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REMARKS ON THE NON SELF-ADJOINT SCHRODINGER OPERATOR
D. FORTUNATO

2im D

Abstract: Let h denote the closure in L°(R ™) of the

differential operator
Hu=-Aurqu ue C":(Rn)

where q is a complex valued function belonging to I‘ioc' Ir
for a.e. x ¢ R" q(x) belongs to the sector 0% arg fsr-
-~ d(de 10s1), it is proved that h is the unique closed ex-
tension whose spectrum is contained in the above sector. Mo-

reover conditions which are necessary and sufficient for the
compactness of the resolvent of h, are obtained.

Key words: Compact resolvent, numerical range, m-secto-
rial operator.

AMS: 35J10 -

Introduction. It is well known that non-selfadjoint

Schrddinger operators arise in quantum mechanical problems
with energy dissipation.

Spectral propertieé of such operators have been studied
by many authors (cf. e.g. (3,6,8,91).

In this paper we study some properties of the operator h
obtained by closure in 1°(R®) of the differential operator H
defined by

Hu = - A u+q(x)u utC:’(Rn)

where q is a complex valued function belonging to Lioc(lkn).

This research was supported by the G.N.A.F.A. of C.N.R.
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If for a.e. x ¢ A® q(x) belongs to a sector S (of the
comple x plane) defined by O¢ arg{< 7 - o (with Jelo,x] ),
it can be proved (cf. th. 2.2) that h is the unique closed
extension of H whose spectrum €(h) is contained in S. More-
over conditions which are necessary and sufficient for the
compactness of the resolveént.ef h, are obtained (cf. th. 2.3).
Analogous results have been obtained in [ 3,6] for the one-di-
mensional Schrddinger operator.

Our study is mainly based on some well known results of

the theory of the sectoria] operaters in Hilbert spaces (cf.
e.g. [ 4,10,117).

1. Some prelimineries. In this section we denote by B
a separable Hilbert space with scalar product («l. ); and
nerm Il ¢ I ,; if T is @ linear operator in E, D(T) denetes
the domain and R(T) the range., 6(T) denotes the spectrum of T.
@(T) will be called discrete if it consists entirely of ‘iso-
lated eigenvalues of finite multiplicity. If T is closable,
T denotes its closure.

If T is densely defined in E,T¥ denotes the adjoint of
T,

The numerical range N(T) of T is the set of all complex
numbers (Tu\u), where u changes over all ue D(T) with
ful g = 1.

It is well known that the spectrum &(T) of T is not con-
tained, in general, in N(T). However the following result
helds (cf. e.g. th. 3.2 pg. 268 ef (4] and ch. XIV of [11]).

Theorem 1.1 -~ Let T be a densely defined closable epe-
rater in E and suppese that N(T) is not a strip of a line.

- 80 -



Then for each § € €\ N(T) T-§ I _has clesed range, dim Ker(T-
-§ I)=0 and codim R(T- § I) is constant for §e C\N(T). More-
over there exists a closed extension T of T such that 6D ¢

c R(T).

Now it is easily verified that if T satisfies the assum-

A
ptions of theorem 1.1, a closed extension T of T satisfying
the property
A e
(1.2) 6(T)c N(T)
A
is maximal (in the sense that T has no proper extension satis-
A —
fying (1.2)). Then such extension T is unique if the closure T
of T satisfies (1.2). Therefore an interesting class of clos-

able operator is the following one:

Definition 1.2 =~ _A densely defined, closable operator
T is called regular iff (T)c N(T).

Let us observe that if T is symmetric (i.e. T is densely
defined and Tc T* ), T is regular if and only if T is essen-
tially self-adjoint.

If T is & positive definite (i.e. (Tulu)gZ 0 YueD(D)),

172

self-adjoint operator in E denotes its square root. Let

us recall the following well known results (cf. e.g.[1,101).

Theorem 1,3 - Let T be a positive definite, self-ad-

Jjoint operator in E, then the following statements are equiva-
lent:

a) T has compact resolvent.

b) Tl/z has compact resolvent.
¢) The spectrum 6(T) is discrete.

