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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,2 (1979)

PSEUDOHEREDITARY AND PSEUDOCOHEREDITARY PRERADICALS
J. JIRASKO

Abstract: M.L. Teply in {12] calls a torsion theory (7, ¥)
pseudohereditary, if every submodule of J°(R) is T -torsion.
In this paper, pseudohereditary preradicals together with the
related dual problems are studied.

Key words: Preradical, pseudohereditary ard pseudocohe=-
reditary preradicals, injective and procjective modules.

AMS: Primary 18E40
Secondary 16A50, 16A52

Throughout this paper, R stands for an associative ring
with unit element and R-mod denotes the category of all unita-
ry left R-modules. The injective hull of a module M will be
denoted by E(M), the direct product (sum) by (T Ny ( :éé? M.
A submodule N of M is called essential (superfluous) in M, if
KNN = 0 implies K= O (K + N = M implies K = M) for every sub~
module K of M. If O —rA-f-;B 3’—7 C—>0 is a short exact se-
quence of R-modules, then we shall say that B is an envelope
of A (B is a cover of C), if f(A) is essential in B (f(A) is
superfluocus in B). A ring is called left perfect, if every mo-

dule has a projective ccver.

We start with some basic definiticns from the theory of
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preradicals (for details see [1]1,[2] amd [3]).

A preradical r for R-mod is a subfunctor of the iden-
tity functor, i.e. r assigns to each module M its submodule
r(M) in such a way that every homomorphism of M into N in-
duces a homomorphism of r(M) into r(N) by restriction.

A preradical r is said to be
- idempotemnt if r(r(M)) = r(M) for every module M,

- a radical if r(M/r(M)) = O for every module M,

- hereditary if r(N) = Nar(M) for every submodule N of a
module M,

- cohereditary if r(M/N) = (r(M) + N)/N for every submodule
N of a module M,

~ faithful if r(M) = O for every prc jective module M,

- cofaithful if r(M) = M for every injective module M,

As it is easy to see a preradical r is faithful if and
only if r(R) = 0 and r is cofaithful if and only if r(E(R)) =
= E(R). A module M is r-torsion if r(M) = M and r-torsionfree
if r(M) = O. We shall denote bty T, ( F,) the class of all
r-torsion (r-torsionfz-‘ee) modules. If r and s are preradicals
then we write r<s if r(M)c s(M) for all M e R-mod. The idem-
potent core ¥ of a preradical r is defined by T(M) = = K,
where K runs through all r-torsion submodules K of M, and the
radical closure T is defined ty T(M) = /1 L, where L runs
through all submodules L of M with M/L r-torsionfree. Fur-

ther, the hereditary closure h(r) is defined by h(r)(M) =

i

Mn r(E(M)) arnd the cohereditary core ch(r) by ch(r)(M) =

r(R) M. The intersecticn (sum) of a family of preradicals

r;,iel is a preradical defined by (101 r;) (M) ‘a@l ry (M)

((.&, r:)(M) =, = r.(M)). For a preradical r and modules
1tel 71 i:1 71
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NecM let us define C,(N:M) by C,(N:M)/N = r(M/N). For an ar-
bitrary class of R-modules (, we define ppN) == Inf, £
ranging over all fe Homp(M,N), M e 4 and pa’ (N) =N Ker £, £
ranging over all fé Homp(N,M), M e @ . It is easy to see that
pg is an idempotent preradical (pa‘ is a radical). Moreover,
if M is an injective (projective) module, then pmi is here-
ditary (p““is cohereditary). Further, M is a faithful module

if and only if p'®} is faithful. Dually, M is a cofaithful mo-

dule if and only if pyy; is cofaithful.

§ 1. Pseudohereditary preradicals

Definition 1.1, A preradical r is said to be pseudchere-

), .
ditary if every submodule of r(R)uis r-torsion for every finite

index set I.
Proposition 1.2. Let r be a preradical, Then the follow=-

ing are equivalent:
(i) r is pseudohereditary,
(ii) Ne&ch(r)(M) implies N ¢ Tx, for every submodule N of a

module M,
(iii) r(N)s ch(r)(M) implies r(N) = Nnch(r)(M) for every sub-

module N of a module M.

Proof: (i) implies (ii). Let M¢ R-mod and N<ch(r) (M),
There is an epimorphism f:F—> M with F free. Consider the epi-
morphism F:r(F)—» ch(r)(M) induced by £. By (i) " 1(N)e Ta

and hence N = F(™1(N)) e 7.
(ii) implies (iii). If M ¢ R-mod, NSM such that r(N)

€ ch(r) (M) then r(N)E ch(r)(M)n N. By (ii) K = ch(r)(M)n Re T,

and hence ch(r)(M)n Ner(N).
(iii) implies (i). If Ke& r(R)mthen clearly r(K) Sch(r) (8
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and (iii) yields r(K) = ch(r) (R(I))nK = K.,

Proposition 1.3. Iet r be a preradical. Then
(i) if r is pseudohereditary, then F ¢ %, implies E(F) €

e Fen(e)r

(ii) if r is a radical and Fe Ei'r implies E(F)e F for

ch(r)
every module F, then r is pseudohereditary.

