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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

20,2 (1979) 

QUASIMODULES GENERATED BY THREE ELEMENTS 
Tomas KEPKA and Petr NCMEC 

Abstract: Quasimodules generated by three elements and 
their subquasimodules are investigated. 

Key words: Commutative Moufang loop, module. 

AMS: Primary 203505 

This paper is a continuation of CI] and the reader is re­

ferred to £13 for definitions, basic properties of quasimodu­

les, terminology, notation, references, etc. 

--• Introduction. Throughout the paper, let R be a left 

noetherian associative ring with unit and Z-* « {1,2,0} the 

three-element field. Further, let $ :R—*Z-» be such that -$ 

is a ring homomorphism of R onto Z-». The word quasimodule will 

always mean a special left R-quasimodule of type ($ )• 

For a set M, let |M| designate the cardinal number corres­

ponding to M. If Q is a quasimodule then o(Q) is the least car­

dinal number equal to I Ml for a generator set M of Q. 

We shall define two primitive quasimodules T and S as fol­

lows : 

T = Z.., + is the usual addition and rx = - $ (r)x. 
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S * S(o,rx) « Z^f <afbfcfd > o < x,y,ufv > • < a+xfb+yfc+u, 

d+v+ (ay-bx)(c-u)> and r < afb,c,d > • < - $ (r)sf- $ (r)bf 

- f (r)cf- $(r)d >. 

1.1. Proposition* (i) I is a free primitive quasimodu-

le of rank 1. 

(ii) T is a free primitive quasimodule of rank 2. 

(iii) S is a free primitive quasimodule of rank 3. 

Proof, (i) and (ii). Every primitive quasimodule gene­

rated by at most two elements is a module. On the other hand, 

primitive modules are just vector spaces over Z-». 

(iii) One may verify easily that § is not a module and 

S is generated by three elements. Let Q be a free primitive 

quasimodule of rank 3. Q is generated by a set-ta,b,cr ant Q 

is nilpotent of class at/most 2 (see LI, Proposition 4.31)* 

Hence K£A(Q)£C(Q) is a normal subquasimodule, where K is the 

subquasimodule generated by the associator (a,b,c). However, 

Q/K is a module by [1, Lemma 1.11 and consequently K * A(Q), 

o(A(Q))£l and I ACQ) t <-- 3, since A(Q) is a primitive module. 

Finally, o(Q/A(Q))*3, Q/A(Q) is a primitive module, 1 Q/A(Q)U 

£27 and iQ) 4 81. Since § is a homomorphic image of Q, Q is 

isomorphic to S. 

2. Soc-torsion quasimodulea 

2.1. Lemma. Let Q be a quasimodule such that o(Q/C(Q)).£. 

4 2. Then Q is a module. 

Proof. There are elements a,beQ such that Q is generat­

ed by C(Q)ui&fbK Denote by P the subquasimodule generated by 

these elements. Then P is a module and Q is a homomorphic ima-
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ge of the product C(Q)xP. Hence Q is a module. 

2*2* I^mma* ->t Q be a primitive module and 0£n. Then 

o(Q) » n iff Q is finite and IQI * 3n. 

Proof. The variety of primitive modules is equivalent 

to the variety of abelian groups with 3x = 0. The rest is 

clear. 

2.3• Lemma. Let Q be a finitely generated primitive qua-

simodule. Then Q is finite and I Q I = 3 n for some 0£n. 

Proof. Q is nilpotent and we can proceed by the nilpo-

tent class i of Q. If iffl then Q is a module and the result 

follows from 2.2. Let 2^m. Then Q/C(Q) is nilpotent of class 

at most m-1 and C(Q) is a finitely generated primitive module. 

The rest is clear. 

2»4» Proposition. Let Q be a finitely generated X -tor­

sion qua8imodule. Then Q is finite and IQl « 3 n for some 04n. 

