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COMMENTATIOINES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

GENERALIZED PROJECTIVITY - I
J. JIRASKO

Abstract: Recently in [11] the (r,i,s,j)-projectivity
(i.e."the projectivity with respect to two preradicals r and
8) has been investigated. In many cases the (r,i,s,j)-projec-
tivity is reduced to the (1,t)-projectivity for some preradi-
cal t. It is shown that a module P is (1l,r)-projective if and
only if P/ch(r)(P) is projective in R/r(h)-mod. In § 2 we
shall show that the concepts of (1,r)-projectivity and the
strongly M-projectivity which is studied by K. Varadarajan in
181 are the same. Further, in the study (r,2)-projectivity,
where r is an idempotent preradical and ¥ is pseudohereditary,
r can be replaced by a hereditary radical. § g is devoted to
the study of (r,i,s,j)-quasiprojective modules. Some of these
results are motivated by J.S. Golan’s paper L8] on quasipro-

jective modules.
Key words: Generalized projectivity, generalized M-pro-
jectivity, generalized quasiprojectivity, preradicals.
AMS: Primary 16A50
Secondary 18E40

By R-mod we understand the cétegory of all unitary left
modules over an associative ring with unit element. The injec-
tive hull of a module M will be denoted by E(M), the direct

®
T . ).
product (sum) by i:H M, (igal M)
First, several basic definitions from the theory of pre-

radicals (for details see [17],[2],(3],[5]) and [12]).

A preradical r for R-mod is a subfunctor of the identity
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functor, i.e. r assigns to each module M its submodule r(M)
in such a way that every homomorphism of M into N induces a
homomorphism of r(M) into r(N) by restriction. A module M is
r-torsion if r(M) = M and r-torsionfree if r(M) = O. We shall
denote by '.Tr ('f'r) the class of all r-torsion (r-torsion-
free) modules.

A preradical r is said to be
- idempotent if r(r(M)) = r(M) for every module M,
- a radical if r(M/r(M)) = O for every module M,
- hereditary if r(N) = Nnr(M) for every submodule N of a mo-
dule M,
- cohereditary if r(M/N) = (r(M) + N)/N for every submodule N
of a module M,
- pseudchereditary if every submodule of r(R) is r-torsion,
- faithful if r(R) = O.

We shall say that a module M splits in a preradical r if
r(M) is a direct summand in M, If r and s are preradicals then
we write r<s if r(M)Es(M) for all Me R-mod. The idempotent
core T of a preradical r is defined by TF(M) == K, where K runs
through all r-torsion submodules K of M, and the radical clo-
sure ¥ is defined by ¥(M) = N L, where L runs through all sub-
modules L of M with M/L r-torsionfree., Further, the heredita-
ry closure h(r) is defined by h(r)(M) = Mn r(E(M)) and the co-
hereditary core ch(r) by ch(r)(M) = r(R)M. For a preradical r
and modules NS M let us define C,(N:M) by C,(N:M)/N = r(M/N).
Let r and s be two preradicals. A preradical t defined by
t(M) = Cs(r(M):M), Me R-mod, will be denoted by ras. For an
arbitrary class of R-modules Q we define pa'(N) =NKer f, f
ranging over all feHomR(N,M), Med . As it is easy to see
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pa' is a radical. Further, M is a pseudo-injective module iff

p{w’is hereditary and M is a faithful module if and only if él}
is faithful.let f:R-—>S be a ring onto homomorphism and r be a
preradical for R-mod.For all Me S-mod let us define fLrl(M)=

=S:r(gM).Then fir] is a preradical for S-mod and f[¥1=f[r), F[¥F

o~
=f[r). Finally, the zero functor will be denoted by zer.

§ 1. (r,i,s,j)-projective modules. We start with some
definitions which are introduced in [11]. Let s be a preradi-
cal for R-mod. An epimorphism A—&'—y B is said to be:

- (s,l)-codense if there exist C¢ R-mod and g:C—> A an epi-
morphism with s(g”%(Ker h)) S Ker g,

- (s,2)-codense if s(Ker h) = 0,

~ (sy3)-codense if Ker hns(a) = O.

