Commentationes Mathematicae Universitatis Caroline

Věra Trnková
 Behaviour of machines in categories

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 2, 267--282

Persistent URL: http://dml.cz/dmlcz/105926

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 20,2 (1979)

behaviour of machines in categories Vëra TRNKOVA

Abstract: Functorial machines in the catecory Set of sets are introduced such that they include Arbib Manes machines in Set and Eilenberg's X-machines. Their behaviour is introduced as the smallest solution of a suitable equation and the coincidence of the usual notion of the behaviour is proved.
Key words: Category, functor, relation, machine, automaton, functorial algebra, behaviour.
AMS: 18B20

In [E], S. Eilenberg introduces a notion of X-machines and the relation computed by it. He unifies the description of the action of two ways automata, push-down automata, Turing machines and, as he says, "the list of examples could be continued indefinitely ([E, p. 288]). In [AM], M.A. Arbib and E.G. Manes define functorial machines in a category to unify the description of sequential automata, tree automata and others. In the present paper, we define functorial machines and their behaviour and show that this makes it possible to describe the above X-machines of [E] and Arbib Manes functorial machines and their action in a unified way. The smal-lest-solution-technique is used here in a general functorial
form. To keep the formal apparatus simple, we deal with the category Set of all sets only. Some generalizations are sketched at the end of the paper.

I. Machines and their behaviour

1. Denote by Set the category of all sets and all their mappings and by Rel the category of all sets and all their (binary) relations, no matter whether a binary relation r : $: A \rightarrow B$ is supposed to be a mapping of A into the set of all subsets of B or to be an ordered triple (A, C, B), where $C \subset A \times$ $\times B$ or to be the ordered pair $\left(\pi_{A}, \pi_{B}\right)$, where $\pi_{A}: C \rightarrow A$, $\pi_{B}: C \rightarrow B$ are the projections; any of the three forms of the description will be used. Moreover, if $\alpha: X \rightarrow A, \beta: X \rightarrow B$ are mappings, we denote by $[\alpha, \beta]$ the relation $(A,\{6(x), \beta(x)) \mid x \in X\}, B)$. (Let us indicate by $A \rightarrow B$ a mapping and by $A \rightarrow B$ a relation; - denotes the composition of mappings and 0 the composition of relations.)
2. If $r_{i}: A \longrightarrow B$ are relations, $r_{i}=\left(A, C_{i}, B\right)$, we define, as usual,
$r_{1} \leqslant r_{2}$ iff $C_{1} \subset C_{2}$,
$r_{1}+r_{2}=\left(A, C_{1} \cup C_{2}, B\right)$ (more generally, $\sum_{i} r_{i}=$
$=\left(A, \bigcup_{i} C_{i}, B\right)$,
$r_{i}^{-1}=\left(B, C_{i}^{-1}, A\right)$.
3. Let F:Set \rightarrow Set be a functor. A relational F-algebra is any pair $\left(Q, \delta^{\prime}\right)$, where Q is a set ard $\delta^{N}: F Q \rightarrow Q$ is a relation. If \mathcal{J}^{\sim} is a mapping.then $\left(Q, \mathcal{J}^{\sim}\right)$ is called only F-algebra. A homomorphism $h:\left(Q, \sigma^{\circ}\right) \longrightarrow\left(Q^{\circ}, \sigma^{\prime}\right)$ of F-algebras is every mapping $h: Q \rightarrow Q^{\circ}$ such that $\delta^{\prime} \cdot h=F(h) \cdot \sigma^{\prime}$. A free

F-algebra over a set I consists of an F-algebra ($I^{\#}, \varphi$) and a mapping $\eta: I \longrightarrow I^{\#}$ with the following universal property: for every F-algebra (Q, δ^{\prime}) and every mapping $i: I \rightarrow Q$ there exists a unique homomorphism $i^{\#}:\left(I^{\#}, \varphi\right) \rightarrow\left(Q, \sigma^{\sim}\right)$ such that $\eta \cdot i^{\#}=i$. The mapping $i^{\#}$ is called a free extension of i (with respect to δ^{N}) [AM].

A functor $F: S e t \rightarrow$ Set for which a free F-algebra exists over any set I is called a varietor. All varietors in Set were characterized in [KK].
4. Let $F: S e t \rightarrow$ Set be a functor. We extend it to a mapping $\bar{F}: \operatorname{Rel} \longrightarrow \operatorname{Rel}$ by the rule

