
Commentationes Mathematicae Universitatis Carolinae

Pavel Pudlák
Symmetric embedding of finite lattices into finite partition lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 1, 183--187

Persistent URL: http://dml.cz/dmlcz/105912

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105912
http://project.dml.cz


COMMEMTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 1 (1979) 

SYMMETRIC EMBEDDING OF FINITE LATTICES INTO FINITE PARTITION LATTICES 
P. PUDLAK 

Abstract: It has been shown that every finite lattice 
can be embedded into a finite partition lattice. Here we show 
some additional properties which such an embedding can have. 

Key words: Finite lattice, partition lattice, symmetric 
graph, matching. 
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For a finite lattice L define the dimension function on 

L, d : L — • IK , d(x) * the length of the longest maximal chain 

between 0 and x. Let A denote the kernel of d, let x-vy de­

note that there is oc € Aut (L) such that x * oc(y). It is 

known that in a partition lattice TT(X) two partitions are 

in the relation <v iff they are of the same type iff they are 

isomorphic. The partition /v of L is a refinement of A. 

Let «p :L—•TT(X) and let 6 be the co-image of A-^% * 

(or~TT(X))» *••• 

x » y iff d(x) * d(y), 

(or xQ y i f f 3<soe Aut (L) x * oo(y)). 

Then, clearly, © sa t i s f i e s the following two properties 

(1) xOy, x.fy«=-i>x « y, i . e . every class of & i s a 

co-chain, 

x) This is a part of the CSc dissertation of the author. 
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(2) for no x,y,z,t£ Lf x 0 y, « 9 t, x< zf y>t. 

Theorem. If a finite lattice L and a partition 8 of L 

satisfy (l)f(2), then there is an embedding of L into some fi­

nite TT(X) such that 

x 8 y -*-» 9(x)rvcj(y), 

"i x 8 y -B? ncf (x) A<y(y). 

Corrollary. 

1) For every finite lattice, there is an embedding into 

a finite partition lattice which preserves A • 

2) The same for rj . 

Problem. Let L be a finite lattice and d':L — > W an ar­

bitrary mapping such that d'(x)-cd'(y) whenever x<y. Is there 

always an embedding <y :L —.*TT(X) f X finite, such that, for 

y*o, 

d'(y) d( <y(y)) ' 

where d is the dimension on TT (X) ? 

Proofs 

Lemma 1: Let (^%\cj De a system of l a t t i c e s with the 

following propert ies: 

1) \ L%n L K ( £ 1, for ^ + K f 

2) if xf L^n LK and ye L̂ ri L^ then x * y or x and y are 

incomparable, 

3) if 0 is the symmetric graph on I, in which ( % tK) is an 

edge iff \ L^n 1^\ * lf then G does not contain cycles of 

length <- 5. 

Then adding the biggest and the smallest element to LJ L̂  we 

pbtain a lattice. 
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Proof: The proof of this lemma is just a tedious veri­

fication of basic properties of a lattice, we leave it to the 

reader. (Condition 3) enables us to treat the case such that 

for some x e I*z , ye L^, where distance of ^,K in G is 2, the­

re is a nontrivial upper (or lower) bound z. Then we can deri­

ve that z must be in L* 9 where & is uniquely determined by 

the fact that ( % f& ) and (A ,K) are e&ges of G.) 

Lemma 2: For every k2l, there is a symmetric graph G 

such that 

1) G is bipartite, 

2) G can be decomposed into k disjoint matchings, 

3) G does not contain cycles of length «< 10. 

Proof: In C3J a graph G is constructed for all m,n>2, 

which can be decomposed into n disjoint Hamiltonian cycles, 

does not contain cycles of length -< m, and is bipartite. Sin­

ce G is bipartite, the Hamiltonian cycles can be decompo­

sed into matchings, then we can omit superfluous matchings. 

(Use of the result t33 was suggeeted by V. R8dl .) 

Let C,D£L be two co-chaine in a lattice L. We shall say 

that they are non-crossing iff for no x,ycC and z,tcD, x < z , 

y>t. A partition 8 of L satisfie3 (1).(2) iff the claases 

of 9 are pairwise non-crossing co-chains. 

Lemma 3: Let C-^,«.«,C be a system of non-crossing co-

chains of a finite lattice L. Then there is a finite lattice 

K, and a sy3tem of embeddings eg :L—* K, % e I, and for 

every i, l £ i £ n , x,y£C i, there is a permutation it of the 

set of indexes I such that 

V* (x) * ***>(*! (y> for every % € I. 
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Proof: 

1) n s 1. Let k « I C-.J and let G a (Z,R) be the graph of Lem­

ma 2 for k. Let Z * Z^u Zg and R * \J~ R^ be the decomposi­

tions given by 1) ,2) of Lemma 2. Take a system of distinct 

copies of L, say, L.̂  , % e Z^, such that they are also dis­

tinct from Zg. Then glue together x^ of L% with K, for every 

xeC^ and ( % ,K ) C R^. Since G does not contain cycles of 

length < 10, we can use Lemma 1 to obtain a lattice K. For 
x , y* Cl> tne P e r m u t a t i o n # can De defined putting m {% ) 

equal to the unique K e Z, such that there is X € Zg, 

(fcti/UeRx, and (A fK)eiL* 

2) n:>l. By induction over n, using 1). We have only to add 

to the induction hypothesis the condition that any co-chain 

non-crossing with C-̂ ,...,C is mapped by q>t , t 6 I, out 

co-chain in K. 

Proof of the Theorem: Let L, © satisfy conditions (1), 

(2), L finite. Let C-L,...,Cn be all the classes of the parti­

tion 8 • Extend L to L' and C. to C^, i * l,...,n, in such a 

wiy that for every two different C^, Cj there are xQe C^, yQ e 

6 C!jf x comparable with y . Let K be the lattice given by 

Lemma 3 for L#, c£,««»,C^ , let ^ :K —->TT (X) be an embedding 

of K into a finite partition lattice. Take a systen of sets 

X* , * € I of the same cardinality as X, and let iff :K —>• 

— > T T ( X ^ ), % e I, be some isomorphic copies of Tfr :K —i* 

—*TT (X), Finally, define 9 :L —• TT (X), Y » U x ^ , by 

Cp (X) « *wJ 7f% (<y^(x)). 

Cl****y» 9 ia an embedding. Now, let x,y6 C^, then <j> (x) » 

• *8.jrC%> ̂ ) *<*** 8o»e permutation rf and every t 6 I. Since 

y % and Yj^(-) •**• isomorphic, we have 
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Thus there is a 1-1 correspondence between isomorphic parts 

of <y (x) and ^>(y), which proves y (x) ^u cp(y). 

On the other hand, if x,y belong to different classes C^, 

ct, we have x e C.', y eC', xn»yrt comparable. Then, of course, 
•J U X U J v U 

<j> (x ) and y(y0) must have different dimension. Therefore 

<f (x) and a?(y) have different dimension. 

The only thing that remains to do now is to take the res­

triction of <D to L. 
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