Proof. Q is noetherian and 3C -torsion. Hence there is a 

finite sequence 0 » P QS P^ S...SP' ,S P B = Q of normal subqua-

simodules such that ¥^/&** are finitely generated and primi­

tive. It remains to apply 2.3* 

2,5. Proposition* Suppose that the ring R has primary de­

compositions. Let & be a representative set of simple modules 

ant Q a Soc-torsion quasimodule. Then Q is a direct sum of its 

subquasimodules S o c s ( Q ) , S i d . 

Proof. It suffices to show that Q is generated by 

U Socs(Q). However, this is clear from the fact that A(Q) £ 

2 ^ » Proposition. Suppose that the ring R has primary de­

compositions. Let Q be a finitely generated Soc-torsion quasi-
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module. Then there is a finite set S1,...,Sn, 0*n, of simp­

le modules not isomorphic to £ such that Q is isomorphic to 

the product X (Q)* Socc (Q)x .. * x§oc0 (Q). Moreover, if Q 
sl sn 

is not a module then 5S(Q)4-0. 

Proof. Apply 2.5 and Clf Lemma 4.161. 

2.7. Proposition. Suppose that R is commutative and fi­

nitely generated. Then every finitely generated Soc-torsion 

quasimodule is finite. 

Proof. This is an easy consequence of 2.4 and 2.6 (take 

into account that every simple module is finite). 

2.8. Proposition. Suppose that R is commutative and fi­

nitely generated. Then every finite directly indecomposable 

quasimodule is either a module or X -torsion. 

Proof. Apply 2.6. 

2*9. Lemma. Let H n and Q be a quasimodule which is not 
2*14*2 

nilpotent of class at most n. Then 3 «-- I CLI . 

Proof. We can assume that Q is finite and subdirectly ir­

reducible. Then Q is nilpotent of class mf n + 14 m. In parti­

cular, n+2&o(Q). Bat A(Q)S^-(Q), and so n+26 o(Q/A(Q)) (use 

Clf Proposition 4.12J). On the other hand, Q and Q/A(Q) are 

J£-torsion. Hence 3n+2 -6 |Q/A(Q)I . Finally, 0$U n(Q)f ... 

...$A2(Q)$A(Q).$Q. Thus 3
n 6 U(Q)I and 32*1*2 6 \ QI . 

2-10. Corollary. Let Q be a non-associative quasimodule. 

Then 81 <k t Q \ . 

3. Ihe radical B . Put S * p-, • That is, for a quasimo­

dule Q, E(Q) is just the least normal subquasimodule such that 
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the corresponding factor is primitive. 

3.1. Lemma. Let Q be a quasiaodule. Then E(Q) is just 

the subloop generated by the elements rx + $r(x), xeQ»rcR. 

Proof. Denote by P the subloop. Obviously, P is a sub-

quaaimodule (we have arx + s $ (r)x = (s $ (r)x + $ (3) $(r)x)+ 

+ (3rx + $ Ur)x)) and P?E(Q). On the other hand, P£ C(Q), P 

is normal and Q/P ia primitive. Thus P = E(Q). 

3.2. Lemma. Suppose that the ring R and a quaeimodule Q 

are generated by aub3et3 M and N, reep. Denote by P the sub-

quasimodule generated by the elementa rx + $ (r)x, rcM, xcN. 

Then P = E(Q). 

Proof. It i3 ea3y to 3ee that rx + $ (r)xcP for all 

xc Q and rcM. Denote by K the aet of all reR such that rx + 

+ $ (r)xeP for every xcQ. We have MS K and K(+) is a subgroup 

of R(+). Let r,scK and xcQ. Then rsx + $ (r3)x « rsx -

- $(r)§(s)x = (rsx + r$(s)x) + (-r$(3)x - $(r)$(s)x)c P. 

Thus K is a subring of R and K = R. 

3.3. Proposition. E is a cohereditary radical for & . 

Moreover, DSESC and y S A + E. 

Proof. Easy (use 3.1). 

3.4. Proposition. Suppose that R = Z C oc, ,..., <ac 1, 0.£nf 

ia the ring of polynomials with n commuting indeterminates over 

the ring Z of integers. Then A(Q)AE(Q) = 0 for every free qua­

eimodule Q. 

