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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20, 1 (1979)

FUNCTIONALS WITH LINEAR GROWTH IN THE CALCULUS OF
VARIATIONS ~ Il
M. GIAQUINTA, G. MODICA, J. SOUCEK

This part is the direct continuation of the preceding

paper in this issue,

3. About the regularity theory. It is well known.that ge-
neralized BV solutions to the non-parametric Plateau problem
are locally Lipschitz continuous and consequently analytic func-
tions. As the two following examples show, the minimum points
of our functionals may be non-smooth; in fact they may have
jumps not only on the boundary but also on the interior of their
domain, and therefore they cannot be Hlfl functions.

So if we want to obtain some regularity result, we have to
restrict the class of functionals to be considered. In fact we
will prove that minimum points are Lipschitz continuous and the-
refore smooth for functionals of the kind of the area (we are
giving below the exact conditions).

Conditions are the bnes of O.A. Ladyzhenskaya and N.N.

Ural tseva, see [13], and roughly speaking we can say that they
are the ones that grant the a priori eatimate.of.the gradient.
We do not show that these conditions are necessary, but, as ex-
ample 3.2 shows, if these conditions are not satisfied, then

solutions may have jumps on the interior.
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Our examples concern the l-dimensional problem, but it
is not difficult to extendthemto any dimension, for example in

a ring.

Example 3.1. Let u&BV(-1,1) be a generalized solution to

1
{£4\/l+ x(t) ﬁzdt-———>min

u(-1) = - a, u(l) =a

problem

that is u minimizes in BV(-1,1) the functional
Fitul =(f1 1)\/1 + o (t) &2 + Voo (1) ]u(-1) + al+ Ve (1) u(1)-al
=y

where

«(t) =1+ tz(log -l%‘-)"'

and a is a real constant such that
1 -1
a >f (e (t) - 1) Z at.,
-1
First we have
(3.1) u(-1) = - a, u(l) =‘a;
to see this, consider the BV(-1,1) function
u(t) - u(-1) - a -l2t<cO
v(t) ={
u(t) - u(1) + a O<t«£1,

If (3.1) does not hold, then

Fivi= [ V1+a@®i® + Ve0)lu_(0) - u,(0) - u(-1) +

-4,1\{0}

+u(l) - 2a|< af V1+aew)# + Jo(0Nu_(0) -
[ PN

=u (0| + Ve (-Dlu(-1) + al + Ve (Mu(l) - al=FL u)

that is we reach a contradiction.

- 158 =



On the other hand u cannot belong to Hl'l(—l,l). In this ca-

se, in fact, we could define from the Euler equation that

u(t) =

a.e. in (-1,1)

A
() (1) - A2

for some A e R with A% 4 minj « , hence the contradiction
="y

1 . dt
a =% u(-1) - u(l)| ¢ |tlat « —_——<a.
2z " ‘£1 ‘-f4 Ve (t) - 1

At this point we have proved that the minimum point u takes
the boundary datum and does not belong to Hl'l(-l,l). To com=-
plete our example we want now to prove that u has a jump ex-
actly in zero, that is; that the singular part of the measure
4 in the Lebesgue decomposition has support in zero.

Let (ﬁn,ﬁs) be the Lebesgue decomposition of 4 with respect to
the Lebesgue measure a‘f1 . Consider the BV(-1,1) function v

characterized by

Vg = ug v(-1) = u(-1)

where d; is the Dirac measure. with support in O. Then v(l) =

= u(l) and the following estimate holds:

_[: \/1+x€2=,}_‘_:\/1+ ac%%d» Ve (0) | J:: ug | £
« I V1ra Voo [ &
Now, since u is & minimum point, we deduce
SIVEiag 6 Ve [k
i.e. supp \'ls §40%. On the other hand from the above conside-
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ration it is clear that ﬁs is not the null measure.
Finally note that the above example does not work if we suppo-
se wx(t)e 01’1(-1,1), 8till with & minimum in zero (in fact

we have in this case

1
4 -
[ (e () = x(o) Zat =+ ),

while jumps on the boundary may still occur with smooth ot (t)

with minimum on the boundary.

Example 3.2. Let ueBV(-1,1) be a generalized solution
to problem

ST+ o 18155 gt —» min
(3.2) -1
u(-1) = - a u(l) = a

where k>2, oc(t) = 1 + t2 and a is a constant greater than

4
Joras tH/e-1 _ 13VK gicr 0

Exactly as in example 3.1 it is easily seen that the solutiom
is smooth in (-1,1) \ { O}, takes bounmlary datum and has a jump
in zero.