$$
F[\alpha, \beta]=[F(\alpha), F(\beta)]
$$

If $\left[\alpha_{1}, \beta_{1}\right]=\left[\alpha_{2}, \beta_{2}\right]$, then $\left[F\left(\alpha_{1}\right), F\left(\beta_{1}\right)\right]=\left[F\left(\alpha_{2}\right), F\left(\beta_{2}\right)\right]$ For, put $\left\{\left(\alpha_{1}(x), \beta_{1}(x)\right) \mid x \in X_{1}\right\}=c=\left\{\left(\alpha_{2}(x), \beta_{2}(x)\right) \mid x \in X_{2}\right\}$ and denote by $\pi_{A}: C \rightarrow A, \pi_{B}: C \rightarrow B$ the projections. Then $\rho_{i} \cdot \pi_{A}=\alpha_{i}, \rho_{i}: \pi_{B}=\beta_{i}$ for a surjective mapping $\varsigma_{i}:$ $: X_{i} \rightarrow C, i=1,2$. Since $\rho_{1}, \rho \rho_{2}$ are retractions, $F\left(\rho_{1}\right)$ and $F\left(\rho_{2}\right)$ are also surjective. Hence $\left[F\left(\alpha_{1}\right), F\left(\beta_{1}\right)\right]=$ $=\left[F\left(\rho_{1}\right) \cdot F\left(\pi_{A}\right), F\left(\rho_{1}\right) \cdot F\left(\pi_{B}\right)\right]=\left[F\left(\pi_{A}\right), F\left(\pi_{B}\right)\right]=$ $=\left[F\left(\rho_{2}\right) \cdot F\left(\pi_{A}\right), F\left(\rho_{2}\right) \cdot F\left(\sigma_{B}\right)\right]=\left[F\left(\sigma_{2}\right), F\left(\beta_{2}\right)\right]$. The mapping $F: \operatorname{Rel} \longrightarrow \operatorname{Rel}$ has the following properties:

1) $\bar{F}\left(r_{1} \circ r_{2}\right) \leq \bar{F}\left(r_{1}\right) \circ \bar{F}\left(r_{2}\right)$;
2) if $r_{1} \triangleq r_{2}$, then $\bar{F}\left(r_{1}\right) \leqslant \bar{F}\left(r_{2}\right)$;
3) $\bar{F}\left(r^{-1}\right)=(\bar{F}(r))^{-1}$.

In $\left[T_{1}\right]$, all the functors $\bar{F}: S e t \rightarrow$ Set, for which the extension $\bar{F}: \operatorname{Rel} \longrightarrow \operatorname{Rel}$ satisfies the stronger condition
$\left.1^{\prime}\right) \quad \bar{F}\left(r_{1} \circ r_{2}\right)=\bar{F}\left(r_{1}\right) \circ F\left(r_{2}\right)$
(i.e. F is an endofunctor of Rel) are characterized. Since we
need this in II., we recall the characterization. We say that $F: S e t \longrightarrow$ Set covers pullbacks if, for every pullbacks

the unique mapping ρ which fulfils $\rho \cdot \tilde{\alpha}_{i}=F\left(\bar{\alpha}_{i}\right), i=$ $=1,2$, is surjective.

Proposition $\left[T_{1}\right]: \bar{F}: \operatorname{Rel} \longrightarrow \operatorname{Rel}$ is an endofunctor iff F covers pullbacks.
5. Let $F: S e t \rightarrow$ Set be a functor. Let us denote by the same letter $F: R e l \rightarrow R e l$ its extension as in 4 .

An F-machine $|\mathbb{M}|$ in Set consists of the following data. Two-relational F-algebras, say
(J, Ψ)... called the type algebra of M and
$\left(Q, \sigma^{\prime}\right) \ldots$ called the state algebra of $\mathbb{M} \mid$ and three relations situated as follows.
$\alpha: A \rightarrow J$ called the input code of $M 1$,
$i: J \rightarrow Q$ called the initiation of M,
$y: Q \rightarrow Y$ called the output of $|M|$.
The situation is visualized on the picture below.

We write $M=\left(\alpha,(J, \psi), \iota,\left(Q, \delta^{\circ}\right), y\right)$.
6. The run $L^{*}: J \rightarrow Q$ of a machine $M \|=[\alpha,(J, \psi), \iota$, $\left.\left(Q, \delta^{\circ}\right), y\right)$ is defined as the smallest solution of the equation

$$
x=\iota+\psi^{-1} \circ F(x) \bullet \sigma^{r} .
$$

The behaviour of M is defined by

$$
\text { beh } \mathbb{M} \mid=\infty \cdot l^{*} \circ y .
$$

7. The run construction. Let $=\{\infty,(J, \psi), \iota$, $\left.\left(Q, \delta^{\prime}\right), y\right)$ be an F-machine. We define by induction over all ordinals

$$
\begin{gathered}
r_{0}=l, \\
r=\sum_{\beta<\infty} \sum_{\beta+1}=l+\psi^{-1} \circ F\left(r_{\alpha}\right) \circ \sigma^{\sigma}, \\
r_{\beta} \text { limit ordinal. }
\end{gathered}
$$

We say that the run construction stops (after γ steps) if $r_{\gamma}=r_{\gamma+1}$. Then $r_{\gamma}=r_{\gamma}$ for all $\gamma^{\prime} \geq \gamma^{\prime}$.

Lemma. If $\alpha \leqslant \alpha^{\prime}$, then $r_{o c} \leqslant r_{\alpha^{\prime}}$.
Proof by induction.
Corollary. The run construction always stops, at most after card ($J \times Q$) steps, no matter what the functor F is.

