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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

20,3 (1979) 

GENERALIZED PROJECTIVITY - II 
J. JIRASKO 

Abstract: Recently in [111 the (r,i,s,j)-projectivity 
(i.e. the projectivity with respect to two preradicals r and 
s) has been investigated. In many cases the (r,i,s,j)-projec-
tivity is reduced to the (l,t)-projectivity for some preradi-
cal t. It is shown that a module P is (l.r)-projective if and 
only if P/ch(r)(P) is projective in R/r(ft)-mod# In § 2 we 
shall show that the concepts of (l,r)-projectivity and the 
strongly M-projectivity which is studied by K. Varadarajan in 
£181 are the same. Further, in the study (r,2)-projectivity, 
where r is an idempotent preradical and # is pseudohereditary, 
r can be replaced by a hereditary radical. § 3 is devoted to 
the study of (r?i,s,j)-quasiprojective modules. Some of these 
results are motivated by J.S. Golan's paper 183 on quasipro-
jective modules. 

Key words: Generalized projectivity, generalized M-pro-
jectivity, generalized quasiprojectivity, preradicals. 

AMS: Primary 16A50 

Secondary 18E40 

By R-mod we understand the category of all unitary left 

modules over an associative ring with unit element. The injec-

tive hull of a module M will be denoted by E(M), the direct 

product (sum) by . H i . (,XT M. ). 
tfcl x *- I -• 

First, several basic definitions from the theory of pre­

radicals (for details see [13,L2J,[3],[53 and [12]). 

A preradical r for R-mod is a subfunctor of the identity 
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functor, i.e. r assigns to each module M its submodule r(M) 

in such a way that every homomorphism of M into N induces a 

homomorphism of r(M) into r(N) by restriction. A module M is 

r-torsion if r(M) = M and r-torsionfree if r(M) = 0. We shall 

denote by "J' ( * r̂) the class of all r-torsion (r-torsion­

free) modules. 

A preradical r is said to be 

- idempotent if r(r(M)) = r(M) for every module M, 

- a radical if r(M/r(M)) = 0 for every module M, 

- hereditary if r(N) = Nnr(M) for every submodule N of a mo­

dule M, 

- cohereditary if r(M/N) = (r(M) + N)/N for every submodule N 

of a module M, 

- pseudohereditary if every submodule of r(R) is r-torsion, 

- faithful if r(R) = 0. 

We shall say that a module M splits in a preradical r if 

r(M) is a direct summand in M. If r and s are preradicals then 

we write r=V s if r(M)<=s(M) for all MeR-mod. The idempotent 

core r of a preradical r is defined by r(M) = X K, where K runs 

through all r-torsion submodules K of M, and the radical clo­

sure r is defined by r(M) = H L, where L runs through all sub-

modules L of M with M/L r-torsionfree. Further, the heredita­

ry closure h(r) is defined by h(r)(M) = Mnr(E(M)) and the co-

hereditary core ch(r) by ch(r)(M) = r(R)M. For a preradical r 

ani modules N9M let us define Cp(N:M) by Cr(N:M)/N = r(M/N). 

Let r and s be two preradicals. A preradical t defined by 

t(M) = C (r(M):M), Me R-mod, will be denoted by r&s. For an 

arbitrary class of R-modules d we define p (N) = f) Ker f, f 

ranging over all f £HomR(N,M), M e Qs . As it is easy to see 
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p^is a radical. Further, M is a pseudo-injective module iff 

p^'is hereditary and M is a faithful module if and only if ™ 

is faithful.Let f :R—•>S be a ring onto homomorphism and r be a 

preradical for R-mod.For all McS-mod let us define f£rJ(M)= 

--S-rC^D.Then f£r] is a preradical for S-aod and f£r^=f£r3, fCrJ-

=f Cr3 . Finally, the zero functor will be denoted by zer. 

§ 1. (r>i.8..i)-projective modules. We start with some 

definitions which are introduced in [113. Let s be a preradi-

cal for R-mod. An epimorphism A * B is said to be: 

- (s,l)-codense if there exist Cc R-mod and g:C—>A an epi­

morphism with s(g~ (Ker h))SKer g, 

- (s,2)-codense if s (Ker h) = 0, 

- (s,3)-codense if Ker hns(A) = 0. 

Further if N^M is a submodule and M —> M/K is a natural epi­

morphism which is (s,l)-codense, then we write NS^ S , 1'M. Si­

milarly NS ( s> 2 )M (NS ( s» 3 )M). 

