Commentationes Mathematicae Universitatis Caroline

Beloslav Riečan

The measure extension theorem for subadditive probability measures in orthomodular σ-continuous lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 2, 309--316
Persistent URL: http://dml.cz/dmlcz/105929

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

THE MEASURE EXTENSION THEOREM FOR SUBADDITIVE PROBABILITY MEASURES IN ORTHOMODULAR σ - CONTINUOUS LATTICES
 Beloslav RIEČAN

Abstract: The assertion stated in the title of the article is proved.

Key words: Probability measures, logics, orthomodular lattices.

AMS: 20A60

Although the measure theory on logics (orthomodular lattices or posets) is topical (see [5]), no measure extension theorem is known. D.A. Kappos presented in [2] as an open problem the possibility of such extension.

There are some results in [1],[3],[4], but for modular lattices only. P. Volauf in [7] showed that the proof of the extension theorem in [3] works in orthomodular lattices, and he proved the extension theorem for orthocomplemented lattices and probability measures using Carathéodory measurability. Bu as P. Volauf as the author assume that the given measure is a valuation. As it is known, measures on logics need not be valuations.

In the paper we prove an extension theorem for subadditive probability measures. Of course, every non-negative va-

Iuation is subadditive, hence our result is a little better than the previcus known ones.

Notations and notions. If H is a lattice, we shall write $x_{n} \lambda x$, if $x_{n} \leq x_{n+1}(n=1,2, \ldots)$ and $x=\underbrace{\infty}_{n=1} x_{n}$; similarly for $x_{n} \geq x$. A σ-complete lattice will be called σ-continuous, if $x_{n} Л x, y_{n} \nmid y$ implies $y_{n} \wedge y_{n} \not \lambda^{\prime} \wedge y$ and dually.

A lattice H with the least element 0 and the greatest element 1 is called orthocomplemented, if there is a mapping $\perp: a \rightarrow a^{\perp}, H \rightarrow H$ such that the following properties are satisfied: (i) $(a \perp)^{\perp}=a$ for every $a \in H$. (ii) If $a \leqq b$ then $b^{\perp} \leqq a^{\perp}$. (iii) $a \vee a^{\perp}=1$ for every $a \in H$. An orthocomplemented lattice is called to be an orthomodular lattice if the following condition is satisfied: (iv) If $a \leqq b$ then $b=a v$ $V\left(b \wedge a^{\perp}\right)$. Two elements $a, b \in H$ are called orthogonal if $a \leqq b^{\perp}$ or equivalently $b \leqq a^{\perp}$. A subset A of an orthocomplemented lattice H is called an orthocomplemented sublattice of H if $a, b \in A$ implies $a \vee b \in A, a^{\perp} \in A$.

Let A be an orthocomplemented sublattice of an orthomodular lattice H. A mapping $\mu: A \rightarrow\langle 0, \infty\rangle$ is called a measure if the following statements are satisfied:
a) $\mu(0)=0$

乃) If $a_{n} \in A(n=1,2, \ldots)$ and a_{n} are pairwise orthogonal and $n=1$ a $a_{n} \in A$, then

$$
\mu\left(\sum_{n}^{\infty}=1 a_{n}\right)=\sum_{n=1}^{\infty} \mu\left(a_{n}\right)
$$

A measure $\mu: A \rightarrow\langle 0, \infty\rangle$ is called a probability measure if $\mu(1)=1$. A measure $\mu: A \longrightarrow\langle 0, \infty\rangle$ is called subadditive if $\mu(a \vee b) \leqslant \mu(a)+\mu(b)$ for every $a, b \in A$.

It is not very difficult to prove (by the help of (iv))
that every measure is non-decreasing and upper continuous (i.e. $\left.a_{n} \neq \mu \Rightarrow\left(a_{n}\right) \not \mu(a)\right)$.

Construction. We start with an orthocomplemented sublattice A of an orthomodular, 6-continuous lattice H and a subadditive probability measure $\mu: A \rightarrow\langle 0,1\rangle$. We want to extend it to the σ-complete orthocomplete lattice $S(A)$ generated by A.

Lemma. Let $a_{n}, b_{n} \in A(n=1,2, \ldots), a_{n} \not a_{a}, b_{n} \lambda_{b} a \leqq b$. Then $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right) \leqslant \lim _{n \rightarrow \infty} \mu\left(b_{n}\right)$.