Proposition. If $r_{\gamma}=r_{\gamma+1}$, then $r_{\gamma}=\iota^{*}$ is the run of Mil.

Proof. If $r_{\gamma}=r_{\gamma+1}$, then r_{γ} is a solution of the equation $x=\imath+\psi^{-1} \circ F(x) \circ \delta^{\prime}$, evidently. Let $\sigma: J \longrightarrow Q$ be a relation such that $\sigma=\iota+\psi^{-1} \circ F(\sigma) \cdot \sigma^{\infty}$. Then $r_{\infty}=\sigma$ for all ordinals \propto (the straightforward proof by induction is omitted) hence $\iota^{*} \leq 6$. Thus, ι^{*} is the smallest solution of the equation.
8. Let $\mathbb{M}=\llbracket \propto,(J, \psi), \iota,\left(Q, \delta^{\circ}\right), y \backslash$ be a machine.

A reversed machine \mathbb{N}^{-1} is defined to be $\mathbb{I} y^{-1},\left(Q, \sigma^{\circ}\right), \iota^{-1}$, (J, ψ) , \propto^{-1}].

Observation: run $\left.M\right|^{-1}=\left(\right.$ run $N M^{-1}$, beh $\left.\mathbb{N i}\right|^{-1}=(\text { beh } \mathrm{Mi})^{-1}$.
9. A machine $\mathbb{M}=\left[\propto,(J, \psi), \iota,\left(Q, \delta^{\circ}\right), y\right]$ is called standard if $\Psi: F J \rightarrow J$ is a mapping.

Proposition. Let $\mathbb{N}=[\alpha,(J, \psi), \iota,(Q, \delta), y\rangle$ be a standard machine. Then its run ι^{*} is the smallest relation $J \longrightarrow Q$ such that

$$
\begin{aligned}
\psi \cdot \iota^{*} & \geq F\left(\iota^{*}\right) \circ \sigma^{\sigma}, \\
\iota^{*} & \geq し .
\end{aligned}
$$

Proof. First, let us notice that if $\psi: F J \rightarrow J$ is a mapping, then $\psi \cup \psi^{-1} \geq 1_{F J}, \psi^{-1} \circ \psi \leq I_{J}$.
a) The run ι^{*} is the smallest solution of the equation $x=$ $=\downarrow+\psi^{-1} \circ F(x) \circ \sigma^{\circ}$. Hence $\iota^{*} \geq \downarrow$ and $\psi \circ \iota^{*}=$ $=\psi \circ\left(L+\psi^{-1} \circ F\left(\iota^{*}\right) \circ \sigma^{\prime}\right)=\psi \circ \iota+\psi \circ \psi^{-1} \circ F\left(\iota^{*}\right) \circ \delta^{\prime} \geq$ $\geq F\left(\iota^{*}\right) \cdot \sigma^{\circ}$
b) Let ρ be a relation $J \rightarrow Q$ such that $\psi^{\circ} 0 \rho \geqslant F(\rho)$ o σ^{\sim} and $\rho \geq \downarrow$. We show $r_{\alpha} \leqslant \rho$ for all ordinals α, by induction. Clearly $\iota=r_{0} \leq \rho$. If $r_{\alpha} \leq \rho$, then $r_{\alpha+1}=\downarrow+$ $+\psi^{-1} \circ F\left(r_{\alpha}\right) \circ v^{n} \leq \iota+\psi^{-1} \circ F(\rho) \circ \sigma^{\circ} \leq \iota+\psi^{-1} \circ \psi \circ \rho \leq$ $\leq L+\rho \leq \rho$. If $r_{\beta} \leq \rho$ for all $\beta<\alpha$, then $\sum_{\beta<\alpha} r_{\beta} \leq$ $\leq \rho$. We conclude that $L^{k} \leq \rho$.

Remark. In $\left[T_{1}\right],\left[T_{2}\right]$ the run of a machine is defined as the smallest relation which fulfils the above inequalities. As it is proved, this coincides with our definition of run for standard machines, but not in general.
10. Let $F: S e t \rightarrow$ Set be a varietor (see 3.). We say that
an F-machine $M=\llbracket \alpha,(J, \psi), \iota,\left(Q, \delta^{\circ}\right), y \rrbracket$ is a free machine if its input code \propto is the identity l_{J}, its type algebra (J, ψ) is a free F-algebra over a set I and its initiation ι factors through $\left[\eta, I_{I}\right]$ where $\eta: I \longrightarrow I^{*}$ is the universal mapping of the free F-algebra ($\left.I^{*}, \varphi\right)=(J, \Psi)$ (see 3.). Free machines coincide with relational automata, investigated in $\left[T_{1}\right]$. We say that M is a free deterministic ma= chine if it is a free machine such that $\delta^{\prime}: F Q \rightarrow Q$ and $y:$ $: Q \longrightarrow Y$ are mappings and $L=[\eta, i]$, where $i: I \rightarrow Q$ is a mapping. Free deterministic machines coincide with the ArbibManes machines in the category Set, see [AM]. The definition of behaviour also coincides (in [AM], the behaviour is defined to be $i^{\#} \cdot y: I^{\#} \rightarrow Y$, where i^{*} is the free extension of $i: I \rightarrow Q)$. This follows from the proposition below.

