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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

20,2 (1979) 

PSEUDOHEREDITARY AND PSEUDOCOHEREDITARY PRERADICALS 
J. JIRÁSKO 

Abstract: M.L. Teply in [12 J calls a torsion theory(T,&) 
pseudonereditary, if every submodule of •T'(R) is T-torsion. 
In this paper, pseudohereditary preradicals together with the 
related dual problems are studied. 

Key words: Preradical, pseudohereditary and pseudocohe-
reditary preradicals, infective and projective modules. 

AMS: Primary 18E40 

Secondary 16A50, 16A52 

Throughout this paper, R stands for an associative ring 

with unit element and R-mod denotes the category of all unita­

ry left R-modu3.es. The injective hull of a module M will be 

denoted by E(M), the direct product (sum) by .TTT M. ( 'S, ® M 4 ) . 

A submodule N of M is called essential (superfluous) in M, if 

K n N = 0 implies K = 0 (K + N == M implies K • M) for every sub-
•f 9-

module K of M. If 0 — * A — .» B —> C — > 0 is a short exact se­

quence of R-modu]es, then we shall say that B is an envelope 

of A (B is a cover of C), if f(A) is essential in B (f(A) is 

superfluous in B). A ring is called left perfect, if every mo­

dule has a projective cover. 

We start with some basic definitions from the theory of 
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preradicals (for details see Cll,t23 aid £.33)• 

A preradical r for R-mod is a subfunctor of the iden­

tity functor, i.e. r assigns to each module M its submodule 

r(M) in such a way that every homomorphiam of M into N in­

duces a homomorphism of r(M) into r(N) by restriction. 

A preradical r is said to be 

- idempotent if r(r(M)) = r(M) for every module M, 

- a radical if r(M/r(M)) = 0 for every module M, 

- hereditary if r(N) = Nnr(M) for every submodule N of a 

module M, 

- cohereditary if r(M/N) = (r(M) + N)/N for every submodule 

N of a module M, 

- faithful if r(M) = 0 for every prr jective module Mt 

- cofaithful if r(M) = M for every infective module M. 

As it is easy to see a preradical r is faithful if and 

only if r(R) = 0 and r is cofaithful if and only if r(E(R)) = 

= E(R). A module M is r-torsion if r(M) = M and r-torsionfree 

if r(M) = 0. We shall denote by 3*T ( &T) the class of all 

r-torsion (r-torsionfree) modules. If r and s are preradicals 

then we write r £ s if r(M)£s(M) for all W,€ R-mod. The idem-

potent core r of a preradical r is defined by r(M) = X K, 

where K runs through all r-torsion submodules K of M, and the 

radical closure r is defined ty r(M) = f\ L, wh«r« L runs 

through all submodules L of M with M/L r-torsionfree. Fur­

ther, the hereditary closure h(r) is defined by h(r)(M) = 

= Mnr(E(M)) and the cohereditary core ch(r) by ch(r)(M) « 

= r(R) M. The intersection (sum) of a family of preradicals 

r- j i € I is a preradical defined by (, f\ r • ) (M) = , C\ v± (M) 
1*> y ici ! t i l l 

((.2: r-)(M) =, S r4(M)). For a preradical r and modules 
ttl x l;l -
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N£M let us define Cr(N:M) by Cr(N:M)/N = r(M/N). For an ar­

bitrary class of R-modules (X we define p * (N) = 52 Im f, f 

ranging over all f feHomR(MfN), M e & and p A (N) = f) Ker f, f 

ranging over all f 6 HomR(N,M), M € <Z . It is easy to see that 

p^ is an idempotent preradical (p"' is a radical). Moreover, 

if M is an infective (projective) module, then p ' is here­

ditary (PiM}is cohereditary). Further, M is a faithful module 

if and only if p*M* is faithful. Dually 

dule if and only if pjMj is cofaithful. 

if and only if p"*M* is faithful. Dually, M is a cofaithful mo-

§ 1. Pseudohereditary preradicala 

Definition 1.1« A preradical r is said to be pseudohere­

ditary if every submodule of r(R) is r-tbrsion for every finite 

index set I. 