Proof. Evidently $a_{n} \wedge b_{m} \lambda a_{n} \wedge b=a_{n}(m \rightarrow \infty)$, hence $\mu\left(a_{n}\right)=\lim _{m \rightarrow \infty} \mu\left(a_{n} \wedge b_{m}\right) \leqslant \lim _{m \rightarrow \infty} \mu\left(b_{m}\right)$ and therefore $\lim _{n \rightarrow \infty} \mu\left(a_{n}\right) \leq \lim _{m \rightarrow \infty} \mu\left(b_{m}\right)$.

Now put $A^{+}=\left\{b \in H ; \exists a_{n} \in A, a_{n} \lambda_{b}\right\}$. The preceding lemma gives a possibility to define a mapping $\mu^{+}: A^{+} \longrightarrow\langle 0, \infty\rangle$ by the formula

$$
\mu^{+}(b)=\lim _{n \rightarrow \infty} \mu\left(a_{n}\right), a_{n} \mu_{b}
$$

Then we can put

$$
\mu^{*}(x)=\inf \left\{\mu^{+}(b) ; b \in A^{+}, b \geqq x\right\}, x \in H
$$

and by such a way we obtain a mapping $\mu^{*}: \mathrm{H} \rightarrow\langle 0,1\rangle$. Similarly they can be defined A^{-}, μ^{-}, μ_{*}. The last step of our construction is the set

$$
L=\left\{x \in H ; \mu_{*}(x)=\mu^{*}(x)\right.
$$

Later we prove that $L \supset S(A)$ and $\mu^{*} / S(A)$ is the asked extension.

It is easy to prove that μ^{+}, μ^{-}are extensions of μ, μ^{+}is upper continuous, non-decreasing and subadditive. Further μ^{*} is an extension of μ^{+}, μ^{*} is non-decreasing,
subadditive and $\mu^{*}(x) \geqq \mu_{*}(x)$ for every $x \in H$.
Main theorem. Let H be a σ-continuous, orthomodular lattice, A its orthocomplemented sublattice, $\mu: A \longrightarrow\langle 0,1\rangle$ a subadditive probability measure. Let $S(A)$ be the σ-complete orthocomplemented sublattice of H generated by A. Then there is exactly one measure $\bar{\mu}: S(A) \longrightarrow\langle 0, I\rangle$ that is an extension of μ. The measure $\bar{\mu}$ is a subadditive probability measure.

Proof. Our main result will be proved by a sequence of propositions.

Proposition 1. Let $x \in H, y \in L, y \leqq x$. Then $\mu^{*}(x)=$ $=\mu^{*}(y)+\mu^{*}\left(x \wedge y^{\perp}\right)$.

Proof. 1. Let first $a \in A, b \in A^{+}, a \leqslant b$. Then $a^{+}(b)=$ $=\mu(a)+\mu^{+}\left(b \wedge a^{\perp}\right)$. Namely, $a \leqq a_{n} \not{ }^{\perp}, a_{n} \in A$ implies $\mu\left(a_{n}\right)=\mu(a)+\mu\left(a_{n} \wedge a^{\perp}\right)$. Since $a_{n} \not \rho_{b}, a_{n} \wedge a^{\perp} \nearrow b \wedge a^{\perp}$, we obtain $\mu^{+}(b)=\mu(a)+\mu^{+}\left(b \wedge a^{\perp}\right)$.
2. If $b, d \in A^{+}, d \leqq b$, then $\mu^{+}(b) \geqq \mu^{+}(d)+\mu^{*}\left(b \wedge d^{\perp}\right)$.

Indeed, $d_{n} J d, d_{n} \in A$ and 1 imply $\mu^{+}(b)=\mu\left(d_{n}^{i}\right)^{+}+$ $+\mu^{+}\left(b \wedge d_{n}^{\perp}\right) \geqq \mu\left(d_{n}\right)+\mu^{*}\left(b \wedge d^{\perp}\right)$, which gives $\mu^{+}(b)=$ $=\mu^{+}(d)+\mu^{*}\left(b \wedge d^{\perp}\right)$.
3. If $b \in A^{+}, c \in A^{-}, c \leqslant b$, then $\mu^{+}(b) \geqslant \mu^{-}(c)+$ $+\mu^{+}\left(b \wedge c^{\perp}\right)$. Take $c_{n} \in A, c_{n} \searrow c$. Since $b \wedge c_{n} \in A^{+}, b \wedge c_{n} \leqq b$ we have by 2

$$
\begin{aligned}
& \mu^{+}(b) \geqq \mu^{+}\left(b \wedge c_{n}\right)+\mu^{*}\left(b \wedge\left(b \wedge c_{n}\right)^{\perp}\right) \geqq \mu^{+}\left(b \wedge c_{n}\right)+ \\
+ & \mu^{*}\left(b \wedge c_{n}^{\perp}\right)=\mu^{+}\left(b \wedge c_{n}\right)+\mu^{+}\left(b \wedge c_{n}^{\perp}\right) .
\end{aligned}
$$

