Commentationes Mathematicae Universitatis Caroline

Václav Kubát
 Simultaneous integrability of two J-related almost tangent structures

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 3, 461--473

Persistent URL: http://dml.cz/dmlcz/105943

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUINAE

 20,3 (1979)
SIMULTANEOUS INTEGRABILITY OF TWO J-RELATED ALMOST TANGENT STRUCTURES
 V. KUBAT

Abatract: Let M be a differentiable manifold provided With two almost tangent struetures f, g, auch that 1. Ker $f=$ $=$ In f, Ker $g=\operatorname{Im} g, 2$. $I_{g}=g f=0, \xi^{\prime}$. I and g induce a complex atructure J on Ker \mathcal{I}. We shall associate with the couple f, g in a natural manner a Gatructure on 11 and give neceasary and aufficient conditions for its integrability. in example of the above mentioned structure will be given.

Key words: Ife group, G-structure, distribution, local coordinates, ilijenhuis tensor.

AMS: 53C10
O. All differentiable structures considered in this paper are supposed to be of class c^{∞}.

Let M be a differentiable manifold of dinension $2 n$ endowed with the couple f, g of almost tangent etructures, i.e. tensor fields of type $(1,1)$ auch that $f^{2}=0, g^{2}=0$. Iet us suppose
(i) Ker $f=\operatorname{Im} f$, Ker $g=\operatorname{Im} g$, (ii) $I_{g}=g f=0$. It is easy to see that (i) and (ii) imply Ker $f=$ Ker g. We shall denote Ker $f=$ D. Then D is a differentia ile dietribetion on M, din $D=n$.

For arbitrary $n \in M$, let us celline is isomorphien \boldsymbol{J}_{n} : $D_{u} \rightarrow D_{u}$ by mane of the commatative diagran
(1)

where $T_{u}=T_{u}(M)$ is the tangent space at u, \tilde{f}_{u} and \tilde{g}_{u} are the isomorphisms induced by \mathcal{I}_{u} and g_{u}, respectively.

Let us suppose that
(iii) $\left(J_{u}\right)^{2}=$ - id for every $u \in M$, i.e. that J_{u} is a complex structure on D_{u}. It is the well known fact that $n=\operatorname{dim} D$ must be even. We shall write $n=2 p$.

1. We shall call adapted basis at $u \in \mathbb{M}$ every basis $X_{1}, \ldots, X_{2 p}, Y_{1}, \ldots, Y_{2 p}$ of T_{u} with respect to which P has the matrix expression \tilde{I} and g has the matrix expression \tilde{H},

$$
I=\left(\begin{array}{ll}
O_{n} & O_{n} \\
I_{n} & O_{n}
\end{array}\right) \quad \tilde{H}=\left(\begin{array}{ll}
O_{n} & O_{n} \\
H_{n} & O_{n}
\end{array}\right), \quad H_{n}=\left(\begin{array}{cc}
O_{p} & I_{p} \\
-I_{p} & O_{p}
\end{array}\right),
$$

where O_{n} and I_{n} is the zero and unit matrix of type $n \times n$ and similarly for O_{p} and I_{p}.

In such a way there is

$$
\begin{aligned}
& f X_{a}=Y_{a}, f Y_{a}=0, \\
& g X_{i}=-Y_{i+p}, g X_{i+p}=Y_{i}, g Y_{a}=0, \\
& J Y_{i}=-Y_{i+p}, J Y_{i+p}=Y_{i}, \\
& a=1, \ldots, 2 p, i=1, \ldots, p
\end{aligned}
$$

in terms of the adapted basis $X_{1}, \ldots, X_{2 p}, Y_{1}, \ldots, Y_{2 p}$.
It can be easily proved that the set \mathbb{G} of all matrices $A \in \operatorname{GL}(2 n, R)$ such that

$$
\begin{equation*}
A \tilde{I}=\tilde{I} A, A \tilde{H}=\tilde{H} A \tag{3}
\end{equation*}
$$

is a lie subgroup of $\operatorname{GL}(2 n, R)$. An easy computation show that
(4) $\mathbb{G}=\left\{\left.\left(\begin{array}{c|c}\alpha \beta & 0_{n} \\ -\beta \alpha \infty & \alpha \\ \hline c & \alpha \beta \\ -\beta \alpha\end{array}\right) \right\rvert\,\binom{\alpha \beta}{-\beta \alpha}\right.$ is regular, ∞ is of type $\left.p \times p\right\}$.

