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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 1 (1979) 

REMARKS ON THE NON SELF-ADJOINT SCHRODINGER OPERATOR 
D. FORTUNATO 

Abstract: Let h denote the closure in L (R n ) of the 
differential operator 

flu « -Au*q* uc C^(Rn) 
q 2 

where q is a complex valued function belonging to L£oc» If 
for a.e. x t R n q(x) belongs to the sector 0£arg £**#-
- Si £ t 10jt1)9 it is proved that h is the unique closed ex
tension whose spectrum is contained in the above sector. Mo
reover conditions which are necessary and sufficient for the 
compactness of the resolvent of h, are obtained. 

Key words: Compact resolvent, numerical range, m-secto-
rial operator. 

AMS: 35J10 

Introduction. It is well known that non-self ad joint 

SchrSdinger operators arise in quantum mechanical problems 

with energy dissipation. 

Spectral properties of such operators have been studied 

by many authors (cf. e.g. C 3,6,8,93). 

In this paper we study some properties of the operator h 

Lned by 

defined by 

obtained by closure in L (JR. ) of the differential operator H 

Hu « - A u+q(x)u ufeC^dK11) 

where q is a complex valued function belonging to L£oc(R )• 

This research was supported by the O.N.A.F.A. of C.N.R. 

- 79 



If for a.e. x « Km q(x) belongs to a sector S (of the 

eoaplex plane) defined by 0* arf £* ur - cT (with cTelO, JT3 ), 

it cam ba proTed (cf. th. 2.2) that h is the unique closed 

extension of H whose spectrua cl(h) is contained in S. More

over conditions which are necessary and sufficient for the 

compactness of the resolvent.of h, are obtained (cf. th. 2.3). 

Analogous results have been obtained in f 3,63 for the one-di-

aensional SchrOdinfer operator. 

Our study is mainly based on some well known results of 

the theory of the sectorial operators in Hilbert spaces (cf. 

e.f. [4,10,113). 

1. Some preliminaries. In this section we denote by S 

a separable Hilbert space with scalar product ( • I• )--» and 

norm ft • 1 s; if T is a linear operator in S, D(T) denotes 

the domain and R(T) the range. €>(T) denotes the spectrua of T. 

4(T) will be called discrete if it consists entirely of iso

lated eigenvalues of finite multiplicity. If T is closable, 

T denotes its closure. 

If T is densely defined in B.T* denotes the adjoint of 

T. 

The numerical range H(T) of T is the set of all complex 

numbers (Tulu)-g where u changes over all u € D(T) with 

I uP m * 1. 
It is well known that the spectrum £(T) of T is not con

tained, in general, in H(T). However the following result 

holds (cf. e.g. th. 3.2 pf. 268 of U l and eh. XIV of [113). 

Theorem 1.1 - Let T be a densely defined closable ope

rator in I and suppose tha^ H(TJ is not a strip of a line. 
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Then for each £ e C \ N(T) T-£ I has closed range, dim Ker(T-

~£ x^ s° 1251 codim R(¥-$ I) is constant for ^eCVN(T). More-
A _, A 

over there exists a closed extension T of T such that <T(T) c 

c r r f j . 
Now it is easily verified that if T satisfies the assum-

A 

ptions of theorem 1.1f a closed extension T of T satisfying 

the property 

(1.2) 6*(T)c N(T) 
A 

is maximal (in the sense that T has no proper extension satis-
A mm 

tying (1.2)). Then such extension T is unique if the closure T 

of T satisfies (1.2). Therefore an interesting class of clos-

able operator is the following one: 

Definition 1.2 - A densely defined, closable operator 

T is called regular iff $(T) c NTf). 

Let us observe that if T is symmetric (i.e. T is densely 

defined and Tc T* ), T is regular if and only if T is essen

tially self-adjoint. 

If T is a positive definite (i.e. (Tu)u)E--'0 v
/ucD(T))> 

1/2 self-adjoint operator in E,T ' denotes its square root. Let 
us recall the following well known results (cf. e.g. C 1,103). 

Theorem 1.3 - Let T be a positive definite, self-ad

joint operator in E, then the following statements are equiva

lent: 

a) T has compact resolvent. 
1 /2 

b) Tx/ has compact resolvent. 
°) The spectrum 6*(T) is discrete. 