Proposition. Let $M i=\left[I_{I^{*}},\left(I^{*}, \varphi\right),[\eta, i],\left(Q, \delta^{\prime}\right), y\right]$ be a free deterministic machine. Then its run ι^{*} is the free extension i^{*} of i.

Proof. Since every free machine is a standard one, it is sufficient to prove that the free extension $i^{\#}$ is the smallest relation $I^{\#} \longrightarrow Q$ which fulfils $\varphi \cdot i^{\#} \geq F\left(i^{*}\right)$ 。 $\boldsymbol{\sigma}^{\prime}$ and $i^{\#} \geq[\eta, i]$. Clearly, $i^{\#}$ really fulfils the inequalities. Now, let $r: I^{\#} \longrightarrow Q$ be a relation such that $\varphi \circ r \geq F(r) \circ \sigma^{r}$ and $r \geq[\eta, i]$. Let $r=\left(I^{\#}, C, Q\right)$, let $\alpha: C \rightarrow I^{\#}, \beta: C \rightarrow$ $\longrightarrow Q$ be projections. Let $\varphi, \alpha, \tilde{\varphi}, \tilde{\infty}$ form a pullback ($\tilde{\varphi}$ opposite to $\varphi, \tilde{\alpha}$ opposite to α). Denote by X the common domain of $\tilde{\alpha}$ and $\tilde{\varphi} \cdot \beta$. Then $\varphi \circ r=[\tilde{\alpha}, \tilde{\varphi} \cdot \beta]$ and, since X is the preimage of C in the mapping $\varphi \times l_{Q}, \tilde{\alpha}: X \rightarrow$ $\rightarrow F J, \widetilde{\varphi} \cdot \beta: X \rightarrow Q$ are projections again. Since $\varphi \circ r \geq$
$\geq F(r) \circ \sigma^{\sigma}$, there exists a mapping $\rho: F(C) \longrightarrow X$ such that $\rho \cdot \tilde{\infty}=F(\infty), \rho \cdot \tilde{\rho} \cdot \beta=F(\beta) \cdot \sigma^{\prime}$. Since $r \geq[\eta, i]$, there exists a mapping $\gamma: I \rightarrow C$ such that $\gamma \cdot \alpha=\eta, \gamma \cdot \beta=$ $=$ i. Consider the F-algetra ($C, \rho \cdot \tilde{\varphi})$. Denote by $\gamma^{*}:\left(I^{*}, \varphi\right) \rightarrow$ $\longrightarrow(c, \rho \cdot \tilde{\varphi})$ the free extension of γ. Since $\rho \cdot \tilde{\varphi} \cdot \alpha=$ $=\rho \cdot \tilde{\sim} \cdot \varphi=F(\propto) \cdot \varphi$, we conclude that $\propto:(c, \rho \cdot \tilde{\varphi}) \longrightarrow$ $\longrightarrow\left(I^{*}, \varphi\right)$ is a homomorphism. Since $\gamma^{*} \cdot \alpha$ is a homomorphism of (I^{*}, φ) into itself and $\eta \cdot\left(\gamma^{*}, \alpha\right)=\gamma, \propto=\eta$, $\gamma^{*} \cdot \alpha$ must be $I_{I^{*}}$. Since $\beta:(C, \rho \cdot \tilde{\varphi}) \longrightarrow\left(Q, \alpha^{*}\right)$ is a homomorphism and $\eta \cdot \gamma^{\#} \cdot \beta=i$, the mapping $\gamma^{\#} \cdot \beta$ is equal to i^{*}. We conclude that $i^{*}=\left[l_{I^{*}}, i^{\#}\right]=$ $=\left[\gamma^{*}, \alpha, \gamma^{\#} \cdot \beta\right] \leqslant[\alpha, \beta]$.

Note. The above proof could be simplified for Set, but we preferred the form which works for general categories without any modification.

II. Free components of machines

1. Let $F:$ Set \longrightarrow Set be a varietor. Let

$$
W=\llbracket \alpha,(J, \psi), \iota,(Q, J), y \rrbracket
$$

be an F-machine. Let its initiation be expressed as $\iota=(J, I, Q)$, IcJxQ, let $\rho: I \rightarrow J, \sigma: I \rightarrow Q$ be the projections. Let (I^{*}, φ) and $\eta: I \longrightarrow I^{*}$ form the free F-algebra over the set I. We define free components of (the first $M M_{1}$ and the second $\mathbb{M H}_{2}$) as

$$
\begin{aligned}
& m_{1}=\left(I_{I^{*}},\left(I^{*}, \varphi\right),[\eta, \rho],(J, \psi), \infty^{-1}\right), \\
& m_{2}=\left(I_{I^{*}},\left(I^{*}, \varphi\right),[\eta, \sigma],\left(Q, \sigma^{*}\right), y\right] .
\end{aligned}
$$

Clearly, M_{1} and M_{2} are free machines. M_{1} is deterministic iff \mathbb{M} is standard. $\mathbb{W} \|_{2}^{\prime}$ is deterministic iff $\mathbb{M} \mathbb{M}^{-1}$ is standard. The situation is visualized on the following picture.

chine. Let \mathbb{M}_{1} and \mathbb{M}_{2} be its first and the second free components.