Let r,s be two preradicals, i,j€ 41,2,3? and McR-mod. 

A module P is said to be (r,i,s,j,M)-projective if every dia­

gram 

P 

| g 

M *- N- **0 

h 

with exact row, Ker h s ^ ' ^ M and r f ^ d m g ) s ^ s , t ^ M can be 

completed to commutative one* 

We say tha t a module P i s ( r » i » s , j ) ~ p r o j e c t i v e i f i t i s 

( r , i , a , j , M ) - p r o j e c t i v e for a l l Mc R-mod. 

A module P i s sa id to be (r , i» s»«3)-quasiprc j e c t i v e i f i t i s 

( r , i , s , j . ,P)-pro j e c t i v e . 
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A module P is said to be (r,i,M)-projective ((r,i)-(quasi) 

projective), if it is (r,i,zer,l,M)-projective. ((r,i,zer,D-

(quasi) projective). 

A module P i s said to be (i,r,M)-projective ( ( i , r ) - (quas i ) 

projective), if it is (zer,l,r,i,M)-projective ((zer,l,r,i)-

(quasi) projective). 

As it is noted in Ell] a module P is (r,i,s,j)-projective, 

iff it is (r,i,M)-projective for all Me. R-mod with Mc^t^jj, 

i,j «4l,2,3}. 

Let A,B be modules and l e t 9 :A—> B be an epimorphism. 

A pair (A,y) i s said to be an (r , i ,s , j ,M)-projective ( ( r , i , 

s , j ) - (quasi) projective) precover of the module B if A is 

(r , i ,s , j ,M)-project ive ( ( r , i , s , j ) - (quas i ) projective), 
"P & 

^ > C s•-> B with gp f =- cp f ftg epimorphisms and C 

(r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) implies 

f is an isomorphism. An (r,i,s,j,M)-projective ((r,i,s,j)-

(quasi) projective) precover (A,g> ) which is a cover (i.e. 

Kercp is superfluous in A) is said to be an (r,i,s,j,M)-pro­

jective ((r,i,s,j)-(quasi) projective) cover. 

It is shown in C111 that (r,i,s,j,M)-projective ((r,i,s,j)-

projective) cover of a module B exists whenever B has a pro­

jective cover. 

Proposition 1.1. Let r,s be preradicals for R-mod, j <£ 

e il,2} and Fe R-mod. Then 

(i) if P is projective and K e Tr then P/K is (r,l)-projec­

tive, 

(ii) if P is (r,2,s, j)-projective and K 6 T~ then P/X is 

(r,2,s,j)-projective. 
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(iii) if P is (r,3,3,j)-projective and K£r(P) then P/.K is 

(r,3,s, j)-projective. 

Proof: Obvious. 

Proposition 1.2. Let r,s be preradicals for R-mod and 

f:R—> R/s(R) be a natural ring homomorphism. Then 

(i) if r is idempotent then a module P is (r,2,s,l)-projec­

tive if and only if P/ch(s)(P) is (ftr.1,2)-projective in 

R/s(R)-mod, 

(ii) if r is a radical then a module P is (r,3,8,l)-projec-

tive if and only if P/ch(s)(P) is (f[rl,3)~projective in 

R/s(R)-mod. 

Proof: (i). Suppose P is (r,2,s,l)-projective and 

0 — > K c — > Q—JL» P/ch(3)(P)—> 0 is a projective presenta­

tion of P/ch(s)(P) in R/s(R)-mod. 0?hen 0 - ^ K/tlrl (K) — > 

->,Q/fW (K)-J-Up/ch(s)(P)—->0 (g induced by g) is a 

(f[rH,2)-projective presentation in R/s(R)-mod by Proposi­

tion l.l(ii). Consider the following diagram in R-mod 

P 

- I-
0—»K/r (K)<=—>Q/r (K)_®>P /ch(s) (P )—>0 ( JT natural) 

As i t i s easy to see Q/r(K) € ?ch(a) and~K/r(K)9 ( r , 2 ) Q / r ( K ) . 

