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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20,2 (1979) 

THE MEASURE EXTENSION THEOREM FOR SUBADDITIVE 
PROBABILITY MEASURES IN ORTHOMODULAR ef - CONTINUOUS 

LATTICES 
Betoslav RIECAN 

Abstract: The assertion stated in the title of the ar-
ticle is proved. 

Key words: Probability measures, logics, orthomodular 
lattices. 

AMS: 20A60 

Although the measure theory on logics (orthomodular lat

tices or posets) is topical (see C5]), no measure extension 

theorem is known. D.A. Kappos presented in L2] as an open 

problem the possibility of such extension. 

Biere are some results in LI],L3),£4], but for modular 

lattices only. P. Volauf in L7] showed that the proof of the 

extension theorem in C3 ] works in orthomodular lattices, and 

he proved the extension theorem for orthocomplemented latti

ces and probability measures using Carath^odory measurabili-

ty. Bu as P. Volauf as the author assume that the given mea

sure is a valuation. As it is known, measures on logics need 

not be valuations. 

In the paper we prove an extension theorem for subaddi

tive probability measures. Of course, every non-negative va-
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luation is subadditive, hence our result is a little better 

than the previous known ones. 

Notations and notions. If H is a lattice, we shall wri-

te x ^ x , if x ^ x n + 1 (n =- 1,2,...) and x ̂ V ^ x ^ similar

ly for x ^ x. A 6*-complete lattice will be called 6?-conti

nuous, if xn/
fx, y n ^ y implies y n * y n ^ x s \ y and d u a ^ y * 

A lattice H with the least element 0 and the greatest 

element 1 is called orthocomplemented, if there is a mapping 

J- :a —y a , H —> H such that the following properties are 

satisfied: (i) (a-** )"*" * a for every a€H. (ii) If &£b then 

b-*- <& a . (iii) a v a - 1 for every asH. An orthocomplemen

ted lattice is called to be an orthomodular lattice if the 

following condition is satisfied: (iv) If aj=b then b *- a v 

v ( b A a ). Two elements a, b € H are called orthogonal if 

aib-^or equivalently b £a . A subset A of an orthocomple

mented lattice H is called an orthocomplemented sublattice of 

H if a, bcA implies a v b s A , a x e A. 

Let A be an orthocomplemented sublattice of an orthomo-

dular lattice H. A mapping ^c:A—1> < 0,co> is called a measu

re if the following statements are satisfied: 

aC) <a(0) =- 0 

/$) If fi^CA (n = 1,2,...) and an are pairwise orthogo-
co 

nal and \/. au £ A, then 
CO g 

f*<*Yl *n} 'mTlV1***' 
A measure (U :A—y <0,ao> i s ca l led a p robab i l i t y measure i f 

(U, (1) = 1. A measure /U/:A—><0,o?> i s ca l led subaddi t ive 

i f (to ( a v b ) # (Ua) + (^ (b) for every a, b€ A. 

It is not very difficult to prove (by the help of (iv)) 
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that every measure is non-decreasing and upper continuous 

(i.e. a n A - ^ ^ ( a n ) A ( a ) ) , 

Construction. We start with an orthocomplemented sub-

lattice A of an orthomodular, 6f-continuous lattice K and 

a subadditive probability measure (0,:A —-»• < 0,1 > . We want 

to extend it to the 6f-complete orthocomplete lattice S(A) 

generated by A. 

Lemma. Let â t b n6A (n = 1,2,...), a^^^a, ->n/*b, »- *>• 

.Then lim /^(a.Jflim ,a(b_). 
cn^cok " **eo l n 

Proof. Evidently anA ̂ / ^ A b * an (m—• oo ), hence 

^ ^ a J i ^ ( ^ ( ^ A V - i ^ ^ < V «« therefore 

Now put A4" « Ab-sH; J a n
e A» an^b'* The Preceding lem

ma gives a possibility to define a mapping (** :A —-><0fa?> 

by the formula 

^+(b> mJ£n ?'•*** V^*' 
Then we can put 

(u*lx) * infi(S{b)i bcA+ , bSxJ, xcH 

and by such a way we obtain a mapping (i/*:H —*<0,1> . Simi

larly they can be defined A * , ^ " , ^ . The last step of our 

construction is the set 

L M x e H ; ^ ( x ) » (*>*(%) . 

later we prove that L D S ( A ) and ̂ o/VSU) is the asked exten

sion. 

It is easy to prove that p< , (*<~ are extensions of <u,, 

(** is upper continuous, non-decreasing and subadditive. 

Further (*,* is an extension of (*?9 <u* is non-decreasing, 
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subadditive and <u/*(x) £/«, (x) for every xsH. 

Main theorem. Let H be a #-continuous, orthomodular 

lattice, A its orthocomplemented sublattice, /u.:A—i><0,l> 

a subadditive probability measure. Let S(A) be the 6*-comp

lete orthocomplemented sublattice of H generated by A. Then 

there is exactly one measure j& :S(A) —->< 0,1> that is an ex

tension of (*-*-» . The measure /ti is a subadditive probability 

measure. 

Proof. Our main result will be proved by a sequence of 

propositions. 

Proposition 1. Let x£H, y 6 L, y^x. Then ,a"*(x) = 

= ft*(y) + ^ ( x A y 1 ). 

Proof. 1. Let first as A, b£A+, aib. Then (tt/**(b) = 

= (Ct(a) + (U, (bAa x). Namely, a^ayj/^b, a ^ A implies 

(to (an) = ("'(a) + ^( j ^ A a ^ ) . Since s^^b, e ^ A a V b A a , 

we obtain ^ (b) = <a,(a) + ^ (bAa ). 