Proof. We ehall proceed by induction on n. First, let 

n = 0. Then, by 3.2, E(Q) = D(Q) = 3Q. Let a6A(Q)nE(Q) and 

let f denote the natural homomorphism of Q onto Q/A(Q). We ha­

ve a = 3b for some be Q, so 3f(b) = 0. But Q/A(Q) ia a free 
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Z-module, i.e. an abelian group, and therefore f (b) = 0, 

bcA(Q). Since A(Q) is primitive, a = 3b -= 0. Now, let 1= n. 

Denote by P the subquasimodule generated by oc-,x + $ (<x?,)x, 

xcQ. Since PSC(Q), P is a normal submodule. Moreover, P s 

a iieCi • $ (oc1))x I xcQ}. Let G = Q/P and let ge denote the 

natural homomorphism of Q onto G. First, we show that A(Q) n 

OP s 0. For, let acA(Q)nP. We have a = (oC1 + |>(<a61))b 

for some bcQ, ( oc± + $(oc-,))f(b) » 0 in Q/A(Q) and f(b) « 0. 

Thus bcA(Q) and a = 0, A(Q) being primitive. How, the quasi-

module G can be considered a Z C oc2,..., ocn] -quasimodule (we 

have oC^x * - #( oc-̂ )x for every xcQ). In this case, it is 

free and A(G)nE(G) =- 0 by the induction hypothesis. Let 

acA(Q)oE(Q). Then g(a) c A(G)o E(G), g(a) * 0, acA(Q)oE(Q)o 

r>P * 0. 

3.5. Proposition. Suppose that R is commutative and fi­

nitely generated. Then A(Q)oE(Q) =- 0 for every free quasimo­

dule Q. 

Proof. Ihere are a polynomial ring P * Z C ct,, • • •, «cn 3 

and a surjective ring homomorphism tf :P —*• R preserving the 

unit. Put If = $9> aid let Q be a free R-quasimodule. Then 

there are a free P-quasimodule F of type (If) and a homomorph­

ism f of F onto Q. Let xcA(Q)nE(Q). Biere are ac A(P) and 

be E(F) with f (a) « x » f(b). Then a - bcKer f. But Ker f * 

« IF, where I » Ker <f . Since ICKer (-$9 ), Ker ffiE(F) and 

aCA(F)nE(F) « 0. Thus a == 0 and x = 0. 

3*̂ » Lemma. Let P be a normal subquasimodule of a quasi­

module Q such that PnA(Q) » 0. Then P£C(Q). 

Proof. For xcP, a,bcQ, ((x+a)+b)-(x+(a+b))«PoA(Q). 
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Hence (x+a)+b - x+(a+b) and x C(Q). 

3*7. Lemma. Let P be a normal 8ubquaaimodule of a quaai-

modulte Q such that Pn E(Q) = 0. Then PsX(Q). 

Proof. ObTioua. 

4. Quaaimodulea generated by three elements. Throughout 

this section, let Q be a non-associative quasimodule with 

o(Q) =- 3. 

4.1. Propoaition. (i) Q is nilpotent of claaa 2. 

(ii) A(Q)£C(Q) and A(Q) ia iaomorphic to T. 

(iii) Q/C(Q) ia iaomorphic to T3. 

(iw> Either E(Q) = C(Q) or Q/S(Q) ia iaomorphic to S and 

C(Q)/E(Q) to T. 

(T) If E(Q)*C(Q) then E(Q)n A(Q) « 0. 

(Ti) C(Q) = A(Q) + E(Q). 

Proof, (i) Thia ia clear. 

(ii) By (i), A(Q)£C(Q). Further, there are a.b.ecQ such 

that Q is generated by these elements. Let P be the sub loop of 

Q(+) generated by ((a*b)+c) - (a+(b+c)). Then PSA(Q)SC(Q)f 

and hence P is a normal submodule of Q. By Ll, Lemma 4.5J, Q/P 

ia a module. Hence P = A(Q) and o(A(Q))£l. However, A(Q)-#0 ia 

a primitive module. Consequently A(Q) is iaomorphic to T. 