Now P i s ( r , 2 , s , l ) - p r o j e c t i v e and g * v = ar for some v c 

€ HomR(P,fiK/r(K)) which induces v:P/ch(s)(P)—•*- Q/r(K) with 

g * v = 1. Thus g s p l i t s in R/s(R)-mod and consequently 

P /ch (8) (P ) i s ( f [ r ] , 2 ) - p r o j e c t i v e in R/s(R)-mod« 

Conversely, i f 
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p 

J * 
M £--> N >0 

(r 2) is a diagram in R-mod with exact row, Ker gs f M, M £ 

e ^ch(s) and if p/ch(s^(p^ is (fl>], 2)-projective in 

R/s(R)-mod, then 

P/ch(s)(P) 

! Һ 
т
 Һ 

Љ—> N > 0 

(K induced by h) i s a diagram in R/s(R)-mod with Ker g £ 

e l x t r j » t f / M > and hence g© v = h for some homomorphism v: 

:P/ch(s)(P)—•> M. Thus g o (v o ar) = h ( JT :P—> P/ch(s)(P) i s 

a natural homomorphism) and consequently P i s ( r , 2 , s , l ) - p r o ­

j e c t i v e . 

(ii) Similarly as in (i). 

Corollary 1.3* Let s be a preradical. Then a module P 

is (1,8)-projective if and only if P/ch(s)(P) is projective 

in R/s(R)-mod. 

Proposition 1.4. Let r be a preradical for R-mod and 

Pe R-mod. Then 

(i) if r is idempotent then P is (r,l)-projective if and on­

ly if it is (r,2)-projective, 

(ii) if r is idempotent and r is pseudohereditary then P is 

(r,2)-projective if and only if it is (l,r)-projective, 

(iii) if r is a radical then P is (r,3)~projective if and 

only if it is (l,r)-projective, 

(iv) P is (3,r)-projective if and only if it is (2,r)-pro-

jective if and only if it is (l,r)-projective. 
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Proof: (i). It suffices to prove the "only if part". 

Let P be (r,2)-projective and 0 — > K <=—* Q —=> P — > 0 be a 

projective presentation of P. Then 0—> K/f(K)—^ Q/f (K)—§> 

_JL> P — > 0 (g induced ty g) is a (r,l)-projeetive presenta­

tion of P with K/r(K) e S"p by Proposition l.l(i). Thus g 

splits and consequently P is (r,l)-projeetive. 

(ii) See Rangaswamy L141 Theorem 8 and Corollary 1.3. 

(iii) With respect to Corollary 1.3 it suffices to pro­

ve that P is (r,3)-projective if and only if P/ch(r)(P) is 

projective in R/r(R)-mod. Let P be (r,3)~projective, f:R—• 

—>*R/r(R) = R be a natural ring homomorphism and 0—** K — > 

— > Q -JL>. p/ch(r) (P)—i> 0 be a projective presentation in 

R-mod. Then Q e $ since f[rJ(Q) = f frJ (R) Q, and hence gov = 

= JT (JT:P—*P/ch(r)(P) natural) for some veHomR(P,Q) by the 

(r,3)-projectivity of P.Thus v induces v:P/ch(r)(P)—>Q with 

g o ? = 1, hence g splits in R/r(R)-mod and consequently 

P/ch(r)(P) is projective in R/r(R)-mod. 

We shall prove the sufficiency by modifying of the proof of 

Theorem 8 in L14J. Let P/ch(r)(P) be projective in R/r(R)-mod 

and 0'—> K C—> Q -»-£--> p — ^ o be a projective presentation of P. 

Then by Proposition 1.1 (iii) 0 — * K/(r(Q)n K)—> Q/(r(Gt) n 

nK)—-=-->P—>0 is a (r,3)-projective presentation of P with 

K'= K/(r(Q)n K)£(r'3)Q/(r(Q)nK) = Q' (g induced by g). 

Consider the following diagram 

-*- Q 

0~^(K'+ch(r)(Q'))/ch(r)(Q')~^.QVch(r)(Q')-5Up/ch(r)(P)-

where f̂«,, rt^ a r e natural epimorphisms. 
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As it is easy to see the right hand square is a pullback. Now 

g' splits since P/ch(r)(P) is projective in R/r(R)-mod, and 

hence g splits. Thus P is (r,3)-projective. 

(iv) With respect to Proposition 2.9 in [113 it suffi­

ces to prove that P is (2,r)-projective implies P is (l,r)-

projective for a radical r. It can be proved similarly as the 

necessity in (iii). 