Note that this time the obstruction to regularity does not de-
pend on regularity of oc(t).

The Bernstein genre of the Euler equation of functional in (3.2)
is k. Therefore this example shows that the Dirichlet problem
for equations with genre greater than two is generally not sol-

vable on arbitrary domains (see [19]).

We now state the exact hypothesis (see [13]) under which
we will prove regularity. We will suppose that 22 be bounded
Lipschitz domain, f(x,p) be & function of class Cz(.'(_}. =R")
and g(x,u) be a function of class Ca(ﬁ x R). Alsowe assume
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that there exist the fpxx ’ fppx derivatives and that
the following holds:
(3.3) »iplsf(x,p)eM(l +(pl)
(3.4) gyl + £ 14c
£, (x,p) pyz ¥y V14 ipi? - »,
i
(3.5) [fpx|+lfppxl +lglee

[
lfpipx(x,p) Fil < T

(3.6) BuuZ

S

2 (§,n)?2 )(_
- 1'.;..1 pipj(x’p)gi ?J £

(“'1(l§ - 1,,,“1"2

N
1+ 1nl?
where v, M, »,, @(; are positive constants, ¢ and Y, are non-
negative constants, and (f ,P) denotes the scalar product in
R™.

Finally we suppose that g(x,u) is such that there exist
generalized solutions to problem (1.9) (see the end of para-
graph 2).

Conditioms (3.3)...(3.6) are verified for example by the
area or mean curvature functionals, by the functional in exam-
ple 3.1 if we suppose «(t)e Cz(-l,l), but they are not satis-
fied by the functional in example 3.2.

Remark that functionals which satisfy (3.3)...(3.6) have
Bernstein’s genre equal two, while the general functionals in

paragraph 2, i,e. functionals for which only (3.3) holds, may
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have for example as Bernstein’s genre any oc wWith oc > 1.

Finally observe that (3.6) implies that problem

{F[ul =fﬂ( £(x,Du) + g(x,u)} dx — min
u-genbla)

has at most one solution in H1»1(Q ).

We recall the notation

dlul = &?(x,%,-i—i“‘i—) du + f‘:n f(x,o,»(gv i YPY )

ay ™l '[r;. g(x,u) dx

for every ueBV(Nl) and ¢ & en ); and every time we will
want to emphasize the domain £} where the functionals are con-
sidered we shall put the subscript 2 to ¥ or F. Note that

for every ue b)) with u =@ on 3£ we have [ ul = Flu],

Theorem 3.3. Let ¢ belong to Ll(a.(l ). Under the above
hypotheses, every generalized solution ueBV(Q) to problem

3 Lul—> min
(3.7) {

ue BV(SL)

is & locally Lipschitz continuous function.

The idea of the proof is taken from Gerhardt [ 7]. We first

prove the following

Theorem 3,4. Under otheses of theorem 3.3 there ex-

ists at least one solution to problem (3.7) which is Lipschitz

continuous.

Theorem 3.5. let ER(XO) be an open ball with radius R

small enough. let ¢ be a smooth function on BBR. Then there

exists at least one solution to problem
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@ BRC ul — min
usBV()

which is Lipschitz continuous on -B-R and such that the trace of

u is equal to ¢.

Then, as in (7], we will prove theorem 3.3; and, since we

have just to change the functional mean curvature with & in
[71 to obtain the proof, we will omit it.

We Bet theorems 3.4 and 3.5 by an approximation argument
using precise estimates (obkained with the same technique of
[13]) of the gradients on solutions of approximant problems,
the barrier technique and a devise in [9].

Proof of theorem 3.4. Let ue&BV((.) be a solution to pro~

blem (3.7) and let N*>55.0 . Extend u to HeBV(N*) in such

a way that
fan( DUl = O and consider (see remark 1.7) & sequence fud c
c C%®(R™) such that

=, dx dduw
Fy [uhj'—’-{:a f(x,;;,—d—(:—) du + ‘!;z g(x,u) dx

s 1
uhlan—ﬁ u'an in L7(80 )
u,—> u in t(n*),
For every h ¢ N and every ¢ with O< € < 1, the approximant

problem
Byl vl+ & [ 1DvI?— min

ve Hl’z(.D.*)
v=u on o R AN N

has a unique solution z, & Hl’z(ﬁ."‘)r\ c2(£.) and we have
)
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2 2
3.8) ef \Dg 1%+ B [z J<e[ 100"+ F, Cul
so that

2 2
BISL*‘Dzh,E\ ’ e".;.*“hts‘ ! J-'ﬂ.*"mh:e\ ’ J‘;)."\zhoe’

are estimated by a constant which depends on u,, but does not

depend on € . On the other hand, if Kcc KccQ we have
. 1 4 2

(3.97) mép | ’h,s' c c(dut(K.ax),a,&h.h,e 1 <, ‘{2, | zh’el)

(the proof of this kind of estimates is standard, so we will

omit it), and

(3.9) s\Klp IDzh,gl £ c(dist(k,dX), sﬁp lzh,‘H

(we delay the proof of (3.9) until later).