(iii) By 2.1, o(Q/C(Q)) = 3. HoweTer, Q/C(Q) ia a primi-

tive module and consequently Q/C(Q) ia iaomorphic to r, 

(iT) and (T). Let B(Q)4-C(Q) and P *- Q/.ECQ). Then P ia 

primitive and P ia a homomorphic image of fi. On the other hand, 

27 « U/C(Q)I * IPI, tPl » 81 » IS 1/ and P ia iaomorphic to S. 

In particular, P ia not a module, A(Q)£ E(Q) and A(Q)nE(Q) « 0, 
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since A(Q) is simple. 

(vi) Put P * A(Q) + B(Q). We have P£C(Q) and Q/P is a 

primitive module generated by three elements. Thus 27 » I Q/P I 

and P » C(Q). 

^•2- Lemma. Let P be a proper subquasimodule of Q such 

that C(Q) is contained in P. Then P is a module. 

Proof. Obviously, f(P) is a proper subquasimodule of 

Q/C(Q), where f :Q —-> Q/C(Q) is the natural homomorphism. By 

4.1(iii), o(f(P))*2. But C(Q)£C(P), hence o(P/C(P))£2 and 

P i s a module by 2.1. 

4-3. Lemma. Let P be a maximal submodule of Q. Then P is 

a normal maximal subquasimodule and Q/P is isomorphic to T. Mo­

reover, C(Q) is contained in P. 

Proof. The set C(Q) • P is a submodule of Q. Hence C(Q)g 

£ P and P is a normal maximal subquasimodule of Q by 4.2. Fi­

nally, Q/P is simple and a homomorphic image of Q/C(Q). Thus 

Q/P is isomorphic to T. 

4.4. Lemma. Let P be a submodule of Q. Then E(Q) + P-J-Q. 

Proof. There is a maximal submodule G of Q such that P£G. 

By 4.3, E(Q) + P£C(Q) + P£G. 

^•5. Lemma. Let P be a normal subquasimodule of Q such 

that A(Q)$P. Then P is a module and P£C(Q). Moreover, if S 

is a homomorphic image of Q/P then P£E(Q). 

Proof. Since A(Q)$P, PnA(Q) = 0. By 3.6, P£C(Q). The 

rest is clear. 

4.6. Proposition. A subquasimodule P of Q is normal iff 

either A(Q)£P or P£C(Q). 

Proof. First, let P be normal. If A(Q,)$P then P£C(Q) 
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by 4.5. Conversely, if A(Q)£P then P is normal, since Q/A(Q) 

is a module. The other case is clear. 

^•7- Corollary. Let P be a normal subquasimodrule of Q. 

Then either P or Q/P is a module. 

4.8. Lemma. Let P be a subquasimodule of Q such that P 

is not a module. Then A(Q)£P, P is normal, E(Q) + P = Q and 

T is not a homomorphic image of Q/P. 

Proof. We have 0*A(P)£ A(Q). Hence A(P) = A(Q) and P 

is normal. Further, suppose that Q/K is isomorphic to T for a 

normal subquasimodule K with P£K. Then A(Q), E(Q)cK, C(Q) = 

= A(Q) + E(Q)SK and K is a module by 4.2, a contradiction. 

Now, it is clear that E(Q) + P = Q. 

4*9. Lemma. S is a homomorphic image of Q iff E(Q)4rC(Q). 

Proof. If E(Q)*C(Q) then Q/E(Q) is isomorphic to S by 

4.1(iv). Let S be a homomorphic image of Q. Then Q/E(Q) is not 

a module, and so E(Q)4C(Q). 

4*10. Proposition. E(Q)-reC(Q) iff Q is a subdirect pro­

duct of S and a module * 

Proof. Apply 4.1(iv),(v) and 4.9. 