Proposition 1.2. Let r be a preradical. Then the follow­

ing are equivalent: 

(i) r is pseudohereditary, 

(ii) N£ch(r)(M) implies N * tf for every submodule N of a 

module M, 

(iii) r(N)£ ch(r)(M) implies r(N) =- Nnch(r)(M) for every sub-

module N of a module M. 

Proof: (i) implies (ii). Let McR-mod and Nsch(r)(M). 

ftiere is an epimorphism f :F—» M with F free. Consider the epi-

morphism f:r(F)~.> ch(r)(M) induced by f. By (i) i~x(n) e f - * 
and hence N =- t(t~xW) « 3* 

r 
« f (t~x( 

( i i ) implies ( i i i ) . I f McR-mod, NSM such that r(N) £ 

2 ch(r)(M) then r(N)S ch(r)(M)n N. By ( i i ) K =- ch(r)(M)n U£fJ,
r 

and hence ch(r)(M)n NSr (N). 

( i i i ) implies ( i ) . If KS r(R)a)then c lear ly r (K)£ch(r) (K ( D ) 
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and ( i i i ) yields r(K) = eh(r) (R ( I ) )oK = K. 

Proposition 1.3. Let r be a preradical. Then 

(i) i f r is pseudohereditary, then F e L implies E(F) € 

e ^ ch ( r ) ' 
(ii) if r is a radical and F e #v implies E(F) e ^Ch(r) *

>or 

every module F, then r is pseudohereditary. 

Proof: (i). Let F£ .fr. Since r is pseudohereditary, 

we have K = Tn ch(r) (E(F)) e Tr. Thus K = 0 and ch(r)(E(F)) = 

= 0. 

(ii) Let M^R-mod and N£ch(r)(M). Consider the follow­

ing commutative diagram 

^ - ch(r)(M)/r(N) 

E(N/r(N)) 

Now r is a radical and N/r(N) £ 3* implies E(N/r(N))e ^chir)' 

On the other hand N/r(N) = h(N/r(N))S h(ch(r)(M)/r(N)) = 

= h(ch(r)(M/r(N)))5 ch(r)(E(N/r(N))) = 0. Thus Nc J^. 

Proposition 1.4. 

(i) Every hereditary preradical is pseudohereditary. 

(ii) Every faithful preradical is pseudohereditary. 

(iii) If r is a cohereditary preradical, then r is pseudo-

hereditary if and only if r is hereditary. 

(iv) If ch(r) is hereditary, then r is pseudohereditary. 

(v) If R is left hereditary, then r is pseudohereditary im­

plies ch(r) is so. 

(vi) If r« , i d is a family of preradicals, then O r. 1 i - I ^ 
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is pseudohereditary provided each r^ is so. 

(vii) If r is a preradical, then f)$afT£a$ a pseudohere­

ditary preradical} (fl-(s,r.£s, s pseudohereditary radical]) 

is the least pseudohereditary preradical (pseudohereditary 

radical) containing r. 

(viii) If r is pseudohereditary, then r is so. 

Proof follows immediately from Definition 1.1 and Propo­

sition 1.2. 

The next proposition is a modification of the well known 

result for hereditary radicals (see Jans C51). 

Proposition 1.5. Let r be a pseudohereditary radical. 

Then there is an infective ch(r)-torsionfree module Q such that 

ch(r) = ch(p4<;5). 