Therefore, passing eventually to a subsequence, for g going to
zero we see that {’h,za converges weakly in BV(Q*) to some
z,6 BV(.*) which is locally Lipschitz continuous in f) and
equal to u, on DN Q. Also

eJJ;,IDth(z——» A, e R , A20
Powlo1 & linint Foulm 1
and passing to the limit in (3.8) for e going to zero we get
Ay + 5y (21« P_Q*E u,J.

From the last inequality we now deduce that

Iz, 0 BV(Q*)? Ay, & constant which does not depend on h

and consequently
st | zhl , a‘\(xp \Dzhl 4 constant which does not depend on h,

- 164 -



Hence, passing eventually to a subsequence, we may go to the
limit for h going to infinity and infer that {z,j converges
weakly to some z € BV(.Q*) which is locally Lipschitz continuous

in O and equal to ¥ in Q*\ (L . Moreover we have
A—> A e R

(x,%,%) du + .‘fmg(x,z) + A £

Hl

Jon
- dx oLDfL ~

_L‘_f(x,a‘—«—,-a?) du + ‘_fwg(x,u)

from which, taking into account convexity and homogeneity of f,

we deduce that A = O and z is a generalized solution to problem

(3,7). qe.e.d.

We now pass to prove 3.9. In fact, we shall prove a sharper a

priori estimate of the gradients and precisely

Proposition 3.6. Let A & 1 be & non-negative real con-
stant ard 3 € Hl*"’m ), let u, be a solution to problem

BLvi+ A [ | vi?— min
(3.10)

verb2(a) v -ye BDZ(Q) .

Then for every ball Bp with B,p c C Eo R

| £ C
e, o +Br/y
where C depends on % %ac u, and dees not depend explicitly on
2R

A,
The fact of emphasizing the dependence on % %SSR“& in the

gradients estimate is just what will allow us to prove theorem

3.5.
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The following lemma due to Stempacchia [ 21] and the be-
low Soholev estimate, which can be obtained with the same proof

in [13], will turn out useful.

Lemma 3.7. Iet u(h,£ ) and a(h,£ ) be non-negative funec-

tions defined for h>0 and O< £ £ R, imcreasing in £ for h
fixed and decreasing in h for £ fixed. Suppose

[
uth, 2 )4 ﬁv—“_ u(k,R) a(k,R)2/P

1
a(h, 2 )4 m— u(k,R)

where h>k20, 0<£< R£R,. Then there exists 4 guch that
a(d,Ro/Z)u(d,Ro/z) =0

and
d£ Cyleq,m) u(o,R)Y2R, X" a(0,R,)
where

Lemma 3.8. Set

Sy, = 4 (x,x,0) € =< R™ixp g = u, (x)4,

[-%]
Then for every ge C, (Bg)

(.Fs g"“w'% du“)%% ey (L 1ogl as ™)
A A

1/2

uA.

where 03 depends on osc
Br

Proof of propositiom 3.6: the proof follows the one in
L131. Putting @ = (u(x) - u(x,)) §? with § € CP(Byp(x)),
? =1 on Bp(x_), IV §| £ c/R as test function in the Euler

equation for the functional in (3.10) we deduce
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GaD =230 Visin 2+ [ “,u;z}é
©® ) & a

B, &,
£ C(1 + % gac‘nx ) !,_)2
2R™°
where C does not depend on A .
Set

<, = log (1+!D“.al2)
54,1: ={xe: @, x)>k}

S.J.,k = -i(x,ua‘ (x)):xeA

.a.,k§ ‘
Putting in the Buler equation as test function

= - 2

@ = Dy (Dyu max(e, - k,0) § )

integrating by parts and summing on 8 = 1,n, we deduce .

(3.12) [ & w, 12 2d3-Ln+J\. (L+{pa 2
fsw 21§ 2&%‘0 2l N2
2 dx4C (a, -
‘D%lzs dx £ ‘[S‘%q, @y = KT lag1e .