Further if NeM is a submodule and M — M/N is a natural epi-
morphism which is (s,l)-codense, then we write N& (s’l)M. Si-
milarly Nc (S'Z)M (NS(S'B)M).

Let r,s be two preradicals, i,je€41,2,3% and M ¢ R-mod.

A module P is said to be (r,i,s,J,M)-projective if every dia-
gram

P

g

Me——a N—"">0
h

with exact row, Ker h e F»i)u and n~1(In g)g(s’j)M can be
completed to commutative one.

We say that a module P is (r,i,8,j)-projective if it is
(r,i,s,Jj,M)-projective for all M€ R-mod.

A module P is said to be (r,i,8,J)-quasiprocjective if it is
(r,i,s,j,P)~projective.
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A module P is said to be (r,i,M)-projective ((r,i)-(quasi)
projective), if it is (r,i,zer,1,M)-projective. ((r,i,zer,1)-
(quasi) projective).
A module P is said to be (i,r,M)-projective ((i,r)=-(quasi)
projective), if it is (zer,l,r,i,M)-projective ((zer,l,r,i)-
(quasi) projective).
As it is noted in [11] a module P is (r,i,s,j)=-projective,
iff it is (r,i,M)-projective for all Me R-mod with Mg(s'j)m,
i,je41,2,33.

Let A,B be modules and let ¢ :A—> B be an epimorphism.
A pair (A,9) is said to be an (r,i,s,j,M)-projective ((r,i,
9,j)-(quasi) projective) precover of the module B if A is
(r,i,s,j,M)=projective ((r,i,s,j)=(quasi) projective),
AJLCJLBwnhpf=9,fgeﬁmmﬁmsmdC
(r,i,s,j,M)-projective ((r,i,s,j)-(quasi) projective) implies
f is an isomorphism. An (r,i,s, j,M)-projective ((r,i,s,j)-
(quasi) projective) precover (A,® ) which is a cover (i.e.
Kery is superfluous in A) is said to be an (r,i,s,j,M)-pro-
jective ((r,i,s,j)-(quasi) projective) cover.

It is shown in (11] that (r,i,s,j,M)-projective ((r,i,s,j)-
projective) cover of a module B exists whenever B has a pro-

Jjective cover.

Proposition 1.1, Let r,s be preradicals for R-mod, j €

€ {1,2} and Pe R-mod. Then

(i) if P is projective and K € T, then P/K is (r,1)-projec-
tive,

(ii) if P is (r,2,s,j)-projective and K e:T; then P/X is

(r,2,8,j)=-projective.
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(iii) if P is (r,3,s,j)-projective and K€ r(P) then P/ is
(r,3,8,j)-projective.

Proof: Obvious.

Proposition 1.,2. Let r,s be preradicals for R-mod and

f:R—> R/8(R) be a natural ring homomorphism. Then
(i) if r is idempotent then a module P is (r,2,s,1)-projec-
tive if and only if P/ch(s)(P) is (f[rl,2)-projective in
R/s(R)-mod,
(ii) if r is a radical then a module P is (r,3,s,1)-projec~
tive if amd only if P/ch(s)(P) is (f[rl,j)-pro.jective in
R/s(R)-mod.
Proof: (i). Suppose P is (r,2,s,1l)-projective and
0—> K> Q—&5 P/ch(s)(P)—> O is a projective presenta-
tion of P/ch(s)(P) in R/s(R)-mod. Then O — K/£Lr] (K) —>
—> Q/£0r) (K)—&» P/ch(s) (P) —> O (Z induced by g) is a
(fIr],2)-projective presentation in R/s(R)-mod by Proposi-
tion 1.1(ii). Consider the following diagram in R-mod
P
a
0 —> K/F(K)e—> Q/#(K)—E , P/ch(s) (P)—> O (7 natural)

As it is easy to see Q/F(K) e ?'ch(s) and K/F(K) € (T2 q/(x) .,
Now P is (r,2,s,l)-projective and gov =or for some v ¢

¢ Homp(P,&/F(K)) which induces ¥:P/ch(s)(P)—» Q/F(K) with
€oV =1, Thus g splits in R/s(R)-mod and consequently
P/ch(s)(P) is (flr),2)-projective in R/s(R)-mod.