Theorem 1.4 - Let a:D(a)xD(a) — € (D(a) dense in E)
be & sesquilinear, symmetric form. Then if & is closed and
bounded from below, there exists a self-adjoint operator A
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(Friedrichs extension) with domain

D(A) = {xe D(a) | 3 y¢ B such that a(x,z)=(y[z)p; Y zeD(a)}

and defined by setting Ax=y fer x& D(A). A and & have the same

lower bound; if a is positive (i.e. a(u,u)20 V ueD(a)), we

have
D(A.l/z) = D(a) and n(u,v)=(A1/2u|A1/2v)E Vu,ve D(a)
It is easy teo prove the following

Theorem 1.5 - If T is a closed operator in E with
6(T)+ € then the following statements are equivalent:
a) T has compact resolvent.

b) D(T) equipped with the graph norm is compactly embedded in
E.

Proof. a)e==pb) Let {(u )}cD(T) u,—» O weakly in D(T)
equipped with graph norm. Then it is easily seen that if
A e C\6&(T), (T-AI)u,—> O weakly in E; so, by virtue of a),
we deduce that u —> O in E.

b) =» a) Let {v }JcE v, —» O weakly in E; if A¢6(T),
we set u = (T- AI)']'(vn); then, by the continuity of (T—J\.I)'l,
we deduce that u —» O weakly in E and so w,—> O weakly in
D(T) equipped with the graph norm.

Therefore, by virtue of b), we deduce that u,— 0 in E.

Let L1 be an open subset of R, We shall use the fol-
lowing functional spaces:
- 1P(Ll) denotes the space of (equivalence classes of) func-
tions on ) which are (Lebesgue) measurable and satisfy
(flu(x)\’dx)llp< + 0 for pell,+o0l
ful o,p = { i

sup ess|u(x)l<+00 forp =+ a0
xe
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equipped with the norm [l * o pe We shall set
?

(ulv)o = _L u(x)v(xlax, fuly = < (u{u)o} 172 , ﬂuﬁo’z,

moreover we set IP = IP(R™).

- If m is a positive integer, 'm(.Q) is the Sobolev space of
the functions ue I2(Q) such that D¥u eL?(N) for | lé m
and equipped with the norm

% 2;1/2
Null = {w?‘m I D%u '0}

We shall set W™ = W(RD).
-

oc
(.Q.o open and bounded) with respect to the restriction map-

— u)noe v“(no).

denotes the projective limit of the spaces w'“(.no)

pings ue "lloc

- If @ is a positive functien en R™ belonging to Lhc, we
[J .
denote by T, the completion of Cgo (R") with respect to

¢

the norm

h
Nuly = -ismm(lu(x)\zg(x) + lgrad u(x)1®)ax? .
S

2. The results. Let q be a complex valued function on
IF\,n belonging te I{oc' Let us now consider the operator H in
17 with domain D(H) = C®(R®) and defined by

Hu = = Au + qu VY ue D(H).

It is easily verified that the adjoint H* eof H is dense-
ly defined, then H is closable; let us denote by h its closu-
re (i.e. h = H¥*),

In mhat follews we shall find conditions (on q) which are
sufficient to guarantee that H is regular (cf. def. 1.2). Mo-
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reover conditions which are necessary and sufficient for the
compactness of the resolvent of h, will be obtained.

Let us set

'gomp = {ue'z | u has compact support}

and prove the following

Lemma 2.1 - Let us assume that

(2.1) qe I‘xl‘oc with r = max{2,n/2} if n4 4 and r>2 if n = 4,
Then W2 is contained in D(h), and

comp
Yu s'fomp:hu = = Autqu (in the sense ef distributions).
Proof. Let uelgomp. Then there exists a ball B, center-

ed at the origin, such that supp ucB. It is easy to prove
(if the radius of B is sufficiently large) that there exists
a sequence -(un'}c C.‘”(JR.") with supp w,c B for each né¢ N , and

such that

(2,2) u,— u (for n—> o ) in VZ.