Proof: (i). Let Fe F .. Since r is pseudohereditary,
we have K = Fnch(r)(E(F))e T',. Thus K = O and ch(r){E(F)) =
= 0,

(ii) TLet M< R-mod and N&ch(r)(M). Consider the follow-

ing commutative diagram

N/r(N) T o eh(r)(H)/r(N)

f >

E(N/r(N))

Now r is a radical and N/r(N) e ?r implies E(N/r(N))e F
On the other hand N/r(N) = h(N/r(N)) < h(ch(r)(M)/r(N)) =
= h(ch(r) (M/r(N)))s ch(r) (E(N/r(N))) = O, Thus Ne J}.

ch(r)*

Proposition 1.4.

(i) Every hereditary preradical is pseudohereditary.

(ii) Every faithful preradical is pseudohereditary,.

(iii) If r is a cohereditary preradical, then r is pseudo=~
hereditary if and only if r is hereditary. )
(iv) If ch(r) is hereditary, then r is pseudohereditary.
(v) If R is left hereditary, then r is pseudohereditary im-
plies ch(r) is so.

(vi) If r;, i¢I is a family of preradicals, then%{fk ry
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is pseudohereditary provided each ry is so.
(vii) If r is a preradical, then /) {s,r<s, s pseudchere-
ditary preradical} (N { s,r<s, s pseudohereditary radical})
is the least pseudohereditary preradical (pseudohereditary
radi cal) containing r.
(viii) If r is pseudohereditary, then T is so.

Proof follows immediately from Definition 1.1 and Propo=-
sition 1.2.

The next proposition is a mcdification of the well known

result for hereditary radicals (see Jams [5]).

Proposition 1.5. ILet r be a pseudohereditary radical.
Then there is an injective ch(r)-torsionfree module Q such that

ch(r) = ch(p'®,

Proof: It is enough to put Q =A1eT(L E(A), where O is a
representative set cf cyclic r-torsionfree modules. As it is
easy to see, Q is an injective ch(r)-torsionfree module, and
therefore ch(r)< p{Q}. On the other hand it suffices tc prove
.’I;iq,j c Tr‘ For, let Te TP{QQ, T & J,. Withcut loss of gene-
rality we can assume that T & F, n Tp{{:‘} (take T/r(T) instead
T, if necessary). Therefore T contains a nonzerc cyclic subme-
dule C isomorphic to some A € d . Hence Homg(C,&)#+ 0 and con-
sequently C € ‘Tp{Q‘. On the other side C e ‘Tp{Q} since p % s

hereditary, a contradicition.

Corollary 1.6. Let r be a radical. Consider the following

conditions:
(i) r is pseudchereditary,

{ii) <there is an injective module < such that (Q:3) =



Then (i) implies (ii). Moreover, if R is a left hereditary
ring then (ii) implies (i).
Proof: (i) implies (ii). By Proposition 1.5.

(ii) implies (i). By Proposition 1.4 (iv),(v).

§ 2. Pseudocohereditary preradicals.

Definition 2.1. A preradical r is said to be pseudoco-
hereditary if for every module M and every epimorphism

M/h(r)(M)~>A A ¢ 3'1..

Proposition 2.2. Let r be a preradical and Q be a faith-
ful injective module. Then the following are equivalent:
(i) r is pseudocohereditary,

(ii) h(r)(M)g C,(N:M) implies r(M/N) = (h(r)(M) + N)/N for
every submodule N of a module M,

(iii) If I is an arbitrary index set and Ql/r@Ql) —> A an
epimorphism, then A € ‘3"1,.

Proof: (i) implies (ii). Suppose NEM and h(r)(M) =
€C.(N:M). Consider the natural epimorphism M/h(r) (M) —
—> M/(h(r) (M) + N),

According to (i) (M/N)/((h(r)(M) + N)/N)& M/(h(r)(M) +
+ N) e ¥,, and hence r(M/N)E (h(r)(M) + N)/N. The converse
inclusion is obvious.

(ii) implies (i), If M< R-mod, h(r)(M)SKEM and -
M/h(r)(M)—> M/K is a natural epimorphism, then we have
r(M/K) = (h(r)(M) + KK = 0 by (ii).

(i) implies (iii). Obvious.

(iii) implies (i). Let A, M€ R-mod and g:M/h(r)(M)— A

be an epimorphism. There is an epimorphism f:F—> M with F
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free. Since Q is faithful p‘(Q§(F) = 0, amd hence F <%» QJ
for some imdex set J. Further, i induces the inclusion i:

:F/h(r) (F) -——>QJ/h(r)(QJ). Now consider the push-out diagram

) — 2 o

-—
. .