Conversely, if
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is a diagram in R-mod with exact row, Ker g™y Me
c gch(s) and if P/ch(s)(P) is (£I[r],2)-projective in
R/s(R)-mod, then

P/ch(s)(P)

h
M-& s N—>0

(h induced by h) is a diagram in R/a(R)-mod with Ker g £

[ (f[rJ’Z)M, and hence go v = h for some homomorphism v:
:P/ch(s8)(P)—> M, Thus go(vear) =h (& :P—> P/ch(s)(P) is
a matural homomorphism) and consequently P is (r,2,s,1)-pro-
Jective.

(ii) Similarly as in (i).

Corollary 1.3. Let s be a preradical. Then a module P
is (1,s)-projective if and only if P/ch(s)(P) is projective
in R/s(R)-mod.

Proposition l.4. Let r be a preradical for R-mod and
P e R-mod. Then
(i) if r is idempotent then P is (¥,1)-projective if and on-
ly if it is (r,2)-projective,
(ii) if r is idempotent amnd ¥ is pseudohereditary then P is
(r,2)-projective if and only if it is (1,¥)=-projective,
(iii) if r is a radical then P is (r,3)-projective if amd
only if it is (1,r)-projective,
(iv) P is (3,r)-projective if and only if it is (2,r)=-pro-

jective if and only if it is (1,%)-projective.
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Proof: (i). It suffices to prove the "only if part".
Let P be (r,2)-projective amd 0—> Ke>»Q-8>P—>0be a
projective presentation of P. Then 0—+K/f’(K)——rQ/F(Kl——é>
___§_>P——>o (2 inducedly g) is a (¥,1)-projective preserIta-
tion of P with K/7(K) € 3'1. by Propoéi{.tion 1.1(i). Thus g
splits and consequently P is (¥,1)=-projective.

(ii) See Rangaswamy [14] Theorem 8 and Corollary 1l.3.

(iii) With respect to Corollary 1.3 it suffices to pro-
ve that P is (r,3)-projective if and only if P/ch(r)(P) is
projective in R/r(R)-mod. Let P be (r,3)-projective, f:R —>
—> R/r(R) = R be a natural ring homomorphism and 0— K—
—> Q—&5 P/ch(r)(P)—> 0 be a projective presentation in

R-mod. Then Q € &, since £[r)(Q) = fI[r1(R) Q, and hence gov =

r
7o (3 :P—>P/ch(r)(P) natural) for some ve Homp(P,Q) by the
(r,3)-proje-ctivity of P.Thus v induces v:P/ch(r)(P)—>Q with
ge ¥ = 1, hence g splits in R/r(R)-mod and consequently
P/ch(r)(P) is projective in R/r(R)-mod.

We shall prove the sufficiency by modifying of the proof of
Theorem 8 in [14]). Let P/ch(r)(P) be projective in R/r(R)-mod
and 0—> K <> Q—& >P—>0 be a projective presentation of P.
Then by Proposition 1.1 (iii) 0 — K/(r(Q)nK)—> Q/(r(Q) N
nK)——E—>P——->O is a (r,3)-projective presentation of P with
K= K/(r(Qn K) T3/ (r(Q)n k) = @° (Z induced by g).
Consider the following diagram

, i

0 = K Q - SN > 0

0—> (K +ch(r) (Q°))/ch (£)(Q°)—=Q " /eh(r) (Q°) Za P/ch (r) (P) —> 0

where ¥4, 7, are natural epimorphisms.
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As it is easy to see the right hand square is a pullback. Now
g splits since P/ch(r)(P) is projective in R/r(R)-mod, and
hence g splits. Thus P is (r,3)-projective.

(iv) With respect to Proposition 2.9 in [11) it suffi-
ces to prove that P is (2,r)=-projective implies P is (1,r)-
projective for a radical r. It can be proved similarly as the
necessity in (iii).

Corollary 1.5. Let r,s be preradicals for R-mod and Pe
€ R-mod. Then
(i) if r is idempotent and every submodule of T(R/s(R)) is
T-torsion then P is (r,2,s,l)-projective iff it is (1,saf)-
projective,

(ii) if r is a radical then P is (r,3,s,l)-projective iff
it is (1,sA r)-projective.