4.11. Construction. Suppose that E(Q).#C(Q). Then A(Q) n 

n E(Q) = 0. Denote by f and g the natural homomorphisms of Q 

onto Q/A(Q) and Q onto Q/E(Q), resp. By 4.1(iv), Q/E(Q) is iso­

morphic to S. Moreover, g(C(Q))£ C(Q/E(Q)) and 0*g(C(Q)). Hen­

ce g(C(Q)) = C(Q/E(Q)) is isomorphic to J and g(C(Q)) =f0,x,yj. 

Let a,bcC(Q) be such that g(a) = x and g(b) = y. Then C(Q) is 

the disjoint union of the sets E(Q), a+E(Q), b+E(Q)# Since 

C(Q) = A(Q) + E(Q), f(E(Q)) = f(a+E(Q)) = f(b+E(Q)) * f(C(Q)). 

Consider a subquasimodule G of f(C(Q)) and a homomorphism h of 
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G onto g(C(Q))» Than G/Ker h is isomorphic to 1 and h indu­

ces an isomorphism k from G/Ker h onto g(C(Q)). Finally, let 

p:f(C(Q))~* f(C(Q))/G ana q:f(C(Q))—• f(C(Q))/Ker h be the 

natural homomorphisms. Denote by P the set of all c e C(Q) 

with f(c)c G and hf(c) » g(c). 

4.11.1. Lemma. P is a submodule of C(Q)f A(Q)o P = 0 

and P-M(Q). 

Proof. 0bviou8lyf P is a submodule of C(Q). Let c«A(Q)n 

n P. Then g(c) « hf(c) « 0f ccB(Q)oA(Q) * 0. Further, let 

zcG be such that h(z) • x. As f(a+B(Q)) * f(C(Q))f z * f(a+c) 

for some ccE(Q). We have f(a+c) » %€ G and hf(a+c) » h(z) * 

= x = g(a+c). Hence a+caP. But g(a+c) » xfO, and so a+c *) 

f E(Q). 

4.11.2. Lemma. P is a normal submodule of Q, A(Q)$P and 

S is not a homomorphic image of Q/P. 

Proof. P is normal, since it is contained in C(Q). Fur­

ther, A(Q)$P by 4.11.1 and S is not a homomorphic image of 

Q/P due to 4.11.1 and 4.5. 

4.11.3. Lemma. C(Q)/P is isomorphic to f(C(Q))/Ker h. 

Proof. Define a mapping t of C(Q) into f(C(Q))/Ker h by 

t(c) * k g(c) - qf(c) for every ci C(Q). Using the fact that 

f (C(Q))/Ker h is a module, it is easy to see that t is a homo-

morphism. If ccP then t(c) » k~Tif(c) - qf(c) « 0, and so 

PSrKer t. Conversely, if caKer tf then iT^gic) * qf(c)f f(c)€ 

a G and g(c) • hf(c), ce P. Thus Ker t = P and it remains to 

show that t(C(Q)) * f(C(Q))/lCer h. For, let ze f (C(Q))/Ker h 

be an element. We have z s qf(c) for some c*E(Q) and t(-c) = 

m qf(c) - k~*g(c) » qf(c) » z. 
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4.12. Lemma. Suppose that £(Q)+C(Q). Let P be a nor­

mal subquasimodule of Q auch that A(Q)-fcP and S is not a ho-

momorphic image of Q/P. Then P is a submodule of the type con­

structed in 4.11. 

Proof. By 4.1 and 4.5, PS C(Q) and P$B(Q). Let f:Q—* 

—> Q/A(Q) and g:Q—* Q/B(Q) be the natural homomorphisms. As 

we know, g(C(Q)) =--CO,x,yf is isomorphic to T. Since P$E(Q)9 

g(P) • g(C(Q)). Furthermore, A(Q)nP « 0 and f /P:P—* f(P) is 

an isomorphism. Consequently there is a homomorphism h:f(P)—-• 

—*• g(P) such that hf(c) = g(c) for every c€P. Obviously, 

hf(P) = g(C(Q)). Put f(P) + Q. If c e P then f(c)c Q and hf(c) = 

= g(c). Conversely, if e«C(Q), f(c)« 0 and hf(c) = g(c), then 

f(c) = f(d) for some dcP and we can write g(c) » hf(c) = 

« hf(d) » g(d). Thus c - d«A(Q> E(Q) = 0, c = d and cc P. 

