1. Let X be a separable Banach space and 

(e ) c X a complete sequence. Let T:X—> X* be a monotone 

operator and B the set of all points at which T is multiva

lued. Then there exists a sequence of Lipschitz hypersurfa-

ces (Hwlr}f v_-, such that H^v is associated with c„ and . nic nfJoi nx n 

Proof. For positive integers nf K and rationals T«C S 

let B(nfKfr,s) be the set of all xcD(T) for which there ex

ist a(x)«Txf b(x)cTx such that <enla(s)>< rf <enfb(x)>> 

>s f lla(x)ll < K and 0 b(x) II < K. Since (c ) is complete, ob

viously B = U B(nfKfrfs). Let nfK,r,s be fixed and H be a 

topological complement of Lin 4e } . Let 

zic B(n,Kfrfs)f z% = hi • y ^ , h±€. Hf i » lf2. 

We can suppose without any loss of generality that y22: y-j • 

From the mono tonicity of T then 

0 £ < z2 - z1$ a(z2) - to(z],)) > » < h2 - h1§ a(z2) - b(z.,)> * 

+ <(y2 - V^cn* a^ z2^ " b ^ z l ^ * 

Therefore 

|y2 - y1l £ 2K (s - r T
1 II h 2 - 1̂ 11 . 

Since for every Lipschitz function defined on a subset of 

a metric space there exists a Lipschitz extension on the 

whole space (see e.g. t5J)f there exists a Lipschitz func

tion f on H such that B(»fKfrfs)c4f(h)en + h: he Hi and 
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thus B(nfKfrfs) is contained in a Lipsehitz hypersurface 

associated with c . Since the system of all B(nfK,rfs) is 

countable, it is easy to finish the proof. 

Note* It is easy to see that Theorem 1 includes Theo

rem Z from C U . 

3. If we write Banach space (Hilbert space) we mean 

real Banach space (Hilbert space). The open ball of the 

centre c and radius r is denoted by B(cfr). 

In the subsequent we shall use the following well-known 

facts concerning extensions of Lipsehitz mappings. 

Theorem 1. Let Xf X be metric spaces, Ac X and f; 4-*-

—> I a Lipsehitz mapping. In the following cases there ex

ists m Y-valued Lipsehitz extension of f defined on Xs 

(i) I « .# 

(ii) Xf I are Hilbert spaces 

(iii) X s H and f is a Banach space 

Note. For (i) see e.g. Mc Shane £53, for (ii) see e.g. 

Minty £63. The proof of (iii) is easy. 

We shall need also the following simple lemmas which 

we state without a proof. 

Lemma 1. Let X be a separable Banach space and B c X 

a countable dense subset of X. Let if be the system of all 

n-dimensional subspaces of X which are generated by n vec

tors from D. For any S c if denote by Kg a countable dense 

subset of S* and by Stg the countable subset of X * / S x 

which corresponds to N« in the natural isomorphism 

S^^X^/gX # Put * « < X q 5 S c if} and r =1 S
X|S 6tf} . 

- 183 -



Then 

(i) Any n-dimeneional subspace VcX* has a topologi

cal complement ? i f # 

(ii) If Pf ¥ are as in (i), c eX* and e > 0, then 

there exists t c (c + P) fi B(c, e) such that L = t * V i X • 

Lemma 2. Let X* be a separable Banach space and Dc X* 

a countable dense subset of X* • Let V be the system of all 

n-dimensional subspaces of X*which are generated by n vec

tors from D. Denote S£ * € d •*• ¥§ deDf ¥ e f f . Then 

(i) Any subspace PcX* of codimension n has a topolo

gical complement V e V * 

(ii) If Pf V are as in (i)f cil* and e > 0, then 

there exists tc (c • P)n B(cf e ) such that L » t + ¥ e X . 

Note. Lemma 2 holds for a general separata* Banach spa

ce X* but we shall use it for dual spaces and it is the rea

son for our notation. 

Theorem 2. Let X be a separable Banach space and T: 

:X—• X4* a monotone operator. For any positive integer n 

denote by B the set of all points x for which the convex co

ver of Tx is at least n-dimensional. Then B can be covered 

by countably many Lipschitz surfaces of codimension n. 

Theorem 3. Let X1 be a Banach space with the separable 

dual space X* and T:X—.•'x* a monotone operator. For any 

positive integer n denote by Bn the set of all points x for 

which the convex closure of Tx contains a ball of codimen

sion n (a relatively open ball in an affine manifold of co-

dimension n). Then B has 6> -finite n-dimensional Hausdorff 

measure and if X is a Hilbert space or n = 1, then B can 
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be covered by eountably many Lipsehitz surfaces ©f dimen

sion n. 

Note. The part of Theorem 3 which concerns Hausdorff 

measure is the consequence of Theorem 3 from 192 in the ca

se X is a Hilbert space. 

Proof of Theorem 2 and Theorem 3. Since any monotone 

operator has a maximal monotone extension we can suppose in 

the proof of Theorem 2 (Theorem 3» respectively) that for 

xe 15 the set Tx contains a ball of dimension n (of eodimen-n 

sion n, respective^ ). (Remind that if T is a maximal mono

tone operator then Tx is a convex closed set for any xeD(f) 

(ef. £2J).) 

If we put in the subsequent proof cc = n { cc * & - n9 

respectively) we obtain the proof of Theorem 2 (Theorem 3, 

respectively). Instead of subspace of codimension n we shall 

write (oo - n)-dimtnsional subspace. % Lemma we shall mean 

Lemma 1 if ec = n and Lemma 2 if et « ao - n. 