Proof: It is enough to put Q = TT E(A), where d is a 

representative set cf cyclic r-torsionfree modules. As it is 

easy to see, Q is an infective ch(r)-torsionfree module, and 

therefore ch(r)^p **. On the other hand it suffices to prove 

^ \Q,\ £ ^r # For> lBt T e ^ I Q 2 » T 4 ^r# w i t h c u t l o s s of S e n e~ 

rality we can assume that T € 3r
T A (T cr » (take T/r(T) instead 

T, if necessary). Therefore T contains a nonzero cyclic submo-

dule C isomorphic to some A e d . Hence Honu(C,Q)4. 0 and con­

sequently C 4 T JQ>- 0n the other side C e f ^ i since p * is 

hereditary, a contradicition. 

Corollary 1.6. Let r be a radical. Consider the following 

conditions: 

(i) r is pseudohereditary, 

(ii) there is an infective module * such that (0:^) = 

= r(?.). 



Then (i) implies (ii). Moreover, if R is a left hereditary 

ring then (ii) implies (i). 

Proof: (i) implies (ii). By Proposition 1.5. 

(ii) implies (i). By Proposition 1.4 (iv),(v). 

§ 2. Pseudocohereditary preradicala. 

Definition 2.1. A preradical r is said to be pseudoco­

hereditary if for every module M and every epimorphism 

M/h(r)(M)—i>A A « y p . 

Proposition 2.2. Let r be a preradical and Q be a faith­

ful infective module. Then the following are equivalent: 

(i) r is pseudocohereditary, 

(ii) h(r)(M)SCr(N:M) implies r(M/N) = (h(r)(M) + N)/N for 

every submodule N of a module M, 
T T 

(iii) If I is an arbitrary index set and Q /r(Q ) —•* A an 

epimorphism, then A ̂  #*r. 

Proof: (i) implies (ii). Suppose NSM and h(r)(M) s 

-= C (N:M). Consider the natural epimorphism M/h(r)(M) — > 

— > M/(h(r)(M) + N). 

According to (i) (M/N)/( (h(r) (M) + N)/N)<* M/(h(r)(M) + 

+ N) * ̂ r, and hence r(M/N)S (h(r)(M) + N)/N. The converse 

inclusion is obvious. 

(ii) implies (i). If M« R-mod, h(r)(M)SK£jft and " 

M/h(r)(M)—> M/K is a natural epimorphism, then we have 

r(M/K) = (h(r)(M) + K)/K =- 0 by (ii). 

(i) implies (iii). Obvious. 

( i i i ) inrolies ( i ) . Let A, M€ R-mod and g:M/h(r)(M) —-> A 

be an epimorphism. There i s an epimorphism f:F—> M with F 
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free. Since Q is faithful p^*(F) = 0, and hence F <—> QJ 

for some index set J. Further, i induces the inclusion T; 

:F/h.(r)(F)—>Q /h(r)(Q ). Now consider the push-out diagram 

QJ/r(QJ) ^ C 

F/h(r)(F) = = — - ^ A 

where f:F/h(r)(F)—> M/h(r)(M) is an epimorphism induced by 

f. As it is easy to see j is a monomorphism and h an epimor­

phism. According to (iii) C e 3* f and hence A € T • 

Proposition 2.3. Let r be a preradical. Then: 

(i) if r is pseudocohereditary and 0 — > K — > A — * B — > 0 is 

a cover of B, then B e 3*T implies A 6 ^ytir) 

(ii) if r is pseudocohereditary and 0—> K <-—> p — > B — > 0 

is an arbitrary projective presentation, then B e T implies 

h(r)(P) + K = P, 

(iii) if R is left perfect, r pseudocohereditary and C(P)~J* 

—---> P a projective cover of P, then P e TT implies C(P) c 

6 ̂ ( r ) ' 

(iv) if R is left hereditary, r pseudocohereditary and B c 

€ J"r, then there is a projective presentation 0-—>K—> P~-> 

~~> B — > 0 with P ^ ^ h ( r ) , 

(v) if r is an idempotent preradical such that for each B € 

e CTr there is a projective presentation 0 — > K C — > P — > B — - > 

— > 0 with P = K + h(r)(P), then r is pseudocohereditary. 