By applying H¥lder inequality and Sobolev embedding theo-
rems, it is not difficult to obtain
2 2 2 2
(2.3) |q(u -u)lx = lql® lu -ulax & fiq |l o -
2
-ull £
1*(B)
teyllql?,  Hu -ul?
1198 vy T ey

+0if n<4
where s = 2r/(r-2) if n=4 and c, is a positive constant.
2n/(n-4) if n> 4 '
Then from (2.2) and (2.3) we deduce that
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(2.4) qu, —> qu (for n— o ) in 12.

Moreover from (2,2),(2.4) we deduce that

-Aun*'qun—-#-Au+qu (for n— @ ) in Lz.

Then we conclude that u€ D(h) and hu = - A u+qu.
Q.E.D.
Theorem 2.2 - Let us assume that q satisfies (2.1) Mo-

reover assume that q satisfies the following property (q sec-
torial):

P) for a.c. xel Ocarg q(x)eowr-d , o ¢Jo,n]

then H is regular.
Prcof. Let us initially observe that N(H) is contained
in the sector S of the complex plane defined by
Ofarg { £ -0,

Then by virtue of the first part of theorem 1.1, it will
be sufficient to prove that there exists % € € \ S such that
R(h- ¢ 1) = 12,

Let §6 C\ Swith Re§ , Im §{ < O and consider
@ € R(h=- S)‘L (the orthogonal complement of R(h- ¢ I)). We
shall prove that @ = 0.

Obviously

Vg e CARD): jn""w Ly ax = Jym @ @ Fg ax

and thus
Aw = (Z:—i_)w (in the sense of distributions).
Then, by (2;1) and by well known regularity theorems,
it can be deduced that « belongs to 'foc' In the following

we shall adapt to our case some tricks used by F. Browder in
£21.
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Let us consider xe C’:( R®) with
1 if)lx|ega

0 £ " and =
ex(x)61 ¥ xeR® and g(x) {o it ixlna

and set x, (x) = q'(q,x).
Then, by lemma 2.1, giw ¢ D(h-§1I) and

2 2 2
-§ D) = -Bx @) + (a- § )X @)

therefore, remembering that @€ R(h-gI)‘L , We obtain
(2.5) M(-A(x.) + (a-§ )(x,-ew)lq,‘-w)ol =
= - 0a% 0 +@-§) 2 @) @)+ = Alg a)lg @), +
+ (Ag@) @)yl = (- §D@f @)l @)y + (-8 xw)lxz0) g+
+ (D w)a)yl = =A@ a) | % 0), + (A(x,i.w)lo)ol .

On the other hand, if 1>% >0, we have
(2.6) | (8 (xg) + (g=§)(xgw) | xe@),| =
. lwalp‘ad(x.‘.w)\zdx + fgm@@= g, e ol%xl 2
234 | fgm loraaixgm)|Zax + peRe (@)= )lx ol%ax] o
* fam! @@= Dlixgol?axied g - flradim o) lZax +
+q fn*ac(q(x)-g ) 'x‘-w\zdx- ) L_IRe(q(x)- ¢ )l'lg‘-wlzdx +
+ fkwlln(q(x)—s NE lq,‘-a?\zdxi

where fl = d{xe Rane(q(x)-g )»0Y, = RB\ -0.* .
Now, remembering that q(x)-§ 1lies in the sector S for

a.e. x6 R", we can choose 7 and 3 > O 20 small that

2.7 % [ )1 Im@@-§lx w'Zax2(n+9) f 1Re(q(x) -
2 Y * K ‘a_
- gl 2ax.

- 86 -



Then from (2.6),(2.7) we deduce that
(2.8) | (-4 (x 0)+(a-§) (x| xg@lly 2
1 2 2
z 54 ﬂjﬁ”" |¢rad('x,e-w)( “dx+ 7 L1+Re(q(x)-§ Nx, ol ax +
+ [ IRe(atx)-§ )bz, wl%ax + 3 Jon 11000 § )k x -0l Paxf2
ze 4 ‘gkmigrad(x,e'w)\ 241q(x)- Sl-lx‘éa)lzdxi 2 e, Qg.c.)li

where c,, c, are positive constants.