Lemma 1. The set B_{G} of all adapted bases of $T_{u}(\mathbb{I})$, $u \in M$, is a $\mathbb{G}-$ structure.

Proof: In a neighbourhood of an arbitrarily chosen point of M we can choose a local basis $Y_{1}, \ldots, Y_{2 p}$ of the distribution D with respect to which the matrix expression of J is H_{n}. Then it is possible to find vector fields X_{1}, \ldots $\ldots, X_{2 p}$ linearly independent over D auch that $f X_{a}=Y_{a},=$ $=1, \ldots, 2 p$. Apparently $X_{1}, \ldots, X_{2 p}, Y_{1}, \ldots, Y_{2 p}$ is a local section of B_{G}. Other details of the proof are left to the reader.
Q.E.D.

When speaking about simultaneous integrability of f and g , we shall always mean the integrability of this \mathcal{G}-structure.
2. We shall atart this paragraph with the following definition.

Given two tensor fielde h, k of type (1,1) satisfying $h k=k h$, we can define a tensor field $\{h, k\}$ of type (1,2) by the formula
(5) $\{h, k\}(X, Y)=[h X, k Y]+h k[X, Y]-h[X, k Y]-k[h X, Y]$, where X, Y are vector fields, $[$,$] is the Lie bracket.$ This definition was given by l jenhuis and $\{h, k\}$ is callod the Nijenhuis torsion of h, k.

The Hijorhuie toreion tensor is widely ued in the theory of G-structures. We shall recall here two well known results on the integrability of an almost complex structure and the integrability of an almost tangent tructare.

Theoren A. An almost complex structure J on differ rentiable manifold M is integrable if and only if $\{J, J\}=0$.

For the proof see [1], Chapter IX, p. 124.
Theoren B. An almost tangent otructure P on a differentiable manifold M is integrable if and only if $\{f, r\}=0$ and Ker P is involutive. (We don't suppose here Ker $\mathcal{P}=\mathrm{Im} \mathbf{f}$.)

For the proof see [2].
It is not difficult to see that the conditions $\{f, P\}=0$, $\{f, g\}=0,\{g, g\}=0$ are neceseary for f and g to be aimultaneously integrable.

Lemma 2. If $\{f, P\}=0,\{f, g\}=0$, then $\{g, g\}=0$.
Proof: It is easy to see that $\{f, P\}=0$ implies that the distribution $I_{m} f$ is involutive. We have $\operatorname{Ker} f=I_{m} f$, so that due to Theoren B there locally exist coordinates (x, y), $x=\left(x_{1}, \ldots, x_{2 p}\right), y=\left(y_{1}, \ldots, y_{2 p}\right)$ such that

$$
\begin{equation*}
f \frac{\partial}{\partial x_{a}}=\frac{\partial}{\partial y_{a}}, 1 \frac{\partial}{\partial y_{a}}=0, a=1, \ldots, 2 p \tag{6}
\end{equation*}
$$

We shall call such local coordinates f-adapted.
Evidently $\frac{\partial}{\partial \bar{J}_{1}}, \ldots, \frac{\partial}{\partial y_{2 p}}$ is a local basis of D and integral manifolds of D are of the form $\left(x_{0}, y\right), x_{e} \in R^{2 p}$.

Let us now write
$g \frac{\partial}{\partial x_{a}}=\gamma_{a}^{b} \frac{\partial}{\partial y_{b}}$. We have $\{f, g\}\left(\frac{\partial}{\partial x_{a}}, \frac{\partial}{\partial x_{b}}\right)=\left[\frac{\partial}{\partial y_{a}}, \gamma \frac{c}{} \frac{\partial}{\partial y_{c}}\right]=$
$=\frac{\partial \gamma_{b}^{e}}{\partial y_{a}} \frac{\partial}{\partial J_{c}}=0$, and so the matrix function $\gamma^{=}=\gamma_{a}^{b}$, a, $b=1, \ldots, 2 p$, does not depend on y.