Proposition 1.6. Let r,s be preradicals. Then every sub-
module of F(R/s(R)) is T~-torsion, provided at least one of the
following conditions is satisfied:

(i) r is hereditary,
(ii) s is idempotent and sa¥ is pseudohereditary.

Proof: Obvious.

§ 2, (r;i,s,j,M)-gro,]'ective ard strongly (r,i,s,j,M)-
projective modules
Definition 2.1. let r,s be preradicals, i,je{1,2,3}
and M€ R-mod. A module P is said to be strongly (r,i,s,j,M)-
projective if it is (r,i,s,j,MI)-pro;jective for every index
set I.
If r = 8 = zer, then we obtain the strongly M-projecti-
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vity in the sense of K. Varadarajan (see [181]).

let r,s be preradicals, i,je{1,2,3}. For any Pe R-mod
let us denote C%r,i,s,,j)(‘n) ={Me R-mod, P is (r,i,s,j,M)-pro-
jective}. Further the class of all (r,i,s,j,M)-projective mo-
dules will be denoted by Clgr’i’s?'j)(M).
Due to G. Azumaya an epimorphism f:A—> B is called an M-epi-
morphism if there exists h:A—> M with Ker fnKer h = 0,
These two following propositions are motivated by the results
of G, Azumaya (see [18) Propositions 1.3 and 1.5). We inclu-
de them here without the proof.,

Proposition 2.2. Let r be a preradical and s be a cohe-
reditary radical. Then the following are equivalent for a mo-
dule P:

(i) P is (r,2,s,2,M)-projective,
(ii) given any M-epimorphism f:A—> B and any hdmomorphism
g:P—> B with r(Ker £) = 0 and s(£"1(n g)) = 0, there exists

& homomorphism v:P—>A such that fov = g.

Proposition 2.3. Let r,s be preradicals and P,Me R-mod.

Then

(1) C;r’i’s’j)(ld) is closed under arbitrary direct sums and
direct summands i,je {1,2,33,

(ii) CI()r,Z,s,Z)(P) is closed under submodules,

(iii) if r,s are idempotent Ke g'rnfs and Mecl()r,z‘s’z)(P)
then M/K € CI()r,z,s,z)(P)-

(iv) if r,s are both cohereditary then CI(Jr,z,s,Z)(P) is clo~
sed under the formation of finite direct sums. Moreover, if

P has a projective cover then C%r’2,3’2)(P) is closed under

the formation of arbitrary direct products.
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Proposition 2.4. Let r,s be preradicals. Then a module
P is strongly (r,2,s,2,M)-projective if and only if it is
(r,2,8a p{m y2)=projective.

Proof: Obvious.

Corollary 2.5. Let Me R-mod. Then the following are equi-
valent for a module P:
(i) P is strongly M-projective,
(ii) P is (l,p{M})-projective,
(iii) P is (Z,SM;)-projective,
(iv) P is (p{M;,3)-pr0jective,
(v) P is (3,p{M})-projective,
(vi) P/(0:M) P is projective in R/(0O:M)-mod.
Moreover, if M is pseudo-injective then the above stated con-
ditions are equivalent to:
(vii) P is (p{M3,2)-projective,
(viii) P is (p{M},l)-projective.
Proof: By Propssition 1.4 and Corollary 1.3.

Corollary 2.6. Let r be a preradical. Then there is &
ch(r)-torsionfree module M such that a module P is (1,r)-pro-
jective if and only if it is strongly M-projective.

Proof: By [11] Proposition 2.9 (iv) P is (1,r)-projec-
tive iff it is (1,ch(r))-projective. Now by [2]1 Proposition
4.6 ch(r) = p{M}, where M.=I&EEIA, Q is a representative set
of ch(r)-torsionfree cocyclic modules and Corollary 2.5 fi-

nishes the proof.

