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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,4 (1978)

REMARK ON SURFACES IN o SATISFYING CERTAIN RELATIONS
BETWEEN COVARIANT DERIVATIVES OF THE MEAN AND GAUSS
CURVATURES

Karel SVOBODA, Brno

Abstract: We show under which conditions surfaces with
constant mean or Gauss curvature are, globally, a part

of a 2-dimensional sphere in E .
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This contribution gives several results concerning
the global characterization of the 2-dimensional sphere
among surfaces :'!.n E4, under the supposition that at least
one of the curvatures H and K is constant.

let M be a surface in E* and M its boundary. let
{U“j be an open covering of M such that in each domain
U, , there is a field of orthonormel frames {M;vl,vz,v3,v4}
with v,,v,e T(M), V3,74€ N(M) where T(M), N(M) denote the

tangent and narmal bundle of M, respectively. Then

(1) dMm = wlvl + (02\72,
dvy = @3v, *“’i‘% +atv,,
dv, = -w%vl +wgv3 +<og_v4,
dv3 = -a)ivl -w%vz +w§v4,
dv, = 'inl - @avy ~@avy ;



i_, ki ook d g, i
(2) dw” =@ Awiy qw) TejAawgprw) tw; =0

(i,§,k = 1,2,3,4),

Differentiating the last equation of (2) and applying the
Cartan’s lemma, we get the existence of real-valued func-
tions &;,b;,c.(i = I1,2) on each Uy such that

(3) wi alcol + blcoz, cog = blwl + cla)z,

u

1

4 - 1 2 4 1 2
@y T a0 b, Wy T by + cow”,
As always, denote

(ag + °1)2 + (ap *+ c2)2,

i

(4) H
- 2 2

K = ajcy - bl + a,c, - bz

the mean and Gauss curvature of M, respectively.

let F be a real function on M. According to [1], p. 16,
we define its covariant derivatives Fi’Fij = Fji (i,§ =

= 1,2) with respect to the given field of orthonormal fra-

mes over Ug by

1 2
(5) dF = Fiw™ + Fra®,

2 _ 1 2 2 . 1
- F,0 -Flla) +F12(A ’ dF2+F1aJ1—FZlCJ +

2
+ Fypw®.

The proof of the following theorem is based on the ma-
ximum principle of this form:

Let M be a surface in E* and AM its boundary. Let F be
a real-valued function on M and Fi’FiJ' (0,j = 1,2) its cova-

riant derivatives. Let FZ0O on M, F = O on M, P satisfy in

U the equation

o
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ay1F1y * 28 ,F 1 + appFyy + a)Fy + a)F, v aF = a

@
where a & 0, az0 and the quadratic form aijxlx‘] is posi-
tive definite. Then F = O on M.

Now, we are going to prove this

Theorem 1. Let M be a surface in E* ana 3 its boun-

dary. Let Hij’Kij (i,j, = 1,2) be covariant derivatives of
H, K, respectively. Let

(1) O M consist of umbilical points;

(ii) Hyy + Hyy - 4(Kj; + K55) 20 on M.
Then M is a part of a 2-dimensional sphere in B4,

Proof. Consider the function
- - - _ 2 _ 2 2 2
(6) £ =H- 4K = (a; - ¢)° + (a, c2) + 4b] + 4b;
which is non-negative on M and equals to zero at the umbi-
lical points (a; = c,, a, = ¢y, by =0, b, = 0) of M. From
(5) and (6) we have immediately

) £i5 = Hys - 4Kg5 (4,5 = 1,2)

and hence
fip + Top = Hyy + Hyp = 4(Kpy + Ky
Using (ii) and applying the maximum principle we obtain f =
=0 on M,
The following results are direct consequences of the

Theorem 1:

Corollary. Iet M be a surface in E4, dM its boundary.
Let

(i) ©OM consist of umbilical points;

and let be satisfied one of these conditions:

—_—— e S s e
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(i1) H = const , and Kj; + Ky,£0 on M;
(iii) K = const , and Hy, + Hy,Z2 O on M;
(iv) H = const , K = const on M.

Then M is a part of a 2-dimensional sphere in 54,

Next, we are going to prove a generalization of the

preceding Theorem 1.

Theorem 2. Let M be a surface in E* and OM its boun-

dary. let S be a positive definite symmetric guadratic ten-

sor field on M with components Sij (i,j = 1,2). Let
(i) &M consist of umbilical points;
(11) SpyHyy + 2810l + Spplfpp = 4814y + 255K +

+ 8,5K,,)=0 on M.

Then M is a part of a 2-dimensional sphere in 54

Proof. Because of (7), we have

S11T11 * 2812T12 * Sppfae = SppHyy + 28pHyp + Syl -

- 4(S1Kqy + 2510Kyp + SppK50)
and the assertion follows immediately by means of the maxi~
mum principle.

Remark. In what follows, we shall show that the result
of the Theorem 2 contains the most general condition express-
ed by means of the covariant derivatives of the functions H,
K, which enables to prove, using the maximum principle, that
the given surface is a part of a sphere in E4.