We shall introduce local coordinates $\left(x^{\circ}, y^{\circ}\right)$ by the formulas

$$
\begin{aligned}
& x_{a}^{0}=x_{a} \\
& y_{a}^{\prime}=\rho_{b}^{a}(x) y_{b},
\end{aligned}
$$

where $\rho=\gamma^{-1}$.
Then

$$
\begin{equation*}
g \frac{\partial}{\partial x_{a}}=\gamma_{a}^{b}(x) \rho_{b}^{c}(x) \frac{\partial}{\partial y_{c}}=\frac{\partial}{\partial y_{a}^{\prime}} \tag{7}
\end{equation*}
$$

The equalities (7) together with Ker $g=$ Im g are equivalent with $\{g, g\}=0$.
Q.E.D.

We are going to make farther considerations and constructions under the assumption that
(iv) $\quad\{f, f\}=0,\{f, g\}=0$.

Let us consider the factor bundle T / D. We shall define for every $u \in M$ an endomorphism \bar{J}_{u} of $(T / D)_{u}$ by means of the following diagram
(8)

(compare with the diagram (1)).
An explicit formula for J_{u} can be given in the form:
(9) $\bar{J}_{u} \bar{z}=\bar{v}$ if and only if $f_{u} v=g_{u} Z$,
where $\nabla, Z \in T_{u}, \bar{\nabla}, \bar{Z}$ are the elements of $(T / D)_{u}$ determined by V and Z.

It can be easily seen that $\left(\bar{J}_{u}\right)^{2}=-i d, u \in M$, so we have got a complex atructure on the factor-bundle T / D.

We shall say that a vector field X on M is an infinitesimal automorphism of D (abbreviated IA) if the local l-parameter group of local transformations φ_{t} generated by x leaves D invariant. In terms of the Lie derivative it means that $I_{X} Y \in D$ whenever the vector field $Y \in D$.

Lemma 3. A vector field X is an IA of D if and only if the expression of X in f-adapted local coordinates (x, y) is

$$
X=A^{a}(x) \frac{\partial}{\partial x_{a}}+B^{a}(x, y) \frac{\partial}{\partial y_{a}}
$$

Proof: Let us write $X=A^{a}(x, y) \frac{\partial}{\partial x_{a}}+B^{a}(x, y) \frac{\partial}{\partial y_{a}}$. For any vector field $Y=C^{a}(x, y) \frac{\partial}{\partial y_{a}}$ it has to be $[X, Y] \in D$. An easy computation shows that this is equivalent with $\frac{\partial \Lambda^{a}}{\partial y_{b}}=0, a, b=1, \ldots, 2 p$.
Q.E.D.

Remark. As a matter of fact, in Lema 3 there is sufficient to use only D-adapted local coordinates, i.e. such ones that $\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{2 p}}$ is a local basis of D. But our aim is to study the simultaneous integrability of f and g, which includes the integrability of f. That's why we shall in the following text always use f-adapted local coordinates.

Lemma 4. If X is an IA of D, then any vector field X_{1} satisfying $\bar{J} \bar{X}=\bar{X}_{1}$ is also an $I A$ of D.

Proof: Iet Y be a vector field, $X \in D$. We shall shor that
$I_{X_{1}} I \in D$, i.e. that $f\left(I_{X_{1}} I\right)=0$. Let Y° be a vector field such that $g Y^{*}=Y$. We have $g X=f X_{1},\{f, f\}=0,\{f, g\}=0$. Therefore

$$
\begin{aligned}
& f\left(L_{X_{1}} Y\right)=f\left[X_{1}, I\right]=f\left[X_{1}, g Y^{\circ}\right]=\left[f X_{1}, g Y^{\circ}\right]-g\left[f X_{1}, Y^{\circ}\right]- \\
&-\{f, g\}\left(X_{1}, Y^{0}\right)=[g X, g Y]-g\left[g X, Y^{\circ}\right]= \\
&=\left\{g, G^{\prime}\right\}\left(X, Y^{\prime}\right)+g\left[X, g Y^{\prime}\right]=g\left[X, g Y^{\circ}\right] \in D_{0} \\
& \text { Q.E.D. }
\end{aligned}
$$