Theorem 1.4 - Let a:D(a)xD(a) — • € (D(a) dense in E) 

be a seaquilinear. symmetric form. Then if a is closed and 

bounded from below, there exists a self-adjoint operator A 
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(ffriedriche extenaion) with domain 

D(A) =-vxe D(a) [ 3 y^B such that a (x,z)* (y|z) 1 V u D ( « ) j 

and defined by setting Ax=-y fer xt D(A). A and a have the same 

lower bound; if a ia poeitive (i.e. a(u,u)2 0 V u gD(a)). we 

have 

D(A1/2) « D(a) and a(u,v)»(A1/2u|A1/2v)E Vu,v6 D(a) 

It ia eaay to prove the following 

Theorem 1,5 - If T ia a closed operator in E with 

tf(T) 4 € then the following atatementa are equivalent: 

a) T haa compact resolvent. 

b) D(T) equipped with the graph norm ia compactly embedded in 

E. 

Proof. a)*-»b) Let «un)t?cD(T) t^-* 0 weakly in D(T) 

equipped withg*aph norm. Then it ia eaaily aeen that if 

A c C^e*(T), (T-ADUjj-^O weakly in Ej ao, by virtue of a), 

we deduce that v^—*• 0 in E. 

b) •**-> a) Let -IvnJc E vn—*> 0 weakly in E; if A£o*(T), 

we aet u^ « (T- A D ^ v )$ then, by the continuity of (T-A.I)"1, 

we deduce that v^—* 0 weakly in E and ao u^—.• 0 weakly in 

D(T) equipped with the graph norm* 

Therefore, by virtue of b), we deduce that u^— .• 0 in £• 

Let il be an open subset of K n . We shall use the fol

lowing functional spaces: 

- I?(SI) denotes the apace of (equivalence classes of) func

tions on il which are (Lebesgue) measurable and satisfy 

r ( f|u(x)l*dx)1/p< • <x> for p €Cl,+ ao C 
W O , P - \ * 

I sup esa|u(x)l< + oo for p » + oo 
KC-0. 
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equipped with the norm /I • B n „• We shall set 

<UK>0 * J *<*>^*M*f t M I 0 * <<«1«) 0^
1 / 2 "*u"o,2» 

moreover we set iP « I .P (R a ) . 

- If m is a positive integer, W^Jl ) is the Sobolev space of 

the functions ue L (il) such that D^ufcL (il) for 1 <x I £ m 

and equipped with the norm 

We shall set W* * W ^ R 1 1 ) . 

- * ? o c denotes the project ive l imi t of the spaces ^ ( . Q Q ) 

(J2 0 open and bounded) with respect to the r e s t r i c t i o n map

pings \ i 6 l J 0 C M u j a C W ^ J Q Q ) . 

- I f tju i s a pos i t i ve function on B\ n belonging to -^Lct we 
© n 

denote by Tl the completion of C^dR ) with respect to 

the norm 

I U I U • * J ^ ( | u ( x ) l 2 p ( x ) + igrad u ( x ) l 2 ) d x ? . 

2 - -Che r e s u l t s . Let q be a complex valued function on 
» 2 

JR. belonging to L, . Let us now consider the operator H in 

L2 with domain D(H) « C*>(Bln) and defined by 

Hu * - A u + qu V uc B(H). 

It is easily verified that the adjoint H* of H is dense

ly defined, then H is closable; let us denote by h its closu

re (i.e. h = H * * ) . 

In what follows we shall find conditions (on q) which are 

sufficient to guarantee that H is regular (cf. def. 1.2). Mo-
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reover conditions which are necessary and sufficient for the 

compactness of the resolvent ef h, will be obtained. 

Let us set 

*conn> e "fu c w | u has compact support} 

and prove the following 

Lemma 2.1 - Let us assume that 

(2.1) q € I^oc with r * max<2,n/2> if n+ 4 and r> 2 if n • 4. 

Then Wr^^^ is contained in D(h), and 

VuelL^.rhu * - A u+qu (in the sense ef distributions), comp 

Proof. Let u e *?«„,„• Then there exists a ball B, center-comp ' 

ed at the origin, such that supp ucB. It is easy to prove 

(if the radius of B is sufficiently large) that there exists 

a sequence <un1r c C0
<w(JR.n) with supp i^cB for each n c H , and 

such that 

(2.2) u n—• u (for n—KX>) in W2. 