Corollary 1.5. Let r,s be preradicals for R-mod and P<~ 

e R-mod. Then 

(i) if r is idempotent and every submodule of r(R/s(R)) is 

r-torsion then P is (r,2,s,l)-projective iff it is (l,sAr)-

projective, 

(ii) if r is a radical then P is (r,3,s,l)-projective iff 

it is (1,8A r)-projective. * 

Proposition 1.6. Let r,s be preradicals. Then every sub-

module of r(R/s(R)) is r-torsion, provided at least one of the 

following conditions is satisfied: 

(i) r is hereditary, 

(ii) s is idempotent and 8 A r is pseudohereditary. 

Proof :• Ob vi ous • 

§ 2. (r«i.s.<i.M)-pro.iective and strongly (r,i,s,j,M)-

pro.jective modules 

Definition 2.1. Let r,s be preradicals, i,je-Cl,2,3} 

and Me R-mod. A module P is said to be strongly (r,i,s,j,M)-

projective if it is (r,i,s,j,M )-projective for every index 

set I. 

If r = s s zer, then we obtain the strongly M-projecti-
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vity in the sense of K. Varadarajan (see £183). 

Let r,s be preradicals, i, j 6-(1,2,3}. For any Pc R-mod 

let us denote C? . 4\(P) = •( Ms R-mod, P is (r,i,s, j,M)-pro-vr,i,s,j; 

jective}. Further the class of all (r,i,s,:j,M)-projective mo­

dules will be denoted by C.1*'1'8?^ (M). 

Due to G. Azumaya an epimorphism f :A—> B is called an M-epi-

morphism if there exists h:A—•-» M with Ker f nKer h = 0. 

These two following propositions are motivated by the results 

of G. Azumaya (see [18] Propositions 1.3 and 1.5). We inclu­

de them here without the proof. 

Proposition 2.2. Let r be a preradical and s be a cohe-

reditary radical. Then the following are equivalent for a mo­

dule P: 

(i) P is (r,2,s,2,M)-projective, 

(ii) given any M-epimorphism f :A—> B and any homomorphism 

g:P—> B with r(Ker f) = 0 and s(f""1(Im g)) = 0, there exists 

a homomorphism v:P—>A such that f«v = g. 

Proposition 2.3. Let r,s be preradicals and P,Mc R-mod. 

Then 

(i) c^r>1tstJ> (JJ) ia closed under arbitrary direct sums and 

direct summands i,j c 4.1,2,35, 

(ii) C? 2 2)^ *s closed under submodules, 

(iii) if r,s are idempotent Ke ^T^^3 and M e C? 2 2)^ 

then M A C C P r j 2 ) a > 2 ) ( P ) , 

(iv) if r,s are both cohereditary then C?r 2 2 ) ^ ̂ s clo~ 

sed under the formation of finite direct sums. Moreover, if 

P has a projective cover then C? 2 2 ) ^ is close<3 under 

the formation of arbitrary direct products. 
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Proposition 2.4. Let r,s be preradicals. Then a module 

P is strongly (r,2,s,2,M)-projective if and only if it is 
4M? (r,2,sAp *, 2) -projective. 

Proof: Obvious. 

Corollary 2.5. Let Me R-mod# Then the following are equi­

valent for a module P: 

(i) P is strongly M-projective, 

(ii) P is (l,p M-projective, 

(iii) P is (2,p *)-projective, 

(iv) P is (p* *,3)-projective, 

(v) P is (3,p )-projective, 

(vi) P/(0:M) P is projective in R/(0:M)-mod. 

Moreover, if M is pseudo-injective then the above stated con­

ditions are equivalent to: 

(vii) P is (p*M*,2)-projective, 

(viii) P is (p ,l)-projective. 

Proof: By Proposition 1.4 and Corollary 1.3. 

Corollary 2.6. Let r be a preradical. Then there is a 

ch(r)-torsionfree module M such that a module P is (l,r)-pro-

jective if and only if it is strongly M-projective. 

Proof: By [111 Proposition 2.9 (iv) P is (l,r)-projec­

tive iff it is (l,ch(r))-projective. Now by 121 Proposition 

4.6 ch(r) ~ p , where M = /FT.A, CI is a representative set 

of ch(r)-torsionfree cocyclic modules and Corollary 2.5 fi­

nishes the proof. 

Theorem 2.7* Let r be an idempotent preradical such that 

r is pseudohereditary. Then there is a hereditary radical s 

such that a module P is (r,2)-projective if and only if it is 
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(s,2)-projective. 