We shall say that a section X of T / D has a property (IA) if there exists an infinitesimal automorphism X of D such that $X=\bar{X}$. Given two sections X, y of T / D with a property (IA), it is possible to define the Lie bracket of x, y as follows: $[X, y]=[\overline{X, Y}]$, where X, Y are IA of D such that $X=\bar{X}, y=$ $=\tilde{Y}$. It can be easily verified that the definition does not depend on the choice of X and Y.

Now we shall construct an analogue of the Nijenhuis torsion of the tensor \bar{J} on the factor-bundle T / D. Let $u_{0} \in M$ be an arbitrary point and let V, W be two elements of $(T / D)_{u_{0}}$. Iet us choose vectors $\nabla_{0}, W_{0} \in T_{u}(M)$ auch that $\bar{V}_{0}=V, \bar{W}_{0}=W$. There exist two vector fields V, W defined on a neighbourhood of u_{0} and satisfying
(a) $\quad V\left(u_{0}\right)=V_{0}, W\left(u_{0}\right)=W_{0}$
(b) V, V are IA of D.

We shall define

$$
\begin{align*}
\{\bar{J}, \bar{J}\}(v, W) & =[\bar{J} \bar{v}, \bar{J} \bar{w}]_{u_{0}}-[\bar{v}, \bar{w}]_{u_{0}}-\bar{J}_{u_{0}}[\bar{J} \bar{v}, \bar{w}]_{u_{0}} \tag{10}\\
& -\bar{J}_{u_{0}}[\overline{\bar{v}}, \bar{J} \overline{\bar{v}}]_{u_{0}}
\end{align*}
$$

We have to show that the definition (10) is correct, i.e. that the right side of the formula depends only on the values of V and W.

Let us use f -adapted local coordinates (x, y) in a neighbourhood of u_{0} and write

$$
\begin{aligned}
& V(x, y)=\nabla^{a}(x) \frac{\partial}{\partial x_{a}}+\nabla^{a}(x, y) \frac{\partial}{\partial y_{a}}, \\
& \nabla(x, y)=\nabla^{a}(x) \frac{\partial}{\partial x_{a}}+\nabla^{a}(x, y) \frac{\partial}{\partial y_{a}}, \\
& g \frac{\partial}{\partial x_{a}}=\gamma_{a}^{b}(x) \frac{\partial}{\partial y_{b}}, \text { as usual } a, b=1, \ldots, 2 p .
\end{aligned}
$$

(In the following text we shall no more emphasize that similar formulas represent a system of formulas, a.b.c.d.e running from 1 to 2 p.)
For the further computation we may use the representation

$$
\begin{aligned}
& \bar{\nabla}=\overline{\nabla^{a}(x) \frac{\partial}{\partial x_{a}}}, \bar{\nabla}=\overline{w^{a}(x) \frac{\partial}{\partial x_{a}}}, \\
& j=\overline{\nabla^{a}(x) \gamma_{a}^{b}(x) \frac{\partial}{\partial x_{b}}}, \quad \bar{\tau}=\overline{w^{a}(x) \gamma_{a}^{b}(x) \frac{\partial}{\partial x_{b}}} .
\end{aligned}
$$

It is easy to compute that

$$
\left.+\nabla^{a} \gamma_{a}^{b} w^{c} \frac{\partial \gamma_{c}^{d}}{\partial x_{b}}-w^{a} \gamma_{a}^{b} v^{c} \frac{\partial \gamma_{c}^{d}}{\partial x_{b}}\right) \frac{\bar{\partial}}{\frac{\partial}{\partial x_{d}}},
$$