For any xe B ehoose e cTx, a rational r x> 0 and am 

dC-diaensional subspace P of X* such that B(c ,r ) A 

A (e + -?x)c Tx. Choose further a rational 1L such that 

I c z I £ Mx. Let 1t and •£ be the systems from Lemma. Choose 

by Lemma, (i), a topological complement ¥ c V of P . Let 

3TX be the projection of X* onto Px parallel to ? x and qx 

a rational such that ll or x || <. q # Choose further by Lemma, 

(ii), t__c X* and L c tf corresponding to e and tw » 
. * • • * • x x 

- V2-
Let B(rfMfVfq,L) be the set of all points x€B for 

which rx = r, Mx « M, Vx « V, qx « qf 1^ * L. Obviously 
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B m U B(r f M f ? f q f L) and the family of t he s e t s B ( r f l f ? , q f L ) 

i s couBtable« 

Let r f M , ? f q f L be f i x e d . I f we put Z a s 1 ? , Z i s ee - d i 

mensional subspace of X. Denote by W a t opo log i ca l comple

ment of Z. 

Lst now x^f %2 beifcoii B( r f M f ? f q f L) f x^ * z 1 + w l f x 2 * 

* « 2 • w 2 , 2 l f z 2 « Zf w l f w 2 «W. Put z s z 2 - z^ and choose 

hcX** such t h a t i h It = 1 and < 2,h> > f z 1 / 2 . I f h * • • p f 

• € ? , p « P f then < z f p > s < z f h > > | 2 l / 2 and IpB -c q . Put 
x 2 

u * t _ - ( r / 2 q ) p . Then we have i u - e_ II - II c_ - t_ I • 
x 2 2 x 2 x 2 

• Cr/2q) | p i < r and t h e r e f o r e u « Tx 2 . Hence from the mono-

t o n i c i t y of T i t follows t h a t Q£ < x 2 - x l f u - t x > » 

- <w2 - w l f u - t_^> • < z f u - t ^ > - <w2 - w l f u - t X i > • 

•<z f t __ - t > - C r / 2 q ) < z , p > . Since t_ - t_ € ? f < z f p > > 

> l / 2 B z 2 - z x l and l u - t x II & 2(M + r ) we obta in 

H- 2 _ ^ i ^ BqP-g+.g? , W g _ W i , . 

Using well known facts concerning Hausdorff measure and Theo

rem 1 it is easy to finish the proof. 

Theorem 3 can be further generalized in the following 

way. 

Theorem 3* . Let X be a Banaeh space and XcX* a se

parable closed weak* dense subspace of X** # Let T;X—i* X be 

a monotone operator. For any positive integer n denote by 

B the set of all points x for which the convex closure of 

Tx contains a ball of c©dimension n. Then B has f -finite 

n-dimensional Hausdorff measure and if X is a Hilbert space 
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or n * lt then B can be covered by eountably many Lip-

schitz surfaces of dimension n. 

Proof. It is sufficient to write X instead of X* in 

the proof of Theorem 3. The crucial point is the existence 

of h. From this reason we suppose that X is weak* dense in 

X*. 

4. Zarantonell© in £91 obtained some theorems concern

ing singular elements of convex sets as corollaries of his 

theorems on monotone operators. Since our theorems generali

ze and make Zarantonello *s results on monotone operators mo

re precise, we obtain by the same method as in [91 some new 

theorems concerning singular elements of convex sets. 

We use the terminology of [91s 

Definition. Let K be a convex subset of a Banach space 

X and xc K. We shall say that ye X* is a normal of K at x 

if < xfy > » sup^<tfy> . !£he set ?rx of all normals of K at 

x is called the vertex of K at x. If y e X* wV mean by the 

face perpendicular to y the set FKy of all x e K for which y 

belongs to the vertex of K at x. 

It is the well known easy fact that the operators y —> fKy 

(the support mapping of K) and x—> V^x are monotone. !Ehere-

for our Theorem 2, Theorem 3, Theorem 3* yield immediate^ 

the following theorems. 

Theorem 4. Let X be a separable Banach space and KcX 

a convex set. Then the set of points x€K having a vertex 

containing a ball of dimension n can be covered by eountably 

many Lipschitz surfaces of codimension tu 
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Proof. It is sufficient to use Theorem 2 for Tx » ?Kx. 

Theorem 5. Let X be a Banach space with the separable 

dual space X* , and K a convex subset of X. Then the set of 

normals to K at faces which are at le ast n-dimensional can 

be covered by countably many Lipschitz surfaces of eodimen-

sion n. 

Proof. It is sufficient to use Theorem 2 for T$ = %y* 

Theorem 6. Let X be a Banach space with the separable 

dual space X* and K a convex subset of X# Then the set of 

points x€ K having a vertex containing a ball of codimension 

n has 0-finite n-diaensional Hausdorff measure and if X is 

a Hilbert space or n * 1 then this set can be covered by 

countabty many Lipschitz surfaces of dimension n. 

Proof. It is sufficient to use Theorem 3 for Tx * ^vx* 

Theorem 7. Let X be a separable Banach space and K a 

convex subset of X. Then the set of normals to K at faces 

which contain a ball of codimension n has 6f -finite n-dimen-

sional Hausdorff measure and if X is a Hilbert space then 

this set can be covered by countab̂ r many Lipschitz surfaces 

of dimension n. 

Proof. It is sufficient to use theorem 3 for Tx * V K X # 

Here we use ttet X is weak*dense in Xt* 
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