Proof• By Propo3ition 1.4 (ii) and Cll] Proposition 

2.9 P is (r,2)-projective iff it is (l,ch(r))-projective. 

Now by [12] Proposition 1.5 ch(r) =* ch(p^% where Q « 

~ A^ICL®^ f ^ *s a rePresentative Qe^ °f cyclic r-torsion-

free modules. It is enough to put s = p *̂ and use [113 Pro­

position 2.9 (iv) and Corollary 2.5 (vii). 

Proposition 2.8. Let r,s be preradicals. If M is a co-

generator for R-mod then a module P is strongly (r,2,s,2,M)-

projective if and only if it is (r,2,s,2)-projective. 

Proof; By Propo3ition 2.4. 

M.S. Shrikhande calls a module cohereditary if every its 

factormodule is infective (see [15])• 

Proposition 2.9. Let M be an infective module. Consi­

der the following conditions: 

(i) Every.submodule of a strongly M-projective module is 

strongly M-projective. 

(ii) Every submodule of a projective module is strongly M-

projective. 

(iii) M is cohereditary for every index set I. 

(iv) R/(0:M) is a left hereditary ring. 

Then conditions (i),(ii) and (iii) are equivalent and imply 

(iv). 

Moreover, if ch(p *) is hereditary then (iv) implies (i). 

Proof; (i) is equivalent to (ii) and (ii) is equiva­

lent to (iii). It immediately follows from [153 Theorem 3.2'. 

(i) implies (iv). By Corollary 2.5 (vi). 

(iv) implies (i). Use Corollary 2.5 (vi) and the fact 
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that ch(p*M') ie hereditary. 

Corolla ry 2.10. R is a left hereditary ring if and on­

ly if E(R) is cohereditary for every index aet I. 

The next Proposition i3 a modification of the well-known 

Theorem on teat modulee for projectivity (see £43 Theorem 10). 

We include it here without the proof for the sake of comple­

teness. 

Proposition 2.11. Let McR-mod. Then the following are 

equivalent: 

(i) every strongfy M-projective module ia projective, 

Cii) (0:M) = p *(R) ia a ring direct aummand of R and it ia 

completely reducible ring. 

Proposition 2.12. Let r be an idempotent cohereditary 

radical, a be a preradical and let P be a module po33e33ing 

an (r,2)-projective cover 0—i>K—>Q-£--*P—s»0. Then 

(i) P ie (r,2,a,l)-projective if and only if Ker <y£ch(s)(Q), 

(ii) P i3 (r,2,9,2)-projective if and only if Kerg>£d(Q). 

Proof: (i). B(y Propo3ition 1.1 (ii) r(K) = 0. Let P be 

(r,2,9,1)-projective. Coneider the following commutative dia­

gram 
9 

Q Z > P 

l*1 - Һ 
Q/ch(э)(Q) -IU- P/ch( )(P) 

where # i - ̂ o
 a r e n a t u r a

^ epimorphisms. Then <p © v = Jfp
 :
-*

or 

eome v:P—> Q/ch(e)(Q) 3ince Ker iy e % , Q/ch(e)(Q)e ^
c h
(

s
) 

and P is (r,2,a,l)-projective. Now, sr^ = v © gp eince Kertgp + 

+ Ker (sf-, - v pq?) = Q as is easily seen. Therefore Ker 9 s 

s eh(sHQ). 
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The converse implication is obvious. 

(ii) Similarly as in (i). 

Proposition 2.13. Let r be an idempotent cohereditary 

radical, s be a preradical and let P be a module possessing 
<p 

an (r,2)-projective cover 0 — > K — > Q—>-P—> 0. Then 

(i) (Q/(ch(s) (Q)n Kerop ), §> ) where ^ is induced ty 9? is an 

(r,2,s,l)-pro4ective cover of Pf 

(ii) (Q/(s(Q)n Ker g>),ep ) where §5 is induced by <p is an 

(r,2,s,2)-projective cover of P. 

Proof; Use Proposition 2.12. 

Proposition 2.14. Let r be an idempotent cohereditary 

radical and s be a cohereditary radical. If a module P posses-

ses an (r,2)-projective cover 0 — > K — • Q > P — ^ 0 then P is 

(r,2,s,2,M)-projective if and only if it is strongly 

(r,2,s,2,M)-projective. 