Proposition. run $|M| \leq\left(\text { run }\|M\|_{1}\right)^{-1}$ orun $\mid M \|_{2}$. If either $|\mathbb{M}|$ or M^{-1} is standard of if F covers pullbacks, then
run $\mid \mathbb{M}=\left(\text { run } \mathbb{M} \mathbb{M}_{1}\right)^{-1} \circ$ run $\mathbb{M} \|_{2}$ and
beh $\mathbb{M N}=\left(\text { beh } \mid M \|_{1}\right)^{-1} \circ$ beh \mathbb{M}_{2}.
Proof. Let us apply the run construction on $\mathbb{M N}_{1}, \mathbb{M}_{2}$ and $W_{3}=W M$. Denote the corresponding r_{α} 's by $r_{i, \alpha}, i=$ $=1,2,3$. Clearly, $r_{3,0}=r_{1,0}^{-1} \circ r_{2,0}$. If $r_{3, \propto} \leqslant r_{1, \propto}^{-1} \circ r_{2, \infty}$, then $r_{3, \alpha+1}=r_{3,0}+\psi^{-1} \circ F\left(r_{3, \alpha}\right) \circ \delta^{v} \leqslant r_{1,0}^{-1} \circ r_{2,0}+$ $+\psi^{-1} \circ F\left(r_{1, \infty}^{-1}\right) \circ \varphi \circ \varphi^{-1} \circ F\left(r_{2, \infty}\right) \circ \sigma^{\sim}=r_{1, \infty+1}^{-1} \circ r_{2, \alpha+1}$ (the last equality is based on the fact that $I^{\#}$ is a coproduct of I and FI^{*} with the coproduct-injections $\eta: I \longrightarrow I^{*}, \varphi: \mathrm{FI}^{\#} \rightarrow$ $\longrightarrow I^{\#}$, hence the relations $\eta \circ \varphi^{-1}$ and $\varphi \cdot \eta^{-1}$ are empty). The limit step is evident. We conclude that run $\mathbb{M I} \leq$ \leq (run $\left.M i_{1}\right)^{-1}$ o run $|M|_{2}$. If either $M \mathbb{M}$ or $\| W^{-1}$ is standard or if F covers pullbacks (see I.4.), then always $F\left(r_{1, \alpha}^{-1}\right)$ o - $F\left(r_{2, \infty}\right)=F\left(r_{1, \infty}^{-1} \circ r_{2, \infty}\right)$. This makes it possible to show that $r_{3, \infty}=r_{1, \infty}^{-1} \circ r_{2, \infty}$ for all \propto, so run $W M=\left(\text { run } M \|_{1}\right)^{-1}$ 。

- run W_{2}. The second equation concerning beh M is an immediate consequence of the first one.

3. Let us say that a pullback

is the pullback formed by f and g. We say that $F: S e t \rightarrow$ Set preserves preimages if the F-image of every pullback formed by a pair of mappings f, g with f one-to-one, is a pullback again. By $\left[T_{1}\right]$ if F covers pullbacks, then it preserves preimages.

Proposition. Let $F:$ Set \longrightarrow Set be a preimage preserving varietor. Then the equation
beh $M=\left(\text { beh } M M_{1}\right)^{-1} 0$ beh $M M_{2}$
holds for every F-machine (with $W M_{1}$ and M_{2} being the free components of) if and only if F covers pullbacks.

Proof. By 2., we have only to show that if F does not cover pullbacks, then there exists an F-machine M with beh $M \neq\left(\text { beh } M M_{1}\right)^{-1}$. beh $M i_{2}$. It will be shown in several steps.
a) Since F does not cover pullbacks, it is not a constant functor. Denote by $F \emptyset=D$. Then we may suppose (up to natural equivalence) that $D C F X$ for every set X and (Ff) $(d)=d$ for every mapping I and every $d \in D$. Since F is supposed to preserve preimages, we have

$$
(F P)(F X) \cap\left(F_{g}\right)(F Y)=D
$$

for every pair of mappings $f: X \rightarrow A, g: Y \rightarrow A$ with $f(X) \cap g(X)=$ $=\varnothing$ and f being one-to-one.
b) Lemma. Let there exist a cardinal m such that
card $(F X \backslash D) \leqslant m$ for all sets X. Then F is a constant functor.
Proof. By [K], if card $F X<c$ ard X for some set X, then F is constant up to X.
c) Lemma. Let F do not cover pullbacks. Then there exists a non-empty set L and mappings $\mu_{i}: F L \longrightarrow F L, i=1,2$, such that $\mu_{i}(d)=d$ for all $d \in D$ and F does not cover the pullback formed by μ_{1} and μ_{2}.