$[\bar{\nabla}, \bar{w}]=\left(\nabla^{\mathrm{a}} \frac{\partial \mathrm{d}^{\mathrm{d}}}{\partial x_{a}}-\nabla^{\mathrm{a}} \frac{\partial \mathrm{v}^{\mathrm{d}}}{\partial x_{b}}\right) \overline{\frac{\partial}{\partial x_{d}}}$,

$$
\begin{aligned}
3[3, \bar{\nabla}, \bar{\nabla}] & =\left(\nabla^{a} \gamma_{a}^{b} \frac{\partial v^{c}}{\partial x_{b}}{ }_{c}^{d}+\nabla^{a} \frac{\partial \gamma^{b}}{\partial x_{a}} \gamma_{b}^{c} \gamma_{c}^{d}-\nabla^{a} v^{b} \frac{\partial \gamma_{b}^{c}}{\partial x_{a}} \gamma_{c}^{d}\right) \frac{\partial}{\partial x_{d}}= \\
& =\left(\nabla^{a} \gamma_{a}^{b} \frac{\partial v^{c}}{\partial x_{b}} \gamma_{c}^{d}+\nabla^{a} \frac{\partial \gamma^{d}}{\partial x_{a}}-w^{b} \frac{\partial \gamma_{b}^{c}}{\partial x_{a}} \gamma_{c}^{d}\right) \bar{\partial} \overline{\partial x_{d}}
\end{aligned}
$$

and oinilarly

$\bar{J}[\bar{v}, \bar{J}, \bar{w}]=\left(-\nabla^{a} \frac{\partial w^{d}}{\partial x_{a}}+\nabla^{a} \frac{\partial \gamma_{b}^{c}}{\partial x_{a}} \gamma_{c}^{d}-w^{a} \gamma_{c}^{b}-w^{a} \gamma_{a}^{b} \frac{\partial v^{c}}{\partial x_{b}} \gamma_{c}^{d}\right) \overline{\frac{\partial}{\partial x_{d}}}$.
Therefore

$$
\begin{aligned}
& \{J, J\}\left(v^{v}, w^{\prime}\right)=\left[v^{a}\left(u_{0}\right) \gamma_{a}^{b}\left(u_{0}\right) w^{c}\left(u_{0}\right) \frac{\partial \gamma_{c}^{d}}{\partial x_{b} \mid u_{0}}\right. \\
& -w^{a}\left(u_{0}\right) \gamma_{a}^{b}\left(u_{0}\right) v^{c}\left(u_{0}\right) \frac{\partial \gamma_{c}^{d}}{\partial x_{b} \mid u_{0}}+w^{a}\left(u_{0}\right) \frac{\partial \gamma_{b}^{c}}{\partial x_{a} \mid u_{0}} \gamma_{c}^{d}\left(u_{0}\right)= \\
& \left.-v^{a}\left(u_{0}\right) w^{b}\left(u_{0}\right) \frac{\partial \gamma_{b}^{c}}{\partial x_{a} \mid u_{0}} \gamma_{c}^{d}\left(u_{0}\right)\right] \overline{\left.\frac{\partial}{\partial x_{d}} \right\rvert\, u_{0}}
\end{aligned}
$$

which depends only on \mathbb{V}, W.
The independence on the choice of ∇_{0}, ∇_{0} is also apparent from the above computation.

Now we are ready to formulate the main theorem of this paper.

Theorem. f and g are aimultaneously integrable if and only if

$$
\{f, f\}=0,\{f, g\}=0,\{\bar{J}, \bar{J}\}=0 .
$$

Proof: Let (x, y) be f-adapted local coordinates. Let us write $\frac{g}{\partial x_{a}}=\gamma_{a}^{b}(x) \frac{\partial}{\partial y_{b}}$. We are looking for f-adapted local coordinates (x^{\prime}, y^{\prime}) defined in the same domain satisfying

$$
\begin{align*}
& g \frac{\partial}{\partial x_{a}}=H_{a}^{b} \frac{\partial}{\partial y_{b}}, \quad H=\left(\begin{array}{cc}
O_{p} & I_{p} \\
-I_{p} & O_{p}
\end{array}\right), \tag{11}\\
& g \frac{\partial}{\partial y_{a}}=0
\end{align*}
$$