Proof: Let P be (r,2,s,2,M)-projective. With respect to 
I Ml Propositions 2.4 and 2.12 it suffices to prove Kerg?SSAp (Q)« 

If f :Q/s(Q)-—*» M is arbitrary and 

Q/s(Q) * >P/s(P) 

is a push-out diagram ( 4? induced ly y ) 9 then Ker he &T and 

h" (Im g) e &Q. Now consider the diagram 

Q 2 ^ p 

I **< i *"* 
M E ^ N 

where ^1*^2 are natural epimorphisms. In the same way as in 
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the proof of Proposition 2.12 we obtain KerySKer f © 3T-,, 

and hence KerySsAp (Q). 

Corollary 2.15. Iiet r be an idempotent cohereditary ra­

dical, s be a cohereditary radical, MeR-mod and P be a modu­

le possessing an (r,2)-pro:jective cover 0—.*- K — > - Q J £ > P — > o. 
-JM",f — 

Then (Q/(sAp1 * (Q) A Kery ), <p ) where jjF is induced by g> is 

an (r,2,s,2,M)-pro:jective cover of P. 

Proof; By Propositions 2.13, 2.14 and 2.4. 

§ 3. (r . i . s . . i ) -quasipro : ject ive modules 

Proposition 3.1. Let r,s be two cohereditary radicals 

and Q ^ R-mod i £ il,2,...,ni. Then Qx€> Qg® ••. €> Qn is 

(r,2,s,2)-quasi-projective if and only if Q^ is (r,2,s,2)-

quasiprojective and (r,2 ,s ,2 ,Q.)-pro : ject ive for every i,j € 

e «tl,2,...,n5, i# j. 

Proof; It follows.immediately from Proposition 2.3 (i)f 

(iv). 

Proposition 3.2. Let r,s be two idempotent preradicals 

and Q be an (r,2 ,s ,2)-quasipro : ject ive module. If K is a cha­

racteristic submodule of Q such that K e ? n ? 8 then Q/K is 

(r,2,s,2)-quasipro:jective. 

Proof; Obvious. 

Proposition 3.3. Let r be an idempotent cohereditary ra­

dical and s be a cohereditary radical. If a module P possesses 
qp 

an (r,2)-projective cover 0—f- K—*Q---->P—> 0 then 
ipi __ __ 

(Q/(SA p * (Q)nKer <y), g») where 9? is induced by 9? is an 

(r,2,s,2)-quasiprojective cover of P. 

Proof; Use Propositions 2.4, 2.13 and 2.14. 
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Corollary 3.4. Let r be an idempotent cohereditary radi­

cal, s be a cohereditary radical and Pc R-mod possessing a pro­

jective cover 0 — * K — > Q-^> p — > o. Then (Q/(C ,p, (r(Kery): 

:Q)n Ker 9 ) , cp) where ^ is induced by g> is an (r,2,s,2)-qua-

si projective cover of P. 

Proof: By Proposition 3.3 and t l l .3 Proposition 2.10 (vii). 

Following closely the ideas of J.S. Golan (see 183) we ob­

tain Propositions 3.5 - 3.8 which are included here without 

the proof. 

Proposition 3.5. Let r be an idempotent cohereditary ra­

dical. Then the following are equivalent: 

(i) Every (finitely generated) R-module has an (r,2)-projec­

tive cover. 

(ii) Every (finitely generated) R-module P has an (r,2)-quasi-

projective cover 0 — > K — > Q — > P — i > 0 with K€ # r . 

Proposition 3.6. Let r be a cohereditary splitting radi­

cal (i.e. every module splits in r). Then the following are e-

quivalent: 

(i) Every finitely presented R-module has an (r,2)-projective 

cover. 

(ii) Every finitely presented R-module P has an (r,2)-quasi-

projective cover 0 — > K — * Q — > P—>• 0 with Ke $ • 

Proposition 3.7. Let r be an idempotent preradical for 

R-mod. Then R = R/r(R) is a completely reducible ring if and 

only if for every simple R-module P R © P is (2,r)-quasipro-

jective in R-mod. 

Proposition 3.8. Let r be an idempotent preradical such 

that r is pseudohereditary. Then the following are equivalent: 

- 497 -



(i) Every R-module is (r,2)-projective, 

(ii) every R-module is (r,2)-quasipro:jective, 

(iii) every finitely generated R-module is (r,2)-quasipro-

jective. 

(iv) The class of all (r,2)-quasiprojective R-module e is clo­

sed under the formation of finite direct sums, 

(v) R/r(R) is a completely reducible ring. 
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