Taking $n \rightarrow \infty$ we obtain

$$
\begin{aligned}
\mu^{+}(b) & \geqq \lim _{m \rightarrow \infty} \mu^{+}\left(b \wedge c_{n}\right)+\lim _{n} \rightarrow \infty \\
& \mu^{+}\left(b \wedge c_{n} \perp\right) \geqq \mu^{+}(b \wedge c \perp) .
\end{aligned}
$$

4. Let $x \in H, c \in A^{-}, c \leqq x$. We prove that $\mu^{*}(x) \geqq$ $\geqq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$. Namely, if $b \in A^{+}, b \geqq x$, then $\mu^{+}(b) \geqq \mu^{-}(c)+\mu^{+}\left(b \wedge c^{\perp}\right) \geqq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$, hence $\mu^{*}(x) \geqq \mu^{-}(c)+\mu^{*}\left(x \wedge c^{\perp}\right)$, too.
5. Finally we prove the assertion stated in Proposition. Let $x \in H, y \in L, y \leqq x$. Take $c \leqq y, c \in A^{-}$. By 4 we have $\mu^{*}(x) \geqq \mu^{-}(c)+\mu^{*}(x \wedge c \perp) \geqq \mu^{-}(c)+\mu^{*}\left(x \wedge y^{\perp}\right)$, hence $\mu^{*}(x)-\mu^{*}\left(x \wedge y^{\perp}\right) \geqq \mu^{-}(c)$. Therefore

$$
\mu^{*}(x)-\mu^{*}\left(x \wedge y^{\perp}\right) \geqq \mu_{*}(y)=\mu^{*}(y) .
$$

The opposite inequality follows from the subadditivity of μ^{*}.

Proposition 2. If $y \in L$, then $y^{\dot{\perp}} \in L$.
Proof. Evidently $\mu^{+}(b)+\mu^{-}\left(b^{\perp}\right)=1$ for every $b \in$ $\in A^{+}$. Let $b \geqq y$. Then $b^{\perp} \leqq y^{\perp}$, hence

$$
1=\mu^{+}(b)+\mu^{-}(b \perp) \leqq \mu^{+}(b)+\mu_{*}(y \perp)
$$

therefore

$$
1-\mu_{*}\left(y^{\perp}\right) \leqq \mu^{*}(y) .
$$

Proposition I gives $(x=1) 1=\mu^{*}(y)+\mu^{*}\left(y^{\perp}\right)$, hence

$$
\mu^{*}(y)+\mu_{*}\left(y^{\perp}\right) \geqq 1=\mu^{*}(y)+\mu^{*}\left(y^{\perp}\right)
$$

which implies $\mu_{*}\left(y^{\perp}\right) \geqq \mu^{*}(y \perp)$.
Proposition 3. If $z_{n} \in L(n=1,2, \ldots), z_{n} \not \subset z$ (or $z_{n}>z$ resp.), $z \in H$, then $z \in L$ and $\mu^{*}(z)=\lim _{n \rightarrow \infty} \mu^{*}\left(z_{n}\right)$.

Proof. Let $z_{n} \lambda_{z}$. Put $z_{0}=0$. By Proposition 1
$\mu^{*}\left(z_{n}\right)-\mu^{*}\left(z_{n-1}\right)=\mu^{*}\left(z_{n^{\prime}} z_{n-1}^{\perp}\right), n=1,2, \ldots$.
To every $\varepsilon>0$ there is $y_{n} \in A^{+}, y_{n} \geqq z_{n} \wedge z_{n-1}^{\perp}$ such that

$$
\mu^{*}\left(z_{n} \wedge z_{n-1}^{\perp}\right)>\mu^{+}\left(y_{n}\right)-\frac{\varepsilon}{2^{n}}, n=1,2, \ldots .
$$