Local coordinates (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ have to be related by the formulas

$$
\begin{aligned}
& x_{a}^{\prime}=F_{a}(x) \\
& y_{a}^{\prime}=\frac{\partial F_{a}}{\partial x_{b}} y_{b}+\varphi_{a}(x)
\end{aligned}
$$

It is

$$
\begin{aligned}
& \frac{\partial}{\partial x_{a}}=\frac{\partial F_{b}}{\partial x_{a}} \frac{\partial}{\partial x_{b}}+\Phi \frac{\partial}{\partial Y_{b}} \\
& \frac{\partial}{\partial y_{a}}=\frac{\partial F_{b}}{\partial x_{a}} \frac{\partial}{J_{b}},
\end{aligned}
$$

where Φ is a certain function. It is easy to see that (il) is satisfied if and only if

$$
\begin{equation*}
\gamma_{a}^{b}(x) \frac{\partial F_{c}}{\partial x_{b}}=\frac{\partial P_{b}}{\partial x_{a}} घ_{b}^{c} \tag{12}
\end{equation*}
$$

In other words, we are looking for the solution of the system of partial differential equations (12). This system arises in the study of integrability of an almost complex structure.
From Theorem A it follows that the system (12) has a solution if and only if
(13) $\gamma_{a}^{b} \frac{\partial \gamma_{c}^{d}}{\partial x_{b}}-\gamma_{c}^{b} \frac{\partial \gamma_{a}^{d}}{\partial x_{b}}+\frac{\partial \gamma_{a}^{b}}{\partial x_{c}} \gamma_{b}^{d}-\frac{\partial \gamma_{c}^{b}}{\partial x_{a}} \gamma_{d}^{b}=0$.

Let us now compute the value $\{\overline{\mathrm{J}}, \overline{\mathrm{J}}\}$ on $\left(\frac{\bar{\partial}}{\partial x_{a}}, \frac{\bar{\partial}}{\partial x_{c}}\right)$. It is

$$
-\overline{\bar{J}}\left[\overline{\left.\gamma_{a}^{b} \frac{\partial}{\partial x_{b}}, \frac{\partial}{\partial x_{c}}\right]}=\left(\gamma_{a}^{b} \frac{\partial \gamma_{c}^{d}}{\partial x_{b}}-\gamma_{c}^{b} \frac{\partial \gamma_{a}^{d}}{\partial x_{b}}\right) \overline{\frac{\partial}{\partial x_{d}}}-\right.
$$

$$
-\frac{\partial \gamma_{c}^{b}}{\partial x_{a}} \gamma_{b}^{d} \frac{\bar{\partial}}{\frac{\partial}{\partial x_{d}}}+\frac{\partial \gamma_{a}^{b}}{\partial x_{c}} \gamma_{b}^{d} \frac{\bar{\partial}}{\partial x_{d}}=0
$$

Because of the linear independence of the elements $\overline{\frac{\partial}{\partial x_{1}}}, \ldots$
$\ldots, \frac{\bar{\partial}}{\partial x_{2 p}}$, the conditions (13) are satisfied and the theorem is proved, as the local coordinates (x^{\prime}, y^{\prime}) defined by formu1as

$$
x_{a}^{0}=F_{a}(x),
$$

$$
y_{a}^{\circ}=\frac{\partial F_{a}}{\partial x_{b}} y_{b} \text {, }
$$

where the functions $F_{1}(x), \ldots, P_{2 p}(x)$ solve (12), are f-adapted and satisfy (11).

> Q.E.D.
4. We shall present here an example of the above described structure.

Let M be a differential manifold of dimension 2 p provided with an almost complex structure \mathcal{F}. We shall denote $T(M)$ the tangent bundle and π the usual projection $T(M) \longrightarrow M$. If $u \in T(M)$, then there exists a canonical isomorphism i: $\Psi_{\pi(u)}(M) \rightarrow$ $\rightarrow T_{u}\left(T_{\pi(u)}(M)\right)$. Now let us define two endomorphisms f_{u}, g_{u} : $: T_{u}(T(M)) \longrightarrow T_{u}(T(M))$ by the formulas

$$
f_{u}=i \cdot r_{*}, g_{u}=i \circ \gamma_{\pi(u)} \cdot \pi_{k} \text {. }
$$

Apparently $f^{2}=0, g_{u}^{2}=0$, $\operatorname{Ker} P_{u}=\operatorname{Ker} g_{u}=\operatorname{Im} f_{u}=\operatorname{Im} g_{u}$ 。 Let us denote Ker $f_{u}=D_{u}$ and $T_{u}(T(X))=J_{u}$.