Proof: (i). If 0—> K«-—>• A —> B — > 0 is a cover of B 

and B e r p l then A/K = r(A/K) = (h(r)(A) + K)/K implies A = 

* h(r)(A) + K, and hence Ac 3"n(r\» since K is superfluous 
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in A. 

(ii). This can be done in a similar fashion as in (i). 

(iii). It follows immediately from (i). 

( i v ) . L e t B e T r a n d O - > K ^ p i ^ B —-» 0 be an 

arbitrary project ive presentation. Since r i s pseudocoheredi-

tary h (r) (P) + K = P due to ( i i ) . Now R i s l e f t .hereditary 

and therefore h (r) (P) i s projec t ive . Thus h ( r ) ( P ) e ^ n ( r ) and 

g (h (r) (P) ) = g(T) = B. 

(v) . Suppose N£M and h(r)(M)5Cr(N:M) and consider the 

following commutative diagram 

0—> Kc—^pJ-t~* r(M/N)—> 0 

••Xr 
Cr(N:M) 

where the row is a projective presentation of r(M/N) such that 

K + h(r)(P) = P and <tf is a natural epimorphism. Now r(M/N) = 

= g(h(r)(P)) = . t f(f(h(r)(P))Ls. Jf (h(r)(M)) = (h(r)(M) + N)/3T 

and consequently r(M/N) = (h(r)(M) + NVN. 

Proposition 2.4* 

(i) Every cohereditary preradical is pseudocohereditary. 

(ii) Every cofaithful preradical is pseudocohereditary. 

(iii) If r is a hereditary preradical, then r is pseudocohe­

reditary if andv only if r is cohereditary. 

(iv) If h(r) is cohereditary, then r is pseudocohereditary. 

(v) If R is left hereditary, and r a pseudocohereditary pre­

radical, then h(r) is cohereditary. 

(vi) If r^, i*I is a family of preradicals , then . 2- r^ is 

pseudocohereditary provided each r. is so. 
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(vii) If r is apreradical, then 2-is,sf r, s-pseudocohe-

reditary preradical^ (2(s,sir, s-pseudoeohereditary idem-

potent preradical}) is the largest pseudocohereditary (pseu-

docohereditary idempotent) preradical contained in r. 

(viii) If r is pseudocohereditary, then r is so. 

Proof follows immediately from Definition 2.1 and Pro­

position 2.2. 

Proposition 2.5. Let R be either left hereditary or 

left perfect and r be a pseudocohereditary idempotent preradi­

cal. Then h(r) - h(p^ ?) for some h(r)-torsion projective mo­

dule P. 

Proof: Let CI be a representative set of cocyclic r-

torsion modules and P be the direct sum of projective h(r)-

torsion presentations of modules from d (the existence of P 

follows from Proposition 2.3(iii),(iv)). As it is easy to 

see P is a projective h(r)-torsion module, and therefore 

PxD?^h(r). On the* other hand it suffices to show that 

"P-(P3~ "r* *~' " " * ~"P<PJ 
generality we can assume that F e 3*1 n ^v (take r(F) in­

stead F, if necessary). If C is a nonzerc cocyclic factormo-

dule of F, then CS-A for some A € Q, . Hence HomR(P,C)4- 0 and 

C 4 31 .On the other hand C £ ̂  since pjp» is cohere-P\F] P*P] iFi 

ditary, a contradiction. 

Corollary 2.6. Let r be an idempotent preradical for R-

mod, where R is a left hereditary ring. Then the following are 

equivalent: 

(i) r is pseudocohereditary, 
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(ii) there is a projective module P such that r(M) « 

- prp-(M) for every injective module M. 

Proof: (i) implies (ii). By Proposition 2.5. 

(ii) implies (i). By Proposition 2.4(iv),(v). 
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