By applying Holder inequality and Sobolev embedding theo

rems, i t is not d i f f icul t to obtain 

(2.3) J Iqdi^-oJ^dx - J" Iql 2 lu_-ul2dx*|lql l 2 
JR« n -в L

f
(B) 

- u R
2 é 
L

в
(B) 

2 . __ йг 
1
 L

r
(B) ^ ¥*( (B) 

+ oo if n<4 

where s * J 2r/(r-2) if n»4 and c^ is a positive constant. 

2n/(n-4) if n> 4 

Then from (2.2) and (2.3) we deduce that 
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(--•4) qti .-—> qu (for n —* oo ) in L . 

Moreover from (2.2) ,(2.4) we deduce that 

- A.un + qu.̂ -—> - A u + qu (for n—> oo ) in L2. 

Then we conclude that u£D(h) and hu = - A u+qu. 

Q.E.D. 

Theorem 2.2 - Let us assume that q satisfies (2.1) Mo-

reover assume that q satisfies the following property (q sec

torial) : 

P) for a.c. xcft 0£arg q(x) £ r - cT , of C 3 OforJ 

then H is regular. 

Proof. Let us initially observe that N(H) is contained 

in the sector S of the complex plane defined by 

O&arg £ & trf-d* . 

Then by virtue of the first part of theorem 1.1, it will 

be sufficient to prove that there exists [ e C \ S such that 

R(h- $ I) = L2. 

Let £ * <C \ S with Ref f Im £ < 0 and consider 

to 6 R(h- \ ) * ~ (the orthogonal complement of R(h- $ I)). We 

shall prove that <tf * 0. 

Obviously 

Vc, e cftR-j, f « 2 ^ dx - t e. (5-J>» dx 
IK " 

and thus 

A«o a (q-^)c*> (in the sense of distributions). 

Then, by (2.1) and by well known regularity theorems, 

it can be deduced that cd belongs to ̂ o c-
 In the following 

we shall adapt to our case some tricks used by F. Browder in 

t2l. 
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Let us consider %£(f%(Rn) with 

r i i f l x U i 
0 £ * ( x ) £ l V x e Rn and »(x) » 4 v ^ I 0 i f I x I g 2 

and set AJ, (x) « %i\x). 

Then, by lemma 2.1, ifco € D(h*-£I) and 

0 i - J l ) & 4 « ) • -A(*£«> * (q- $ Hi^fiO 

therefore, remembering that o) e* R(h- f I) - we obtain 

(2.5) K-ZK^ci) + ( q - J ) ( v . « > l ^ ; ^ > . > * 

* l ( -A( .^«a )+(q-p(.^2-<» ) l«) e+(-A(^ e»vJ)l^6>)0 + 

+ U( .- ,2 •>).«>).. - I ((h-JIH-f,2 6>) le») 0 + (-A(-m»)|»;e.«»)#+ 

+ (A(\2 .tM)l«a)0I - l (-A(-^.«)l 'xv e .6»o + (^(x,2 . t i )) |«y) e | . 

On the other hand, i f l > n > 0 , we have 

(2.6) t (-A(-^-«>) + (q- | ) ( \ f -«) l«5^. .«» 0 l » 

- I / Jfrad(«t.t.<fc>)l2dx + J „k(Q(x)- f )l%g (x)o> (x)|2dx I r 

+ fR(Iv llm(q(x)- J )llj- ,% .«l2dx^ . i- t . J|^lcnd(-|v.e»)|-d.« + 

+ HJ B e ( q ( x ) - p l - c t . . y | 2 d x - - i X | B.(q(x)- J )|-|.->t.»|2dx + 

+ /a%..ta(q(.t)-p|-l«^.«».2dx, 

where .tt+-. ix e fcnllte(q(x)-$ )> 0>, Jl_ « .R.B \ .il+ . 