2 2
+ A (L+1Du, | ) (, =-k)|D¢|2
j;_»,b A > §

while putting @ = Dy (Dgu max(c, - x,0)2 § 2) we deduce

2020 122
(w0, = k) 1D%, | ¢ 2
(3.13) 9, '&a,h a A TEEC{f (@, -1

2
(224—)d’f| )+ A &ﬂh(1+ ’Dua”e) |Dg|2

)
2
~-K)t-
(‘”a\, }
Set now
A& (h, £ ) = Aa"hn B& S‘x (h,2) »

(A(hvl )< R )n Sa
ay (h,4 ) = meas A, (h,2)

. = f (g - k)z +
u, 65,407 G ko) (1 + 1 Du,| 2)

2
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Using (3.12),(3.13),(3.11) and the Sobolev estimate in lemma.
3.8 it is easily verified that hypotheses of lemma 3.7 hold
for functions u, (h,£) and &) (h,£) with constant c, depen-

ding on -]!;obac u, . So that we have
2R

d
“D‘?a"n vBp/4(x,) ‘e

where d is estimated ly a constant depending on % gsc w,
2R
multiplied by

A

712
(3.14) of 1= @, 2+ A 1+ imPe,2t -
{ o (’{.&lz > ® ‘gm * }

Now to estimate (3.14), put in the Buler equation as test func-

tion [u(x) - u(x,)] wA‘z § 2; it is not difficult to deduce
e 1 F 2
3.0 {-<%]a TRge ) L,\‘"& +
2 2.2 2,21
+ (gsc u, ) f | d'w, | +A e, |
R » { SQ,R & g fBR A S }J}

and again choosing as test function Dg (Dsu . §e) we derive

(3.14) £ C (depending on % sc u, ) x

R P
"[Lf (1+1Du ‘2)1/2*_&_‘}‘ Im, 120 L [ o 2]"/1
B ‘g, 2 b Bya » £ g ¥
and finally because of a.\:!, \/1+lDuA| 2 ona (3.11) we get

the proof.

Unfortunately we are not able to show that & generalized
solution and a smooth solution to problem (3.7) differ for
constant. Had we proved this, then theorem 3.3 would easily
follow,

Since this is not the case, we have to prove theorem 3.5.
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However, this proof also yields us the method to prove global
regularity.

Proof of theorem 3.5: remark that theorem 3.5 follows with
the same proof as theorem 3.4 if we are able to state global es-
timates (3.9°), (3.9). Concerning the estimate of the maximum

of solution u, we have: let u, be a solution to problem
Pplul = f £(x,Dv) +f g(x,v) +.2,f | ovi2— min
BR BR BR
(3.15)
v -?C Hg"z(Bn)

then

£C
I lla‘ “M 'BR

where C depends on I ¢ lly, 9n - This is easily seen comparing
Fplu,l with Pp computed on

k in A ={xeQ tu, (x)>Xk§
v(x)=§
u (x)

in x e.f).\Ak

k> %‘_{ le!| , using the hypothesis on g (made to get existen-
ce in paragraph 1) which grants estimate essentially of this
kind

fAhlgul lwy -k & »(1 - e) fAthn&\

end the Stampncchia's well known global lemms analogous to lem-
ma 3.7 (see [211).

Now we pass to consider the gradient estimate. With the barrier
technique (see Serrin [191) it is not difficult to show that
for R small enough, there exists a constant K depending on the

2 norm of @ such that, if u, is a solution to (3.15) then

- 169 -



(3.16) | uy (x) - uy (3)1& Klx -yl

for every xeBp, every ye aB. and every A with Q¢ A £ 1
Now from (3.16) and proposition 3.6 (see theorem 2.1 of £ 9]
or theorem 1.4 of £ 10]) it follows

uDuz 0 -B‘Ré c
where C depends on the C2 norm of ¢ on BBR and does not de-

pend on A . q.e.d.

It is now clear that if ¢ is smooth and one is able to
construct barriers relative to the functional F, for an open
set N , then problem (3.7) has a unique smooth solution onQ
which takes the bound ary datum ¢ . We do not enter this ques-
tion.

1/3

To close, we remark that x'“e Hl’l(-l,l) is an extremal

for the functional

Fluls= f\/ -3f ——L——

1+9uk

This, perhaps, may show the relevance of the hypothesis of con-

vexity on g(x,u).

Note
(1) PF(x,ap + (1-A)q) £ A F(x,p) + (1-A)F(x,q) for eve-
ry A e (0,1), the equality sign holding only if p and q lie

on the same ray from the origin.
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