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COMMENTATIONES MATHEMATICABE UNIVERSITATIS CAROLINAE

19,4 (1978)

ON HOMOTOPICAL BEQUIVAIKNCE OF TOLERAECE SPACES
Jaromir SI3KA, Preha

Abstract: It is shown that in the category of toleran-
ce spaces the homotopical equivalence can be described by in-
ner structure ef these spaces,

Key words: Hemotopical equivalence, telerance spaces.
AMS: 05C10

§ 1. Intreduction. The present paper considers the class
of finite symmetric graphs with loops - telerance spaces -
and their homotopy. The homotopy equivalence of telerance
spaces is defined similarly to that of topological spaces.

The interval I is for our purposes substituted by suitable

S

tolerance space In (see the definition 3.1) and continuous -

mappings by mappings preserving relations.

The principal result of this paper is a characterization
of the homotopical equivalence between two tolerance spaces
by their inner structure, i.e. without using homomorphisms.

~ Though the paper was stimulated by ideas comprised in
[ 1], the adopted terminology is slightly different from that
used in [1]. Bspecially instead of an N-space and an N-map
we are going to use terms a tolerance space and & homomorph-

ism, which are more common nowadays. (Seel 2].)
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§ 2. Tolerance spaces

2.1. Definition. A tolerance space (X,R) is a nen-
veid finite set X endowed with a refléxive symmetrical re-
latiem R. A homomerphism f:(X,R) —> (Y,S) is a mapping frem
X te Y such that (x,y)e R implies (f(x),f(y))e€ S. The iden-
tity hememerphism of & space X will be eften deneted by l:.

2.2, Conventions. i) If there is ne danger of confu-
sien we are going to speak about a space instead of a tele-
rance space and write simply X instead ef (X,R), ete..

ii) The elements of tolerance spaces will be frequent-
ly ealled peints,

iii) We will write at(x’R)x for the set {y;(x,y)e€ R$.
The subscript will be eften emitted.

iv) The fact that two spaces X, Y are isomorphic (i.e.,

that there are hememerphisms f, g such that fg = 1! and gf =
= 1 . . . ~
X) will be indieated by X =Y,

2.3. The categery of tolerance spaces and their heme~
moerphisms will be deneted by Tel,
The preduct (X,R)x (Y¥,S) in Tel is obvieusly obtained as
(X< Y,T) with T = {((x,u),(y,¥)); (x,y)€ R and (u,v)e si.

2.4. Further conventions. (X,R) together with a 1-1
hememorphism i:(X,R)—> (¥,S) is called a subspace of (Y,S)
if (i(X);(ix i)(R)) = (i(X); (i(X)x= i(X))n ).

The union eof (X,R) and (Y,S) is defined as (Xv Y, RvUS),

§ 3. Homotopy, contractible points and a center of a

32808
3.1. Definition. Let us denote by I_ the set €1,...,n}
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with the telerance relation R={(i,Jj);li - jl2 1}. Homemor-
phisms f,g:X—> Y are said te be hemotopical if there is an
neN and a hememorphism F :Xx I —> Y such that F (-,1) =

= f(-) and Fn(-,n) = g(-). The homotepy between £, g will be
deneted f~ g or Fn:f~ g if we want te stress the mapping
rn.

We will declare tole rance spaces X, Y as homotopically equi-
valent if there exist homomorphisms f:X—>Y, g:Y—> X such
that £fg ~ ly, gf ~ 1y. A homotopical equivalence between X,

Y will be indicated by X~ Y.

3.2. Remark. We immediately see that the relation "te
be hometopically equivalent" on tolerance spaces is indeed

an equivale nce,

3.3. Definition. A peint x€ X for which there exists
an element y€ X, y4x such that st xc sty is said to be cen-
traectible. Let x€ (X,R) be a centractible point. Then the
space (X ,R’) with X’ = X ~4{x%t and R" = RA(X'< X") is cal-
led a contracted subspace of (X,R). Fer every space X an nz 0
and a sequence of spaces {xﬁ ?=. can be assighed such that
X, = X, X; is & contracted subspace of X; , and X contains
ne contractible peints. Let us call !n centre of X and dene-
te it by K(X). The ¢X;}]_  will be called a centralising se-
quence. Each centralising sequence -(Xi} ?=° determines a se-
quence {xi} of contractible peints where x3 is contractible
in X; and X, .4 = X;N{x;1.