Now, remembering that q(x)-{ l i e s in the sector S for 

a .e . x« K.n, we can choose tj< and 7- > 0 so snail that 

(2.7) | X I I«(q(x)-J)M-^&>l2dxiC*3.+y) X-.lBe(qlx) -

-$ ) . - . * ; . « . 2dx. 
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Then from (2.6) , (2.7) we deduce that 

(2.8) I <-A <*-*>>+<q- £ )<%^<y) I \;<i)\ t 

z \{ n f l f rad(* .*>)l2dx+ fj f Re<q<x>-£ M*r <y.2dx + 

+ r J | R e ( q < x ) - p i d ^ c o | 2 d x + | J*^ llm<q<x)- p M ^ . « l 2 t a f e 

2 c 1 ^ f |«rad<% -a>)l 2+lq<x)- £!• k-o>ladx{ > c2 I ^ . Q ! ^ 

where c,f c2 are positive constants. 

On the other hand it can be easily verified that 

\ ' '• '" -e ê (2.9) K Д ( .C-a>)l cч> ) - (Д (ҡ.й>)lxo)л\ * 

4, IR""" " " ' 1 . - *• *•"".$, 

then from (2.5),(2.8),<2.9) we deduce that 

(2ao) I s l ? / ^ 2 l ^ , i ' k , | i + x * ! ^ 1&,,% 

+ ali?-£rsVte,B*-",lv'"1-' 
On the other hand we have 

(2.ii) «v- . i f* iv» | ! + ^ ( "l iJ- - | J + , , v^ , 5-
- ^ i -}£• i.. 8 xe^-ti0),K-»2 + * « - g j - ii0

2 + 

where c^ « suplgrad j£ <x)l. 

Moreover it is easy to see that 

(2.12) l * e ^ ( e 2 l * l { • • < I* ||| • ̂ «-|f!L x || 2)) 

where c. i s a pos i t ive constant. 

Let us set 
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l 1 -c 4 (e z | | «» l !2 + ei«, |*), i 2 » 6 c 4 . f l ^ ^ l j 

Then from (2.10),(2.11), (2.12) we have 

. f 3 ( i « i ; « i % - £ r i ; » 

From which we obtain 

i 1 + ec3n I » I ; & I V « » I ; + |ci-g*-« i;* 

Then we deduce, if e is sufficiently small, that 

t i o > i ; « e 5 i v » i ; 

where c5 is a positive constant. 

Then 

e / ^ l « (x)l2dx*c5%f |*>(x)
 2dx 

<l*M/e,} 

Letting e — • 0, we deduce that o> » 0# 

Let us now prove the following theorem 

Q.S.D. 

Theorem 2..1 - Let q satisfy (2.1) and the property p). 

Let us assume also that inf ess I q(x)I > 0. Then the follew-
iHf n 

i m statements are equivalent. 
o 2 

a) P is compactly embedded in L • 

b) a has compact resolvent. 

Proof. % theorem 2.2, H is regular then 6*(h) is contain-
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ed in the sector (of the complex p lane) S defined by 

0 * ar§ $£ gf - cT . 

Let us now prove that 

a ) ^ b) 

By the same arguments used in proving the inequality 

(2.8), we have: 

(2.13) V u £ C*( R n ) II hu II J • It u I! J * |(hu|u)0l g cx II ii I J 

where c,> o independent of u. 

Then, by a limit procedure, it is easily deduced that 

(2.13) holds for each ufcD(h). So we conclude that D(h), with 
m 

the graph norm, is continuously embedded into 17 . . Then, 
o 2 

if TT i is compactly embedded in L f h has compact resolvent 

by theorem 1.5. 

Let us now prove that 

b)—» a) 

Obviously there exists r#»e3 - JT/2, ffr/2 £such that the 

spectrum ^(e1" h) of the operator •*" h is contained in a sec

tor S' defined by I arg $ I 4 y -- 3f /2. Then e* h is m-sectori-

al C4, ch. V p.280J. 
KV* 

Let us now construct the operator BsRe e h, real part 

of the m-aectorial operator e* h C4,ch. VI p. 3363. To this 

end let us observe that the sesquilinear form 
a(ufv) » (e

il^hu|v)0 ufv€ D(h) 

is closable [ 4, Th.1.27 P.318J; let us set 

b(u,v) « ̂ a(u,v)+ a(v,u)f u,veD(a) • D(b) 

where a denotes the closure of a t 4 , c h . VlJ. 