On the other hand it can be easily verified that

2
(2.9) 18 (=2 w)lw)y - (Alxg@)xg,@),) =

= 31\',; 2 2 3 22'__
1% a2 I gelle 1Mu-‘,;;:-"a"u,:»fz—’f«Le,x4 S, @} axd

then from (2.5),(2.8),(2.9) we deduce that
= Mo fiyits x, P \of?
(220 1=12 [ {2 b Mal's x, el

01¢ 2% x w2 .
+2 B B w'xéidxlz ¢, ll:g,swlll

On the other hand we have

(2.11) le, a:llzll'x, ml\z* E.UI—-'U"- wﬂz+ llx, IZ

@ 2 M 2
-21 % g Uo-ﬂx,!—g—;?\io)Zer.mll’ +F A58 @ llo +

LI2) 2 a2
'0'“‘2,‘ ax'“o - en3(!\cola + Il X, -a—gz “0 ))

where c; = suplgrad g (x)1.

Moreover it is easy to see that

(2.12) Tée (el lal2+ (o +§'3—x 12

where ¢ 4 is a positive constant.

Let us set
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2 2 2 = 3 2
L =ceflalg+ elal)), 1, 564"?'3&}'&&'0'
Then from (2.10),(2.11),(2.12) we have
2 2Ae 2 o0 2
Ltz Izl x, g + Bz @ U0+ ﬂ"’e"ﬁ;’“t'

1) 2

From which we obtain

)
I+ €cyn ﬂw"ﬁ!‘(g"@ﬂi-ﬁ ?('—aif-w "3+

3@ a2 . 0w 2
g g 16 - s 5, 55 10-15 -
Then we deduce, if g is sufficiently small, that
2 02
ellalizcy ll'g&-w e
where c5 is a positive constant.
Then
e fuz"*‘ @ (x)|%axz cg Jlom 235
{ixlet/e 3

Letting ¢ —» O, we deduce that o = O,
Q.E.D.

Let us now prove the following theorem

Theorem 2.3 - Let q satisfy (2.1) and the property P).
Let us assume also that “i:n;‘w ess | q(x)| > O. Then the follew~
ing statements are equivalent.
a) ﬁ'q‘ is compactly embedded in 12,

b) h has compact resolvent.
Proof. By thecrem 2,2, H is regular then 8(h) is contain-
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ed in the sector (of the complex plane) S defined by
Ofargf<ar-o .

Let us now prove that
a)=3 b)

By the same arguments used in proving the inequality

(2.8), we have:

(2.13) V u!C:’(Rn) I hu ﬂi + ful ‘2, z l(hulu)ol zecy Iu l;
Igl

where c,>o0 independent of u.

Then, by & limit procedure, it is easily deduced that
(2.13) holds for each ug D(h). So we conclude that D(h), with
the graph norm, is continuously embedded inte F"q‘ « Then,
if ﬁq,l is compactly embedded in L2, h has compact resolvent
by theorem 1.5.

Let us now prove that
b) = a)

Obviously there exists Ahel -Jar/2,ar/2 [such that the
spectrum S(e"“a' h) of the operator e""'a‘h is contained in a sec-
tor S” defined by | arg §1& g < o /2. Then e"‘y‘ h is m-sectori-
al (4, ch, V p.280].

Let us now construct the operator B=Re e‘"} h, real part

of the m-sectorial operator e"a h {4,ch. VI p. 336]. To this

end let us observe that the sesquilinear form
a(u,v) = (e"'& hulv)° u,ve D(h)
is closable [ 4, Th.1.27 p.318]; let us set
b(u,v) = 34%(u,v)+ 3(v,u)} u,ve D) = D(b)
where & denotes the closure of a [4,ch. VI].