According to [3], we have

(8) f11 = 2(31 - cl)(A1 - Cl) + 2(32 - cz)(A2 - CZ) +

+ 8(byBy + bZBz) + 2(«,1 -71)2 + 2(,,52 'TZ)Z +
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22

11

12

22

K1

12

+8(p3+p3) - [k + 4ay b, - by8,)] k -

- 2[(a) - cydeg + (8 = cx)e, = 4(b2 + B2)) x;

= 2(a; - ¢))(By - D) + 2(a; - ¢5)(B, - D,) +

+ 8(byCy + byCy) + 2(ecy = 79) (B =) + 2(x, = 37p)e
(B =0Q) +8(B oy +P7x) + 4L(a) + cq)by +
+ (2, + )b, 1K,

= 2(a) - ¢)(Cy - By) + 2(ay ~ ¢,)(C,y - By) +

+ 8(1yDy + byDy) + 2B - 0P+ 2B, - )P+
+8(p2 +22) —Tx+ 4bpe, - edy) Tk +

+20(a; - cyla) + (a, - °2)’2 + 4(1’:1 + ba)J K;

= 2(ay + cq)(Ay + C) + 2(a2 +cy) (A, + Cy) +

+ 2(ocq +3r1 + 2(x, +3*2 + [(aq + cq)b, -

- (ay + cp)bjlk + 20 (ag + cyley + (ay + ), JK
= 2(a) + ¢1)(By + D)) + 2(a, + c3)(B, + Dy) +
+2(oy * (B +7) + 2(x, +)(f, +95),

= 2(ay + ¢1)(Cy + Ey) + 2(a, +c2)(c + E,) +
+2((31+d') +2(3, + %) -[(a1+c )b, -

- (ap + cx)by1k + 2 [(ag + cqlay + (8, + cy)a,] K;
= (cq4q - 2byBy + 2,C;) + (c A, - 2b,B, + a,C,) +
* 2wy -+ 2Ax, 7, -/32> + % (ab, = biayk +
+ [(ajeq - 262) + (anc, - 2b3) 1K,

= (eyBy - 2b5Cy + a;D;) + (c, By - 2b,C, + a,D,) +

+ (0] -By7) + (cr.za‘"2 R ) -
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- [(a1 + cl)b1 + (az + °2)bZJ K,

Kyp = (e1Cy = 20Dy + agFy) + (0Cp = 28,D; + 8pF,) +

2 2
2(3, 07 -~y +2AB, I -¥y) + %(I:z-lc2 - eby)k +

2 w2 .
[(alcl - Zbl) + (‘232 - sz)] k,

+

+

where

k = (al - cl)b2 - (a2 - cz)bl,
the functions e e« o, Ayyeee By (1= 1,2) being deter-
mined by the prolongation procedure of the system (3). For
being possible to use the maximum principle,we must be ab-
le to determine the functions Sij’ X340 Iij in such a way

that the equation

12712 * Saafaz = By * 2xpH 1, * Xyl

* 2(y13Kyy + 2y Kyp + ¥pKpp) * 0

would not contain Ay,...,E;. Inserting (8) into (9), we

(9) Sy1fyp *+ 28

obtain the system of equations
(8 + e)xyy + eq¥yy = (8 = ¢)Sy,
() + c9)x)p = Byyyq * €Y, = 2038y *+ (&g = ¢y) Sy,
(ay + eq)xyy + (8y + €)Xy, + 81¥yy = 4Dy¥qp * €)¥2p
= - (8 - cl)S11 + 8bS;, + (ay - °1)522’
(ay * e)x)p + agyyp = DYy = = (8 = ©1)8;5 *+ 251555,
(8 + e)xp + 83,5 = = (&) = €)5p55
(ap + cx)xpy + ey¥yy = (83 = )8y,
(8 + cp)xyp = byyy + Co¥qp = 2bp8y) + (ap = ¢p)Syy,
(8y + cp)xyq + (85 + Cp)Xpp + 8y = 4ba¥qp + €3y
= - (a; - c2)S

11 * 8081, * (ay = c3) Sy
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(ay * c)xyp + 8g¥1p = P¥pp = = (87 = ¢)8), + 2b,55,,,

(8, + c3)Xp, + 855 = = (85 = €5)8;55.

Hence

(y17 * 2897):(yqp + 2S),):(yy, + 28,,) = 1:0:1
so that

Yi1 = = 231t A s Vi T - 2815, ¥y T - 25,, +A
and

(a + e)xyy = (a) + ¢)Syy = ¢yd , (8, + ¢x)xyy =
= (ay + ¢5)8;; - ¢4,

(a7 * ey)xy, = () + ¢9)835 + Dy, (a; + cp)xy, =
= (ay + ¢,)8,, + b4,

(a + e9)x,, = (87 + ¢9)Sy; = ajd , (&, + cy)xy, =
= (ag + c5)8;, - s,

the fuhction A satisfying the conditions
(&1C2.— claz)a' =0 N
[(a;b, - byay) - (byc, - cb, ) = 0.

From the last two equatiocns it follows that these two cases
are possible:
1. A # 0. Then a,c, - cya, = 0, (aib, = bya;) =
- (b102 - °1b2) =0
which means that Mc:E3, see [2]. This case is not considered

in this contribution.

2. A

0. In this case

S S

X11 T S110 X2 T Syp0 Xpp = Sy,

= -28

Y11 T =2511,  ¥y2 120 Ya2 T =28y,
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and, according to (8), & = O. This yields our assertion.
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