Proof. Since F does not cover pullbacks, there exist mappings $f_{1}: A_{1} \rightarrow A_{3}, f_{2}: A_{2} \rightarrow A_{3}$ such that F does not cover the pullback formed by f_{1} and f_{2}. Put $m=\psi_{0} \cdot \max _{j=1,2,3}$ card A_{j}. Then F does not cover the pullback formed by $I_{m} \| f_{1}$ and $I_{m} \| f_{2}$ (where 11 denotes a coproduct in Set). Denote $f_{i}^{\prime}=$ $=I_{m}\left\|f_{i}, i=1,2, A_{j}=m\right\| A_{j}, j=1,2,3$. By the choice of m we obtain card $A_{j}^{\prime}=m$ for $j=1,2,3$. Find a non-expty set L such that c ard (FL $\backslash D) \geq m$ (this is possible, by b)) and choose one-to-one mappings $\gamma_{j}: A_{j} \rightarrow F L D D$ such that $F L \backslash\left(D \cup \gamma_{j}\left(A_{j}^{j}\right)\right)$ have the same cardinality for $j=1,2,3$. Choose a bijection $\boldsymbol{\sigma}_{i}$ of $F L \backslash \gamma_{i}\left(A_{i}^{\prime}\right)$ onto $\mathrm{FL}_{3}\left(\mathcal{A}_{3}^{\prime}\right)$, identical on $D, i=1,2$, and define $\mu_{i}: F L \rightarrow F L$ as $\gamma_{i}^{-1} \circ f_{i}^{\prime} \circ \gamma_{3}$ on $\gamma_{i}\left(A_{i}^{\prime}\right)$ and σ_{i} on $F L \gamma_{i}\left(A_{i}^{\prime}\right)$. Then F does not cover the pullback formed by μ_{1} and μ_{2}.
d) Now, we finish the proof of the proposition. Let L and $\mu_{i}: F L \rightarrow F L$ be as in c). Denote by $\varepsilon_{1}: I \rightarrow L H F L$ and $\varepsilon_{2}: F L \longrightarrow$ LI FI the coproduct injections. Put

$$
M=L H F(L H F L)
$$

and denote by $e_{1}: L \rightarrow M$ the first coproduct injection $V: F(L \| F L) \rightarrow M$ the second coproduct injection and put
$\left(F \varepsilon_{1}\right) \cdot \nabla=e_{2}: F L \rightarrow M,\left(F \varepsilon_{2}\right) \cdot V=e_{3}: F F L \rightarrow M$.
We have $\left(F \varepsilon_{1}\right)(F L) \cap\left(F \varepsilon_{2}\right)(F F L)=$. Define $q_{i}: F M \rightarrow M$ by
$q_{i}=\left[\mu_{i} \cdot \mathrm{Fe}_{1}, \mathrm{e}_{2}\right]+\left[\mathrm{Fe}_{2}, \mathrm{e}_{3}\right]$. We define a machine MI as follows:
$|M|=\left[1,\left(M, q_{1}\right),\left[e_{1}, e_{1}\right],\left(M, q_{2}\right), 1\right)$.
We show that run $\mathbb{M M} \neq\left(\text { run } M \|_{1}\right)^{-1}$ 。 run $\mathbb{M} \|_{2}$. Denote by c_{i}^{*} the run of $\mid M_{i}, i=1,2,3\left(\left.\mathbb{M}\right|_{3}=\mathbb{M i}\right)$. Then $e_{1} \circ L_{3}^{+} \cdot e_{1}^{-1}=$ $=I_{l}$ and $e_{2} \circ \dot{c}_{3}^{*} \circ e_{2}^{-1}=e_{2} \circ\left[e_{1}, e_{1}\right] \circ e_{2}^{-1}+e_{2} \circ e_{2}^{-1} \circ \mu_{1} \circ$ $\bullet \mathrm{Fe}_{1} \circ \mathrm{Fl}_{3}^{*} \circ \mathrm{Fe}_{1}^{-1} \circ \mu_{2}^{-1} \circ \mathrm{e}_{2} \circ \mathrm{e}_{2}^{-1}$.
Since the first summand is \emptyset and since $\mathrm{Fe}_{1} \circ \mathrm{FL}_{3}^{*} \circ \mathrm{Fe}_{1}^{-1}=$ $=F\left(e_{1} \circ l_{3}^{*} \circ e_{1}^{-1}\right)$ (because F preserves preimages), we obtain

$$
e_{2} \circ \iota_{3}^{*} \circ e_{2}^{-1}=\mu_{1} \odot F\left(e_{1} \circ \dot{v}_{3} \circ e_{1}^{-1}\right) \circ \mu_{2}^{-1}=\mu_{1} \circ \mu_{2}^{-1}
$$

$$
e_{3} \circ i_{3}^{*} \odot e_{3}^{-1}=e_{3} \circ e_{3}^{-1} \cdot \mathrm{Fe}_{2} \odot \mathrm{Fe}_{3}^{*} \odot \mathrm{Fe}_{2}^{-1} \odot e_{3} \circ e_{3}^{-1}=
$$

$$
=F\left(e_{2} \circ i_{3}^{*} \circ e_{2}^{-1}\right)=F\left(\mu_{1} \circ \mu_{2}^{-1}\right)
$$