The rest is clear. 

4-13. Theorem. Let Q be a non-associative quaaimodule 

with o(Q) *- 3. Let P be a subquasimodule of Q. Thent 

(i) P is normal, Q/P is a module and T is not a homomorphic 

image of Q/P iff P is not a module. 

(ii) P is normal, Q/P is a module and J is a homomorphic ima­

ge of Q/P iff P is a module and A(Q)£P. 

(iii) P is normal, Q/P is not a module and S is not a homo­

morphic image of Q/P iff P£C(Q) and either E(Q) = C(Q) and 

PnA(Q) = 0 or B(Q)4*C(Q) and P is a submodule of the type con­

structed in 4.11. 

(iv) P is normal and S is a homomorphic image of Q/P iff 

B(Q)+C(Q) and PfiE(Q). 

Proof. Apply the preceding results. 
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4.14. Lemma. Let f be a homomorphism of a quasimodule 

Q onto a quasimodule P. Suppose that P is not a module and 

o(Q)43. Then f(C(Q)) « C(P). 

Proof. By 4.5, Ker fgC(Q) and P/f(C(Q)) is isomorphic 

to Q/C(Q). According to 4.1, P/C(P) is isomorphic to Q/C(Q). 

Now, it is obvious that C(P) = f(C(Q)). 

5. Several consequences. In this section, suppose that R 

i9 commutative. 

5.1. Proposition. Let Q be a % -torsion quasimodule such 

that o ( Q ) . ? 3 . Then every proper subquasimodule of Q is a module. 

Proof. We can assume that Q is not a module. Let P be a 

proper subquasimodule auch that P is not a module. Since Q is 

noetherian, we can assume that Q is a maximal subquasimodule. 

By 4.8, P is normal and Q/P is not isomorphic to T, a contra­

diction. 

5.2. Proposition. Let Q be a aubdirectly irreducible qua-

simodule nilpotent of claas 2. Then Q is 3C -torsion and A(Q)4* 

4* 0 is the least non-zero normal subquaaimodule of Q. Moreover, 

A(Q) is isomorphic to T, and every proper factorquasimodule of 

Q is a module. 

Proof. Since Q is nilpotent of claas 2, 04= A(Q)S C(Q). 

By Ll, Proposition 5.43, Q is 3t -torsion. Further, A(Q) is a 

subdirectly irreducible primitive module. Hence A(Q) is isomor­

phic to T and the rest is evident. 

We 3hall say that a quasimodule Q satisfies the condition 

(oc ) if Q is not a module and every proper subquasimodule as 

well as factorquasimodule of Q is a module . 
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5*3. Theorem. The following condition are equivalent 

for a non-a33ociative quasimodule Q: 

(i) Q satisfies (<*:)• 

(ii) Every subquasimodule and every factorquaaimodule of Q 

i9 either a module or isomorphic to Q. 

(iii) Q is subdirectly irreducible and every subquaaimodule 

of Q i3 either a module or isomorphic to Q. 

(iv) Q is subdirectly irreducible and o(Q)£ 3. 

(v) o(Q)£3 and every factorquasimodule of Q ie either a mo­

dule or isomorphic to Q. 

Proof, (i) implies (ii). This is trivial, 

(ii) implies (iii). Q is not a module, and hence there is 

a subdirectly irreducible factor P of Q such that P is not a 

module. Thus P is isomorphic to Q. 

(iii) implies (iv). There are a,b,cc Q with a +(b+c) 4* 

4s" (a+b)+c. Denote by P the subquasimodule generated by these 

elements. Then P is not associative and P is isomorphic to Q. 

(iv) implies (v) and (i). Apply 5.1 and 5.2. 

(v) implies (iv). This is easy. 

5.4. Proposition. Let Q be a quasimodule satisfying (oc ). 

Then: 

(i) Q is subdirectly irreducible, nilpotent of class 2 and 

o(Q) = 3. 

(ii) Q is % -torsion, finite and I Q 1 = 3 n for some 4&n. 