Obviously b is symmetric (i.e. b(u,v)= b(v,u)), closed
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{4, Th.1.31 p. 319) and positive (i.e. blu,u)>=0), then the-
re exists a unique self-adjoint operator B (Friedrichs exten-

sion) such that
D(B)c D(b) and b(u,v) = (Bulv), ¥ u,ve D(B).

A

B is called the real part of the operator e’V h.

Now e“" h has compact resolvent, then, by a well known
result [ 4, Th.3.3 p. 337], B has compact resolvent: therefore,
1/2
B+ €),

by theorem 1.3 and theorem 1.5, we deduce that D( equip-

ped with the scalar product

(51/2\1 Bl/zv)o+ (ulv)°= b(u,v)+(u\v)°, u,v£D(b).

is compactly embedded in La.

On the other hand it is easily seen that we have

YuecR™® bluwsellul?
r'la,l
where ¢ > o independent of u.

°
Then l'}9| is continuously embedded into D(b). Therefo-
[ ]

re we conclude that I

Iyl is compactly embedded in L2.

Q.E.D.

Remark 2.3 - Let us consider @ € I".]L.oc with inf ess p(x)>o;
o

then the embedding r"9! — 12 is compact if [1, th. 3.13]

(2.14) fsc“)(l/so(y))dy—-r Ofor |x|—+a

where S(x) is the unit sphere in R.™ centered at x. Observe
that (2.14) is obviously satisfied if @ (x)— +a for
Ix|—»+ 00 .

By virtue of a well known theorem due to Molchanew[ 3,7],
it is not difficult to prove that a necessary and sufficient

o
condition for the compactness of the embedding T;, ey L2
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is the following one (Molchanov condition):

(M) there exists g > 0 s.t., if F is any closed subset of
C(x) (C(x) denotes the unit edge cube cemtered at x € R™)

with capacity ¢(F)< e
So(y)dy-—»+ o forlx|l— + x .

'[C(x)\F
So if q is a complex potential verifying the assumptions

of theorem 2.3, then h has compact resolvent if and only if
lqgl = ® satisfies the above condition (M). Let us recall
that an analogous result has been obtained for one dimensio-

nal Schr8dinger operators|[ 6].

Remark 2.4 - Observe that if the potential q does not satis
fy the property P), the compactness of the embedding of ,‘.’,‘q‘
into L2 is not sufficient, in general, to guearantee the dis-
creteness of the spectrum &(h): in fact there are Schr3dinger
operators h, with real potentisls q diverging to -2 for
|x| —» + o0 , whose spectrum covers the entire real axis

{3, Th. 2.8 ch, ILl.

Remark 2.5 = If we assume Re gz 0, it can be proved that H
is regular without the "local regularity" assumption (2.1) on
q. In fact: let §{ € € with Re § < O, then, by following
analogous arguments as in proving the first part of th. 2.2,
we have only to prove that @ = O is the unique solution of
the equation

(2.15) Aw = (=) (in the distributional sense).

Now, by virtue of a well known inequality [5], by (2.15)

we deduce )
Alw| Z Re { (8ign J)A @} = Ra{(q-g)lw'l izo

in the distributional sense. Then, by following the same ar-
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guments used in [5), it can be deduced that & = O,

Let us finally observe that in such situation (i.e. if
q€ I‘Jz_oc and Re q 2 0) it can be also proved, by following ana-
logous arguments as in proving th. 2.3, that h has compact re-
solvent if F‘Req —p 12 compactly (cf. remark 2.3). An anale-
gous result has been proved [2, th., 2,6] under more restric-
tive conditions on the "growth of Req" at ini’inity and on its
local "regularity”.

Remark 2.5 - Let Re q2 0. Then it can be proved [12] that
the formal differential operator L = - A +q has an m-accretive

2 if qe 1T, with

realization A in L
2n/(n-2) foer nZ 3
r= 1+ e¢(g>0) for n = 2

1 forn=1.

Moreover, if for a.e. x € R® q(x) belongs to a sector
S (of the complex plane) defined by larg § | # <ar/2, it can
be proved [ 12] that L has an m-accretive extension under the

weaker assumption gqe I‘ioc'
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