One can prove analogously that $e_{3} \circ\left(L_{1}^{*}\right)^{-1} \circ \iota_{2}^{*} \circ e_{3}^{-1}=$ $=F \mu_{1} \circ F \mu_{2}^{-1}$. Since F does not cover the pullback formed by μ_{1} and μ_{2}, we conclude that $i_{3}^{*} \neq\left(i_{1}^{*}\right)^{-1} \circ L_{2}^{*}$.

Problem. Does the above proposition hold without the assumption that F preserves preimages?
4. Examples. Let Ω be a type, i.e. a set endowed with an arity function ar: $\Omega \rightarrow\{$ cardinals $\}$. The functor $F_{\Omega}:$ $:$ Set \rightarrow Set is defined by

$$
F_{\Omega} x=\frac{\mu_{\epsilon} 1}{} x^{\operatorname{ar}(\omega)}, F_{\Omega} f=\frac{11}{\omega \Omega} f^{\operatorname{ar}(\omega)} .
$$

As it is well-known, F_{Ω} preserves pullbacks for every Ω and every arity function, so it covers pullbacks. Denote By P: $: S e t \rightarrow$ Set the covariant power-set functor, i.e. $P X=\{Z \subset X\}$, $P f$ sends Z to $f(Z)$.
For any cardinal m, denote by $P_{m}:$ Set \rightarrow Set its subfunctor defined by

$$
P_{m} X=\{Z \in X \mid \operatorname{card} Z \leqslant m\} .
$$

All the functors $P, P_{m}, m \in\{$ cardinals $\}$, preserve preimages. P covers pullbacks (but it does not preserve them), but
P_{m} covers pullbacks iff either $m<3$ or $m \geq \psi_{0}$.
(For example, P_{3} does not cover the pullback formed by $f:\{0,1,2\} \rightarrow\{0,1\}$ and $g:\{0,1,2\} \rightarrow\{0,1\}$: where $f(0)=$ $=f(1)=0, f(2)=1, g(0)=0, g(1)=g(2)=1$.
Hence, by 3. , there exists a P_{3}-machise $i M 1$ with mun $|M|<$ $<$ (run $\left.\mid \mathbb{M}_{1}\right)^{-1}$ o run $\mathbb{M l}_{2}$. On the other hand, there exists no such F-machine with either $F=F_{\Omega}$ or $F=P$ or $F=P_{m}$ with $m<3$ or $m \geqslant 50^{\circ}$

III. Relations computed by X -machines

1. Let us recall (with formal modifications) the notion of an X -machire in the sense of Eilenberg [E, p. 267]. An Xmachine \mathcal{M} over an alphabet Σ consists of the following data.
a) A finite Σ-automaton $\mathcal{A}=(Q, I, T)$ (i.e. a finite set Q of states, $I \subset Q$ initial states, $T \subset Q$ terminal states) with a next state relation $\delta^{\sigma}: Q \times \Sigma \longrightarrow Q_{i}$
b) a relation $\rho: \mathrm{X} \times \Sigma \rightarrow \mathrm{X} \rightarrow$
c) an input code $\alpha: A \longrightarrow X$ and an output code $\omega: X \rightarrow$
$\longrightarrow Y$.
For every $\sigma \in \Sigma$, let us denote $\rho(-, \sigma): X \rightarrow X$ by R_{σ} and $\delta(-, \sigma): Q \rightarrow Q$ by D_{σ}. The relation $|\mathcal{M}|: X \longrightarrow X$ is defined in $[E]$ ae $\cup R_{\sigma_{1}}^{0} \ldots \cup R_{\sigma_{n}}$, where the union is taken over all strings $\sigma_{1} \ldots \sigma_{n}$ accepted by the automaton \mathcal{A}. The relation computed by \mathcal{H} is defined as $\propto \cdot|\mathcal{M}| \circ \omega$. Define $F_{\Sigma}:$ Set \rightarrow Set by $F_{\Sigma} A=A \times \Sigma, F_{\Sigma} f=f^{1} \boldsymbol{1}_{\Sigma}$.

For every X-machine $\boldsymbol{\mu}$ define an $\mathrm{F}_{\boldsymbol{\Sigma}}$-machine $\mathbb{N}(\mathcal{M})$ as follows.
$M(M)=\left[\propto,(X, \pi),\left[p, 1_{X} \times i\right],(X \times Q, \lambda),\left[I_{X} \times t, \bar{p}\right] \circ \omega\right]$, where $i: I \longrightarrow Q, t: T \rightarrow Q$ are inclusions; $\pi: X \times \Sigma \rightarrow X, p:$ $: X \times I \rightarrow X, \bar{p}: X \times T \rightarrow X$ are the first projections and $\lambda(-,-, \sigma)=R_{\sigma} \times D_{\sigma}: X \times Q \longrightarrow X \times Q$. The situation is visualized on the picture below.