(iii) 0*A(Q)<5 ^(Q) = C(Q) = A(Q) + .cKQ) and A(Q) = C(Q)o 

n X ( Q ) . 

(iv) A(Q) is isomorphic to T-and Q/C(Q) to T3. 

(v) Q is isomorphic to S, provided Q is primitive, 

(vi) If Q is not primitive then ^(Q) = E(Q) = C(Q). 
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Proof, (i) See 5.3. 

(ii) Use 5.2, 2.4 and 2.10. 

(iii) Since Q is not associative, 04*A(Q), Moreover, 

A(Q)S g~(Q) by £1, Lemma 4.203 and C(Q) « A(Q) + E(Q) by 4.1 

(vi). On the other hand, every simple factor of Q is isomor­

phic to T, and so E(Q)S 2-(Q). In particular, C(Q) =- A(Q) + 

+ E(Q)£^(Q). However, by£l, Proposition 4.12J, o(Q/^(Q))> 

= 3, hence |Q/^(Q))| » I Q/C(Q))| and ^ ( Q ) = C(Q». Finally, 

C(Q)n3C(Q) is a subdirectly irreducible primitive module. 

The rest is clear. 

(iv) Apply 5.2 and 4.1. 

(v) Let Q be primitive. Then Q is a homomorphic image 

of §• Thus Q is isomorphic to S. 

(vi) Let Q be not primitive. Then E(Q)-kO, A(Q)£B(Q) 

and E(Q) « C(Q). 

5.5. Proposition. A quasimodule Q is not associative iff 

there are two subquasimodules G, H of Q such that G is a nor­

mal subquasimodule of H and H/G is a quasimodule satisfying 

(oc). 

Proof. It suffices to show the direct implication. Sin­

ce Q is not a module, a+(b+c)«h (a+b)+c for some a,b,c6Q. Let 

H be the subquasimodule generated by these elements. Then H 

is not associative and there is a normal subquasimodule G of 

H such that H/G is subdirectly irreducible and not as90cia*ti-

ve. By 5.3, H/G satisfies (oc). 

5-6- Theorem. Let R be a principal ideal domain. Then, 

for every 4.6 n, there exists a quasimodule Q such that Q sa­

tisfies (os), lQ| -s 3 n and Q is not primitive. 

Proof. Let F be a free quasimodule of rank three and 
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let f denote the natural homomorphism of F onto F/A(F), Bjy 

4.1, 0 * A(F)nB(F), Ot .E(F) and C(F) *- A(F) • B(F). In par­

ticular, 04-f(C(F)) is a free module. Hence, there are two 

submodules 0, & of F(C(F)) such that H£ G, G/H is isomorphic 

to T and f(C(F))/H is a $ -torsion subdirectly irreducible 

cyclic module with 3n~3 elements. Further, let g:F—• F/B(F) 

be the natural homomorphism.*Then g(C(F)) * C(F/E(F)) is iso­

morphic to I (use 4.14). Hence there is a homomorphism h of 

G onto g(C(F)) such that H = Ker h. Consider the submodule P 

of C(F) corresponding to G, h in the sense of 4.11 and put Q = 

= F/P. By 4.11.2, Q is not associative and £ is not a homomor-

phic image of Q. We have o(Q) * 3. Bjy 4.14 and 4.11.3, C(Q) « 

« C(F)/P is isomorphic to f (C(F)) /H. In particular, C(Q) is 

subdirectly irreducible and Q is subdirectly irreducible by 

CI, Proposition 5.31. By 5.3, Q satisfies («c). Furthermore, 

tC(Q)|* 3n~3 and IQ/C(Q)|= 27. Thus IQ(= 3n. Finally, Q is not 

primitive, since § is not a homomorphic image of Q. 

6. Free quasimodules 

6.1. I-fiHOS* Let 0-f n and Q be a quasimodule such that 

o(Q)*n and Q/A(Q) is a free module of rank n. Suppose that 

iA(P)| £ I A(Q)I , where P is a free quasimodule of rank n. Then 

Q is isomorphic to P. 