Obviously b i s symmetric ( i . e . b(u,v)=- b ( v f u ) ) f c losed 
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[4, Th.1.31 p. 319] and positive (i.e. b(u,u)>0), then the

re exists a unique self-adjoint operator B (Friedrichs exten

sion) such that 

D(B)c D(b) and b(u,v) * (Bulv)0 Vu,vcD(B). 

B is called the real part of the operator e h. 

Now e h has compact resolvent, then, by a well known 

result T 4, Th.3.3 p. 337J, B has compact resolvent: therefore, 
i /2 

by theorem 1.3 and theorem 1.5, we deduce that D(Bi/ ), equip
ped with the scalar product 

(B1/2u B?-/2v)0+ (u|v)0= b(u,v)+(uW)0, u,v£D(b). 

2 is compactly embedded in L • 

On the other hand it is easily seen that we have 

Vu6C^(R n) b(u,uUc llul* 

where c>© independent of u. 

Then l"]0| is continuously embedded into D(b). Therefo-
9 2 

re we conclude that P, i is compactly embedded in L . 
Q.E.D. 

Remark 2.3 - Let us consider tp e I^QC with inf ess p(x)>o; 

then the embedding C , *-¥ L is compact if [1, th. 3.13 

(2 .14) f ( l /<o (y))dy — * 0 for l x | ~ * + 4 ? 
J3CM) > 

where S(x) i s the unit sphere in flLn centered at x . Observe 

that (2.14) i s obviously s a t i s f i e d i f ^ ( x ) — • • oo for 

| x | — > + OO . 

By virtue of a well known theorem due to Molchanow[ 3,7J, 

it is not difficult to prove that a necessary and sufficient 
n 2 condition for the compactness of the embedding 11 *—• L 
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is the following one (Molchanov condition): 

(M) there exists £ >• 0 a.t.. if F is any closed subset tf 

C(x) (C(x) denotes the unit edge cube centered at x € JRn) 

with capacity c(P) <* e 

f <p(y)<3y—* + oo far | x | — p + oo . 
JC(x)\f * 

So if q is a complex potential verifying the assumptions 

of theorem 2.3, then h has compact resolvent if and only if 

I q I * t̂O satisfies the above condition (M). Let us recall 

that an analogous result has been obtained for one dimensio

nal SchrBdinger operators [ 6 J. 

Remark 2.4 - Observe that if the potential q does not satis-
o 

fy the property P), the compactness of the embedding of Pj-i 

2 

into L is not sufficient, in general, to guearantee the dis

creteness of the spectrum 6(h): in fact there are SchrSdinger 

operators h, with real potentials q diverging to - oo for 

I x (—*• + oo , whose spectrum covers the entire real axis 

[3, Th. 2.8 ch. IIJ. 

Remark 2.5 - If we assume Re q£ 0, it can be proved that H 

is regular without the "local regularity" assumption (2.1) on 

q. In fact: Let § € C with Re | < 0, then, by following 

analogous arguments as in proving the first part of th. 2.2, 

we have only to prove that o> * 0 is the unique solution of 

the equation 

(2.15) A «tf -* (q-£ ) (in the distributional sense). 

Now, by virtue of a well known inequality T5], by (2.15) 

we deduce 

&\a I 2 Re { (sign 3) A <* ! « Re f (q^|"> \v>\ \ Z 0 

in the distributional sense. Then, by following the same ar-
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fuments used in [5], it can be deduced that o> * 0. 

Let us finally observe that in such situation (i.e. if 
p 

q€ L- c and Re q Z 0) it can be also proved, by followinf ana

logous arfuments as in provinf th. 2.3, that h has compact re-
° 2 

solvent if P ~ *-+ L compactly (cf. remark 2.3). An anale-

fous result has been proved I 2, th. 2.6 J under more restric

tive conditions on the "frowth of Req" at infinity and on its 

local "refularity". 

Remark 2.5 - Let Re q £ 0 . Then it can be proved C12.3 that 

the formal differential operator L * - A +q has an m-accretive 

realization A in L if qc L£oc with 

t*r n?3 

for n » 2 

for n * 1 . 

Moreover, i f for a.e. x € Jtn q(x) belonfs to a sector 

S (of the complex plane) defined by I arf $ I *y-*3r/2 , i t can 

be proved t l 2 3 that L has an m-accretive extension under the 

weaker assumption qe -^oc» 
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