2. If b, dcA+, dib, then <a*(b) § (Ot+(d) + ^ ( b A d 1 ) , 

Indeed, dn^d, c^cA and 1 imply fb (b) = ̂ c(dn'j + 

+ ^ ( b A d ^ ) > ^c(dn) + ,/4*(b Ad
 x),which gives ra+(b) = 

-= (U,+ (d) + ^ ( b A d - 1 ) . 

3. If bcA , c£A , Csbb, then <a (b) £ (U, (c) + 

+ (a+(bACx). Take cn€A, cn\c, Since b A c n U
+ , bAC n£b 

we have by 2 

ft+(b) S (U.
+ (bACn) + (a*(bA(bAcn)

X ) §(a+(bAcn) + 

+ <a* (bA c ^ ) = (a+(bAcn) + (^
 + (bAcn

J-). 

Taking n —^ oo we obta in 

(tc + (b) £ l ini ^ ( b A C , , ) + l i m ( ^ ( b A C ^ ) > (U~(c) + 

+ ^ ( b A C 1 ) , 
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4. Let x c H , ceA~ , c # x . We prove tha t <a*(x) £ 

> (U,~(c) + (a*(xAC*L ) . Namely, i f b€ A , b £ x , then 

(W-+(b) 5 (a~(c) + ( a + ( b A C J - ) > <a~(c) + ^ ( X A C 1 ) , 

hence ^ ( x ) - (0,~(c) + ^ ( X A C 1 ) , t oo . 

5. Finally we prove the assertion stated in Proposition. 

Let xfeH, y £ L, y§x. Take c=y, ccA~. By 4 we have 

(a*(x)£ (a"(c) +<a)it(xACi)^ fi"(c) + ^ ( x A y - ^ ) , hen

ce ,tt*(x) - ^ ( x A y 1 ) £ <a~(c). Therefore 

<a*(x) - ^ ( x A y 1 ) ^ ^ ( y ) = (̂ "(y)-

The opposite inequality follows from the subadditivity of 

Proposition 2. If y & L, thenyx£ L. 

Proof. Evidently ^a+(b) + <a""(b-L) = 1 for every b € 

6. A . Let b? y. Then b 1 ^ y x, hence 

1 = <a+(b) + ^"(b-1 ) & <a*(b) + ^(y-1-) 

therefore 

i - ^ ( y x ) £ <a*(y). 

Proposi t ion 1 gives (x = 1) 1 = /a* (y) + ^ ^ ( y M , hence 

^ ( y ) + ^ ( y M g i « ^ ( y ) + ^ ( y 1 ) 

which implies /a (y1- ) > ^ a ^ y M * 

Proposi t ion 3. I f z f l € L (n = 1 , 2 , . . . ) , zJ1/Tz (or z n \ z 

r e s p . ) , z c H , then z € L and xx*(z) = lim AJL^ (z ) . 

Proof. Let z n ^ z . Put zQ = 0 . By Propos i t ion 1 

^a* (z n ) - ( a ^ ( z n - . 1 ) -* ^ T ( z n ^ z ^ ) , n = 1 , 2 , . . . . 

To every e > 0 there i s y n € A+, y n 5 ZRA z j j ^ such tha t 
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<^* ( znA Z .t i ) J > <"+(yn> - - p r » n = - » 2 » ••• • 
By adding these inequalities we obtain 

e~*(zn> > A (^ (yi> - -fr > ^ r + ( ^ yA> -£A -p: 
ard therefore 

^*(2>2a^^(zn> v1.^. ^ ( ^ *i> - 6 = 

• <*+(*% yn> - * 2 <*» <»> - e 

and the equality (t*(z) a lim u?{z ) i s obtained. .Further 

<*,(-)* ^(«) \U» ^*(zn> V i ^ ^ n ' - * <~* (8)' 
hence z€L. The second part of Proposition (for non-increas

ing sequences) follows from Proposition 2 and the first part. 

Proposition 4. (£ s (U*/L is an additive mapping, i.e. 

x, y«Lf xgyx implies (tt*(xvy) - <«**(x) + <ct*(y). 

Proof. First take c, dcA", cid . Then by Propositi

on 1 

1 . ̂ *(d) * ^(dX) » <**(dX) * ?~{C) + ^ ( d ^ A CX) * 

a ̂ c~(c) + ^((dvc)" 1 ) * («->"(c) + 1 - (t->~(cvd). 

Now let xf yCH, x£yx , cf dcA", cix, d£y such that 

M#(x) - e -s <u,~(c)f (^(y) - £ -* (u."(d). 

Of course, c^x.&y*'^ d , hence 

^(xvy) £ (tc* (xvy) £ (U* (x) + ̂ * (y) « <%,(*) + ("-*(y)<> 

«-£ (*~(c) + (a""(d) + 2e s ^"(cvd) • 2 6 i ^ ( x v y ) + 2e 

Proposition 5. Let S(A) be the G*-complete orthocomple-

mented lattice generated by A, M(A) be the least set over A 
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closed under monotone sequences. Then S(A) = M(A). 

Proof. I t can be proved by a standard way. (See e .g . 

13J, lemma 1.) 

Proof of Main theorem. 1. Existence. Evidently S(A) = 

= M(A)c L. Put ^M = («,*/S(A). Ejy Propositions 3 and 4 (o i s 

a measure. (Z i s a subadditive probab i l i ty measure since £i> 

has these propert ies . 

2. Uniqueness. Let v :S(A)—> R be a measure *>>/A = (c. 

Put K = -Cx6S(A); jp, (x) = V ( x ) { . Evidently K.3 A, K i s c l o 

sed under l imi ts of monotone sequences. Therefore K^M(A) = 

= S(A). 
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