Let us consider the diagram (8). The isomorphism \bar{J} in this case satisfies:

$$
\begin{equation*}
\overline{\mathrm{J}} \overline{\mathrm{Z}}=\overline{\mathrm{V}} \Longleftrightarrow \mathrm{~g} Z=\mathrm{fV} \tag{14}
\end{equation*}
$$

where $Z, \nabla \in \mathcal{J}_{u}, \bar{Z}, \bar{v}$ are the corresponding classes from $\tau_{u / D_{u}}$. The right side of (14) means $i\left(\mathcal{J}\left(\pi_{*} Z\right)\right)=i\left(\pi_{*} V\right)$, i.e. $\mathcal{J}\left(\pi_{*} Z\right)=\pi_{*} v$. Therefore

$$
\bar{J} \bar{Z}=\bar{v} \Longleftrightarrow y\left(\pi_{*} z\right)=\pi_{*} v_{.}
$$

When we define $\bar{\pi}_{u}: \mathcal{J}_{u} / D_{u} \rightarrow T_{\pi(u)}(M)$ by the formula $\bar{\pi} \bar{X}=\pi_{k} X$, $X \in \mathcal{J}_{u}$ (the definition is correct), we have the following commutative diagram
(15)

If $\left(x_{1}, \ldots, x_{2 p}\right)$ are local coordinates in a domain $U \subset M$ and (x, y) are canonically induced local coordinates in $\pi^{-1} \mathcal{U} C$ $\subset \mathbf{T}(M)$, then there is

$$
\begin{aligned}
& \mathbf{P} \frac{\partial}{\partial \mathbf{x}_{\mathbf{a} \mid \mathbf{u}}}=\frac{\partial}{\partial \mathbf{y}_{\mathbf{a}} \mid \mathbf{u}}, \quad \mathbf{f} \frac{\partial}{\partial \mathbf{J}_{\mathbf{a}} \mid \mathbf{u}}=0, \\
& g \frac{\partial}{\partial x_{a} \mid u}=\gamma_{a}^{b}(x) \frac{\partial}{\partial y_{b \mid u}}, g \frac{\partial}{\partial y_{a} \mid u}=0,
\end{aligned}
$$

$a, b=1, \ldots, 2 p, u \in \pi^{-1} \mathbf{v}, u=(x, y)$, where $\gamma_{a}^{b}(x)$ are defined by $y \frac{\partial}{\left.\partial x_{a}\right|_{x u} u} \gamma_{a}^{b}(x) \frac{\partial}{\partial x_{b} \mid r u}$. Now it is very easy to verify that $\{f, f\}=0,\{f, g\}=0$.

It can be also easily verified that

$$
\begin{equation*}
(\{\bar{J}, \bar{J}\}(\bar{\nabla}, \bar{z}))=\{y, y\}(\bar{\pi} \bar{v}, \bar{\pi} \bar{z}), \bar{v}, \bar{z} \in(J / D)_{u} \tag{16}
\end{equation*}
$$

This formula shows us that f, g are simultaneously integrable if an only if the almost complex structure \mathcal{F} on M is integrable.

References
[1] S. KOBAYASHI, K. NOIIZU: Foundations of Differential Geometry, Vol. II, Interscience Publishers, 1969.
[2] J. LEHMAE-LENEUES: Intégrabilité des G-structures definies par une l-forme 0-déformable a valeurs dans le fibre tangent, Ann. Inst. Fourier, Grenoble 16,2(1966), 329-387.

Matematick ustav

Universita Karlova

Sokolovská 83, 18600 Praha 8
Ceskoslovensko
(Oblatum 22.12. 1978)