3.4. lemma. If u, v are two contractible points of a

space (Y,S) and if we denote Y, and Yv respectively the res-

pective contracted spaces then either the u is contractible
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in Iv and v in Iu’ or !u = !v° In the second case, if z is
centractible in T, it is centraetible in Y, as well,

Proof. By the definitien ef a contractible point we
have peints w,z e (Y¥,S) such that wau, £¢v, st uest w and
st vcst z. We have the follewing possibilities: i) w = &,
ii) w =v and u%z, iii) wivendu =12, iv) w = v and
u =z,

ad i) It is ebvious that the peints v and u are ecent-
ractible peints ef the spaces X, and !v respectively.

ad ii) w = v implies st v = st w and consequently
st uc st z, st vc st z,.

ad iii) This is analogous te ii).

ad iv) If there is an aeY such that a4 u,v then st uc
c st a iff st vcst a. Let such an element a exist. Then
this case can be transfermed te the case i).

Thus, let us assume that such a point a does not exist. De-
fine a hemomerphism f:Y —s Y identically on Y, ,NAv}, and
put £(v) = u, It fellews fromw = v and u = gz that st u =
=8t v and £ is an isomerphism. On the other hand the iso-
morphism between Y,and Y yields styu = styv.

It remains to be shown that atrzc sth implies styxcstyy.
But it is clear because the points u, v are either beth e-
lements st!z or none of them as follows from the relation

st!u = et!v and thus st!xc atxy.

Proposition. Each space X has a centre, and any two of
its centres are isomorphic.
Proof: The existence of K(X) is obvious.

Let (X,,R ) and (Xn:,Rn:) be two distinct centres of
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n

(X,R). Consider centralising sequences {(X;,R;)3j-q»

1
4 4 m
{X{,RY 2,

tractible peints. let us define a map from the sequence ixii

and the associated sequencesix;}, {x;} of con-

"te {i{;: A peint x; is being sent inte an x3 such that xé =

= Xy if sueh a peint xs exiats; if it does not, xg is cho-
sen te be a contraetible peint in the X, such that leaving
it out, a space isemorphic to Xi+1 is obtained. Using the
preceding lemma, we see that the map can be defined for eve-
ry i = 0,..., n -~ 1, Moreover it can be chosen 1-1 and onto.
Thus m = n.

We rearrange the sequences of omitt;d points for the points
included in both sequenees to be in the beginning of the
new sequences in the same order as in the original ones, The
ether peints ef the sequence {xi} put on the remaining pla-
ees in their eriginal mutual order. Denote the new sequence
by {y;}. We reset the remaining points of the {x{} so that
for j =k + 1,...,n - 1 on the j-th site is the point which
is the image of a ¥; in the formerly defined mapping. let
us denote the sequsnce so obtained by {y{i.

The sequences satisfy the following:

{¥;51=0,.00,n - 13 =4x;; i =0,...,n -1},

fy{; 1 =0,.00,n ~ 17 ={x{; 1 = 0,...,n - 1§,

{ygs 1 = 0,000,k =4yf; i =0,...,k3,

Mereover, there exist centralising sequences {(¥;,S, )}

n
i=o
and £(¥,S{)3{., of (X,R) such that the sequenceS of con-

tractible points associated with them are precisely {yii and
{y{}. The following holds for these centralising sequences:

(x,,s,) = (xp,%),(yx;,sr’l) = (X ,R) Bmnd (Y,,S,) = (1,5
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It is obvious frem the lemma and the performed constructien
that if (Yj,SJ-)G (Y.;’S.;) for j = ky.esyn - 1 then also
(¥3,,8541) & (¥349,83,1). This yields (¥,,5)& (¥7,S,) and
thus (X ,R )& (X ',R’).

3.5. If we define a relation H on the objects of the
category Tol by (X,Y)e H if K(X) & K(Y) then the preceding

proposition says that this relation is an equivale nce. Now
we can state the main theorem of this paper.

Theorem. The homotopical equivalence of tolerance spa-
ces coincides with the relation H.

The proof will be presented as a corollary of a sequence

of propositions which constitute the rest of this paper.