2. Proposition. The relation computed by \mathcal{M} is equal to beh MI ($\mathcal{M})$.

Proof. We consider the free components of $|M|(M)$ (see II.1). Denote by Σ^{*} the free monoid over Σ and by Λ the empty string. The free $F_{\Sigma}-a l g e b r a$ over $X \times I$ is formed by $\left(X \times I \times \Sigma^{*}, \varphi\right)$ and $\eta: X \times I \rightarrow X \times I \times \Sigma^{*}$, where $\varphi: X \times I \times$ $\times \Sigma^{*} \times \Sigma \longrightarrow X_{x} \times \Sigma^{*}$ sends every (x, q, s, σ) to ($x, q, s \sigma$) and η sends (x, q) to (x, q, Λ). The free extension $p^{*}:\left(X \times I \times \Sigma^{*}, \varphi\right) \longrightarrow(X, \pi)$ sends every (x, q, s) to x while the free extension $\left(I_{X} \times i\right)^{\#}:\left(X \times I \times \Sigma^{*}, \varphi\right) \longrightarrow(X \times Q, \lambda)$ sends every (x, q, s) with $s=\sigma_{1} \ldots \sigma_{n}$ to $\left(R_{\sigma_{1}} \cup \ldots\left(R_{\sigma_{n}}(x)\right) x\right.$ $x\left(D_{\sigma_{1}} \bullet \ldots \circ D_{\sigma_{n}}(x)\right)$. Hence
$X \times Q \times \Sigma^{*} \xrightarrow{\left(1_{X} \times i\right)^{\#}} X \times Q \stackrel{I_{X} \times t}{\longleftrightarrow} X \times T \xrightarrow{\bar{p}} X$
maps every $X \times\{q\} \times\{s\}$, where $s=\sigma_{1} \ldots \sigma_{n}$, into X as $R_{\sigma_{1}} \circ \ldots \circ R_{\sigma_{n}}$ whenever $\left(D_{\sigma_{1}} \circ \ldots \subset D_{\sigma_{n}}(q)\right) \cap T \neq \varnothing$ and as \varnothing ot-
herwise. Consequently, $\left(p^{\#}\right)^{-1} \circ\left(1_{X} \times i\right)^{\#} \circ\left(1_{X} \times t\right)^{-1} \circ \bar{p}$ is equal to $|M|$. Thus, by II.2, beh IMI $(. M)=\propto \cdot|\boldsymbol{M}| \circ \omega$.

Concluding remarks. In the present paper, we deal with F-machines only in the category Set. If K is a finitely complete category, $(\mathbb{E}, \mathcal{M})$ a factorization system in K, K is \mathcal{H}-well-powered and fulfils the \mathcal{E}-puilback property, then the category Rel K of relations in K can be formed and any \mathscr{E}-preserving functor $F: K \rightarrow K$ extended to a mapping $\bar{F}: \operatorname{Rel} K \rightarrow$ $\rightarrow \operatorname{Rel~K}$ by the formula $F[\alpha, \beta]=[F(\alpha), F(\beta)]$ such that I.4.1)2)3) are fulfilled. This is presented in [$\left.T_{1}\right]$. Then the notion of an F-machine, its run and behaviour can be formulated in this more general setting and the propositions I.9, I. 10 a nd II. 2 are still valid whenever \mathcal{M}-sub-objects of any object of K form a complete lattice.

References

[A] J. ADAMEK: Free algebras and automata realizations, im the language of categories, Comment. Math. Univ. Carolinae 15(1974), 589-602.
[AM] M.A. ARBIB, E.G. MANES: Machines in a category, an expository introduction, SIAM Review 16(1974), 163-192.
[E] S. EIIENBERG: Automata, languages and machines, Volume A, Academic Press 1974.
[K] V. KOUBEK: Set functors, Comment. Math. Univ. Carolinae 12(1971), 175-195.
[KK] V. KURKOVA-POHLOVA, V. KOUBEK: When a generalized algebraic category is monadic, Comment. Math. Univ. Carolinae 16(1975), 577-587.

$\left[T_{1}\right]$ V. TRNKOVA: General theory of relational automata, to appear in Fundamenta Informaticae.
 $\left[T_{2}\right] \quad$ V. TRNKOVA: Machines and their behaviour, Proceedings of the Workshop meeting "Categorial and algebraic Methods in Computer Science and System Theory" held in Dortmund in November 1978, Forschungsbericht Ne 74, 1978, Abteilung Informatik, UniversitEt Dortmund, 110-115.

Matematický ústav

Universita Karlova
Sokolovská 83, 18600 Praha 8
Československo
(Oblatum 28.2. 1979)