Proof. Since o(Q)£ n, there is a homomorphism f of P on­

to Q. Further, let g;P — • P/A(P) and k:Q—^Q/A(Q) be the na­

tural homomorphisms. Since f(A(P)) = A(Q), f induces a homomor­

phism h of P/A(P) onto Q/A(Q). However, both P/A(P) and Q/A(Q) 

are free modules of the same finite rank and consequently h is 

an isomorphism. Now, let a*P and f(a) - 0. Then hg(a) = 
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= kf(a) * 0, g(a) = 0, acA(P). Thus Ker fcA(P). On the ot­

her hand, U ( P ) | £ I A(Q)j and f(A(P)) = A(Q). Since A(Q) is 

finite, f|A(P) is infective and Ker f = 0. 

6.2. Proposition. Let Q be a quasimodule and P be a free 

quasimodule of a finite rank n. Suppose that o(Q)-_r n and P is 

a homomorphic image of Q. Then Q is isomorphic to P. 

Proof. Put G = Q/A(Q). Then o(G)i- n and P/A(P) is a 

homomorphic image of G. But P/A(P) is a free module of rank n. 

Hence P/A(P) is isomorphic to G. The rest follows from 6.1. 

In the remaining part of the paper, assume that R is a 

principal ideal domain. 

6.3. Proposition. Let Q be a free quasimodule and P be a 

submodule of Q. ©ien there are a free module G and a primiti­

ve quasimodule H such that P is isomorphic to GxH. 

Proof. Denote by f the natural homomorphism of Q onto 

Q/A(Q). Then f(P) is a free module and consequently P is iso­

morphic to the product f(P)x Hf where H = Ker fn A(Q). 

6.4. Lemma. Let Q be a finitely generated quasimodule 

such that Q is not associative, o(Q/A(Q))^3 and Soc(Q/A(Q)) = 

= 0. Then Q is free of rank 3. 

Proof. Since A(Q)£ J-(Q), o(Q/p.(Q)) = o(Q) and Q is not 

associative, o(Q) = p(Q/A(Q)) = 3. On the other hand, Q/A(Q) 

is a finitely generated module with zero socle. Therefore 

Q/A(Q) is a free module. Finally, let P be a free quasimodule 

of rank 3. Then A(P) is isomorphic to T, and so it is a homo­

morphic image of A(Q). 3y 6.1, Q is isomorphic to P. 

6-5. Proposition. Let Q be a free quasimodule of rank 3. 

Then A(Q) = X (Q) is isomorphic to £, E(Q) to H3 and C(Q) to 
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R3x 2. Hence o(C(Q)) = 4. 

Proof. A(Q) « 3C(Q), since 3C(Q/A(Q)) » 0. By 4.1, 

A(Q) is isomorphic to T. Further, Q/B(Q) is isomorphic to S, 

E(Q)nA(Q) » 0 and C(Q) » E(Q) 4- A(Q). Thus C(Q) is isomorp­

hic to E(Q)*T and E(Q) to E(Q/A(Q)). However, E(Q/A(Q)) is 

isomorphic to E(.fr) and E(R^) is isomorphic to r . 

6-6* Theorem. Let Q be a free quasimodule of rank 3# A 

quasimodule P is isomorphic to a subquasimodule of Q iff it 

is isomorphic to one of the following quasimodules: 0, J, R, 

R , R-*, RxT, IfxJ, %rx T, Q. Hence P is isomorphic to Q, 

provided it is not a module • 

Proof. First, let P be a subquasimodule of Q. The fac­

tor Q/A(Q) is a free module of rank 3. If P is not associati­

ve then A(P) = A(Q) and P/A(P) is a free module. By 6.4, P is 

isomorphic to Q. Now, suppose that P is a module. In this ca­

se, we can use 6.3. The converse assertion follows from 6.5. 

6*7- Corollary. Let Q be a quasimodule with o(Q)&3 and 

let P be a subquasimodule of Q. Then o(P)^4. Moreover, if P 

is not associative then o(P) =3. 
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