* 4
%o f

where T:F/h(r)(F)— M/h(r) (M) is an epimorphism induced by
f. As it is easy to see j is a monomorphism and h an epimor-

phism. According to (iii) C e 3}, and hence A€ F,.

Proposition 2.3. Iet r be a preradical. Then:
(i) if r is pseudocohereditary and 0—> K—> A—>» B—> 0 is
a cover of B, then B ¢ J, implies A € q’h(r)
(ii) if r is pseudocohereditary and 0—>K<—> P—>B—>0
is an arbitrary projective presentation, then B e T, implies
h(r)(P) + K = P,
(iii) if R is left perfect, r pseudocohereditary and C(P)Efr
—('ZE—') P a projective cover of P, then P ¢ T, implies C(P) €
¢ Tnirys
(iv) if R is left hereditary, r pseudocohereditary and B €
€ Tr, then there is a projective presentation 0—> K—> P-—
—> B —> 0 with Pe ?’h(r),
(v) if r is an idempotent preradical such that for each B €
€ Tr there is a lpro,jective presentation 0 —> K¢<—> P —» B—>
—» O with P = K + h(r)(P), then r is pseudocohereditary.
Proof: (i). If O—> K< A—> B—> 0 is a cover of B
and BeTr, then A/K = r(A/K) = (h(r)(A) + K)/K implies A =

= h(r)(A) + K, and hence Ae (‘rh(r)' since K is superfluous
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in A,
(ii). This can be done in a similar fashion as in (i).

(iii). It follows immediately from (i).
(iv). Let Be J, and 0— K PN P-¥> B—>0 be an

arbitrary projective presentation. Simce r is pseudocoheredi-
tary h(r)(P) + K = P due to (ii). Now R is left kereditary
and therefore h(r)(P) is projective. Thus h(r)(P)e Th(r) and

g(h(r)(P)) = g(P) = B.
(v). Suppose NEM and h(r)(M)e C,(N:M) and consider the

following commutative diagram

0—> K> P-Z5 r(M/N)—> 0
P -

Cr(N:M)

where the row is a projective presentation of r(M/N) such that
K + h(r)(P) = P and & is a natural epimorphism. Now r(M/N) =
= g(h(r)(P)) = sv(f(h(r)(P))s ¥ (h(r)(M)A) = (h(r)(M) + N)/NN
and consequently r(M/N) = (h(r)(M) + NY¥N,

Proposition 2.4.
(i) Every cohereditary preradical is pseudocohereditary.
(ii) Every cofaithful preradical is pseudocohereditary.
(iii) If r is a hereditary preradical, then r is pseudocoche-
redi'tary if and only if r is cohereditary. R
(iv) If h(r) is cohereditary, then r is pseudocohereditary.
(v) If R is left hereditary, and r a pseudocohereditary pre-
radical, then h(r) is cohereditary.
(vi) If r;, i€I is a family of preradicals, then 41:21 r; is

pseudocohereditary provided each Ty is so.
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(vii) If r is a preradical, then = 4s,s<r, s-pseudocche-
reditary preradical} (= {s,s<4r, s-pseudocohereditary idem-
potent preradical}) is the largest pseudocohereditary (pseu-
docohereditary idempotent) preradical contained in r.
(viii) If r is pseudocohereditary, then T is so.

Proof follows immediately from Definition 2.1 and Pro-

position 2.2.

Propesition 2.5. Let R be either left hereditary or
left perfect and r be a pseudocohereditary idempotent preradi-
cal. Then h(r) = h(pipi) for some h(r)-torsion projective mo-
dule P,

Proof: Let & be a representative set of cocyelic r-
torsion modules and P be the direct sum of projective h(r)-
torsion presentations of modules from (L (the existence of P
follows from Proposition 2.3(iii),(iv)). As it is easy to
see P is a projective h(r)-torsion module, and therefore
p{p}f h(r). On the other hand it suffices to show that
F . For, let F e ?p{P} and F ¢ &,. Without loss of

F s .
Pip3 T

generality we can assume that F e ‘:T'rn ?p'CP] (take r(F) in-

stead F, if necessary). If C is a nonzerc cocyclic factormo-

dule of F, then C=ZA for some A € @ . Hence Homp(P,C)4 O and

C4&7F . On the other hand C e ¥ since psp, is cohere-
Pyp} Pp} 1P}

ditary, a contradiction.

Corollary 2.6. Let r be an idempotent preradical for R~
mod, where R is a left hereditary ring. Then the following are

equivalent:

(i) r is pseudccohereditary,
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(ii) there is a projective module P such that r(M) =

= p{P}(M) for every injective module M.

[1)

L2)

[3]

L[4]

L5]

[6)

L7

£8]
L9

(10]

[11)
[12)

Proof: (i) implies (ii). By Proposition 2.5.

(ii) implies (i). By Proposition 2.4(iv),(v).
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