By adding these inequalities we obtain

$$
\mu^{*}\left(z_{n}\right)>\sum_{i=1}^{n}\left(\mu^{+}\left(y_{i}\right)-\frac{\varepsilon}{2^{i}}\right) \geqq \mu^{+}\left(\bigvee_{i=1}^{n} y_{i}\right)-\sum_{i=1}^{n} \frac{\varepsilon}{2^{i}}
$$

and therefore

$$
\begin{aligned}
\mu^{*}(z) & \geq \lim _{n \rightarrow \infty} \mu^{*}\left(z_{n}\right)=\lim _{n \rightarrow \infty} \mu^{+}\left({ }_{i=1}^{n} y_{i}\right)-\varepsilon= \\
& =\mu^{+}\left(\sum_{n=1}^{\infty} y_{n}\right)-\varepsilon \geqq \mu^{*}(z)-\varepsilon
\end{aligned}
$$

and the equality $\mu^{*}(z)=\lim _{n \rightarrow \infty} \mu^{*}\left(z_{n}\right)$ is obtained. Further

$$
\mu_{*}(z) \leqslant \mu^{\star}(z)=\lim _{n \rightarrow \infty} \mu^{*}\left(z_{n}\right)=\lim _{n \rightarrow \infty} \mu_{*}\left(z_{n}\right) \leqslant \mu_{*}(z),
$$

hence $z \in L$. The second part of Proposition (for non-increasing sequences) follows from Proposition 2 and the first part.

Proposition 4. $\bar{\mu}=\mu^{*} / L$ is an additive mapping, i.e. $x, y \in L, x \leqq y^{\perp}$ implies $\mu^{*}(x \vee y)=\mu^{*}(x)+\mu^{*}(y)$.

Proof. First take $c, d \in A^{-}, c \leqslant d^{\perp}$. Then by Proposition 1

$$
\begin{aligned}
& 1-\mu^{-}(d)=\mu^{+}\left(d^{\perp}\right)=\mu^{*}\left(d^{\perp}\right)=\mu^{-}(c)+\mu^{*}\left(d^{\perp} \wedge c^{\perp}\right)= \\
= & \mu^{-}(c)+\mu^{+}\left((d \vee c)^{\perp}\right)=\mu^{-}(c)+1-\mu^{-}(c \vee d) .
\end{aligned}
$$

$$
\text { Now let } x, y \in H, x \leqq y^{\perp}, c, d \in A^{-}, c \leqq x, d \leqq y \text { such that }
$$

$$
\mu_{*}(x)-\varepsilon<\mu^{-}(c), \mu_{*}(y)-\varepsilon<\mu^{-}(d) .
$$

of course, cs $\leqq x \leq y^{\perp} \leqq d^{\perp}$, hence

$$
\begin{gathered}
\mu_{*}(x \vee y) \leqq \mu^{*}(x \vee y) \leqq \mu^{*}(x)+\mu^{*}(y)=\mu_{*}(x)+\mu_{*}(y)< \\
<\mu^{-}(c)+\mu^{-}(d)+2 \varepsilon=\mu^{-}(c \vee d)+2 \varepsilon \leqq \mu_{*}(x \vee y)+2 \varepsilon .
\end{gathered}
$$

Proposition 5. Let $S(A)$ be the σ-complete orthocomplemented lattice generated by $A, M(A)$ be the least set over A
closed under monotone sequences. Then $S(A)=M(A)$.
Proof. It can be proved by a standard way. (See e.g.
[3], lemma 1.)
Proof of Main theorem. 1. Existence. Evidently $S(A)=$ $=M(A) \subset$ L. Put $\bar{\mu}=\mu^{*} / S(A)$. By Propositions 3 and $4 \bar{\mu}$ is a measure. $\bar{\mu}$ is a subaḍăditive probability measure since μ has these properties.
2. Uniqueness. Let $\nu: S(A) \rightarrow R$ be a measure $\nu / A=\mu$. Put $K=\{x \in S(A) ; \bar{\mu}(x)=\nu(x)\}$. Evidently K $工=A, K$ is closed under limits of monotone sequences. Therefore $K \supset M(A)=$ $=S(A)$.

```
References
```

[1] GYORFFY L. - RIECAN B.: On the extension of measures in relatively complemented lattices, Mat. Casop. 23 (1973), 158-163.
[2] KAPPOS D.A.: Measure theory on orthocomplemented posets and lattices. In: Measure theory, Oberwolfach 1975, Proceedings, Springer, Berlin, Lecture notes in math., vol. 541, 323-343.
[3] RIECAN B.: On the extension of a measure on lattices, Mat. Cas. 19(1969), 44-49.
[4] RIECAN B.: A note on the extension of measures on lattices, Mat. Casop. 20(1970), 239-244.
[5] VARADARAJAN V.S.: Geometry of quantum theory, Van Nostrand, New York, 1968.
[6] VOIAUF P.: The measure extension problem on ortholattices, Acta math. Univ. Comen., to appear.
[7] VOIAUF F.: Some problems of the probability theory in ordered spaces, PhD dissertation. Bratislava, 1977.

Prírodovedecká fakulta

Univerzita Komenského
Mlynská dolina, 81631 Bratislava
Ceskoslovensko
(Oblatum 13.2. 1979)

- 316 -