§ 4. Proof of the main theorem

4.1. Proposition. If Y is a contracted space of X, then
Y~ X

Proof. Let ¥ = X -{x}; let yeX be such that st xc
€ sty, y¥x. Let g:¥—> X be the inclusion and let £f:X—> Y
send the x to the y and leave the other points fixed. We claim
that these mappings satisfy i) fga ly, ii) gf ~ 1ye

ad i) This\is'clear for fg = 1ly.

ad ii) Define F :XxI,—> X putting F(-,1) = gf(-),
F(-,2) = lx(-). We must show F tp be a homomorphism or equi=-
valently that F(st(z,i))c st F((z,i)) for each z €X and i =
z and the inclusion holds. If

1,2. Let z% x. Then F(z,i)
z = X, i = 2 then F(st(x,2))
st F((x,2)). If z = x, i = 1 then F(st(x,1))cst.y =

i

({yjust x) =8t x =

"

st F((x,1)).

"

- 710 -



Corellary. All elements of a contractible sequence of

a space X are hemetopically equivalent.

4,2, Convention. i) For a homemorphism f:X —* X deno-
te by X'} the subspace of X spanned by the fixed points of the
homemerphism el (the i-th iteration of f).

ii) Denote by m(X) the least common multiple of all na-
tural numbers not exceeding a cardinal number of the space X.
Let us notice that for any homemorphism of a space X into it-

self and m = m(X) we have fm/f}l = lir{l.

4.3. Lemma. Let F,:f~g:(X,R)—> (X,R) be homomorphism.
Then for every (x,y)€ R alseo (fi(x),fi(y))c R.

Proof, The proef will be carried out by induction. For
i = 0 the statement is obvious. Suppose we have proved the
statement for i - 1; then (fi_l(x),gi'l(y))e R and hence
#H, gt ) =i le,n, Rt i), 2)e R

4.4. Propositien. If Fzzfrvg:(X,R)—-.» (X,R) are homoto-
pical and m(X) = m, then the subspace le is an element of a
contractible sequence of the subspace %u Xﬁ

Proof. For an xe€ f?\fgn we will find a ye X’: such that
v = &(x). If ze_f;uxlz and (x,z)e& R then either zG.XI;l or z e
(3 f}l In the first case, from (x,z) & Rwe obtain (g%(z),
g (x))eR. Thus, using the assumptions and the equality y =
= g%(x), we see that (z,y)e R. In the second case, (z,x)eR
implies (£%(z),g"(x))e R and hence again (z,y)e R. Thus,
st xcst y and the proof is completed.

4.5. Proposition. If F :ly~f:X—> X and m(X) = m, then
ff. is an element of a centralising sequence of X.

Proof. We are going to nrove the propositionty induc-~
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tien. If n = 1, the propesition is evidently true. Iet n>1.
Assume that the proposition is preved for all m«n - 1. Thus
we can find homomerphisms g and Fn-l seo that l‘n_lzlevg:x—-’
—> X and there is a Gpig~ f. According to the assumptien
and Proposition 4.4, 12 is an element of centralising sequen-
ces of the space X and ffnu !2. We also know that # is an e-
lement of a centralising sequence eof f‘gux’:. As X?.ul‘: is an
element of a centralising sequence of the space X we can con-
clude that x?i is also an element of a centralising sequence

of X, The proef is finished.

4,6. Proposition. Let X, Y be tolerance spaces and f:
:X~—» Y, g£:Y—> X homomorphisms. Then Xéf’-!‘ !%.g fer every
i>o.

Proof. We will show that f/xéf is an isomorphism bet~
ween x;f and'Y;‘. let xe X;f. Then f(x) = (fz)l(f(x))eY;g.
That the f/Xzf is 1-1 is an obvious consequence of the fact
that z = (gf) (z) = g(£fg) "1£(2) holds for each point from
ng'f. To show that the wmap is onto consider a point ye Y;;‘.
Then :f'/l(‘zf sends the point g(fg)i-l(y)e Xéf to the very peint

¥+ We see immediately that (f/Xéf)-l is a homomorphism, teo.

4.7. Proposition. If X and Y are hemotopically equiva-
lent then there ‘exist centralising sequences of them such
that there is an element of the centralising sequence ‘of the
space X which is isomorphic to an element of the centralising
sequence of Y.

Proof. Assume m(X) = m,m(Y) = n. Then X':f = 11;?3!2.': =
= Yo

4.8, The proof of the main theorem: First let us assu-
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me the spaces X, Y to have isomorphic centres, i.e., (X,Y)e
€ H. Then using the cerellary of Proposition 4.1 we see
X~ Y. On the ether hand, let X~ Y. As a result of Propesi-
tien 4.7 we have K(X) & K(Y), i.e., (X,Y)eH.
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