Theorem 2,7. Let r be an idempotent preradical such that
? is pseudohereditary. Then there is a hereditary radical s

such that a module P is (r,2)-projective if and only if it is
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(8,2)-projective,

Proof: By Propositiom 1.4 (ii) and [11] Proposition
2.9 P is (r,2)-projective iff it is (1,ch(T))-projective.
Now by [12] Proposition 1.5 ch(¥) = ch(p{qs where Q =
= AELLE(A)’ Q is a representative set of cyclic r-torsion-
free modules. It is enough to put 8 = p{Q} and use [11] Pro-
position 2.9 (iv) and Corollsry 2.5 (vii).

Proposition 2.8. Let r,s be preradicals. If M is a co-
generator for R-mod then a module P is strongly (r,2,s,2,M)-
projective if and only if it is (r,2,s,2)=-projective.

Proof: By Proposition 2.4.

M.S. Shrikhande calls a module cohereditary if every its

factormodule is injective (see [15]).

Proposition 2.9. Let M be an injective module., Consi-
der the following conditions:

(i) Every.submodule of a strongly M-projective module is
strongly M-projective,
(ii) Every submodule of a projective module is strongly M-
projective.
(iii) ul is cohereditary for every index set I.
(iv) R/(0:M) is a left hereditary ring.
Then conditions (i),(ii) and (iii) are equivalent and imply
(iv).
Moreover, if ch(p{"}) is hereditary then (iv) implies (i),
Proof: (i) is equivalent to (ii) and (ii) is equiva-
lent to (iii). It immediately follows from [15] Theorem 3.2°.
(i) implies (iv). By Corollary 2.5 (vi).
(iv) implies (i). Use Corollary 2.5 (vi) and the fact
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that ch,(p{“) is hereditary.

Corollary 2.10. R is a left hereditary ring if and on-
ly if E(R)l is cohereditary for every index set I.

The next Proposition is a modification of the well-known
Theorem on test modules for projectivity (see [4) Theorem 10).
We include it here without the proof for the sake of comple-

teness.

Proposition 2.11. Let Me R-mod. Then the following are
equivalent:
(i) every strongly M=-projective module is projective,
(ii) (O:M) = pﬂ“(R) is & ring direct summend of R and it is

completely reducible ring.

Propoai tion 2.12. Let r be an idempotent cohereditary
radical, s be a preradical and let P be a module possessing
an (r,2)-projective cover 0 —»K—> Q-g—;P——-)O. Thexi
(i) P is (r,2,s,1)-projective if and only if Ker ¢ Sch(s)(Q),
(ii) P is (r,2,s,2)~projective if and only if Ker ¢ £8(Q).

Proof: (i). By Proposition 1.1 (ii) r(K) = O. Let P be
(r,2,8,1)=projective. Consider the following commutative dia-

gram

Q/ch(8)(Q) —Z-» P/ch(8)(P)

where ,,J, are natural epimorphisms. Then & o v =, for
some v:P—> Q/ch(s)(Q) since Ker & e ,, Q/ch(8)(Q) ¢ Fy (4
and P is (r,2,s,1)=-projective. Now, ¥y =Vvew since Kerg +
+ Ker (a7 - v e@) = Q as is easily seen. Therefore Ker ¢ <

< ch(s)(Q).
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The converse implication is obvious,

(ii) Similarly as in (i).

Proposition 2.13. Iet r be an idempotent cohereditary
radical, s be a preradical and let P be a module possessing
an (r,2)-projective cover 0—> K—> Q Zp 0. Then
(i) (Q/(ch(s)(Q)NnKerg), %) where & is induced by @ is an
(r,2,s,1)-projective cover of P,

(ii) (Q/(3(Q)n Ker @), P ) where & is induced by ¢ is an
(r,2,8,2)-projective cover of P.

Proof: Use Proposition 2.12.

Proposition 2.14. Let r be an idempotent cohereditary
radical and s be a cohereditary radical. If a module P posses-
ses an (r,2)-projective cover O—-)K—-»QLP——-)O then P is
(r,2,8,2,M)~projective if and only if it is strongly
(r,2,8,2,M)~projective.

Proof: Let P be (r,2,s,2,M)-projective. With respect to
Propositioms 2.4 and 2.12 it suffices to prove Ker ?SsAp{m(Q).

If £:Q/8(Q)—> M is arbitrary and
Vs (Q) —£—>p/a(P)
£ g
is a push-out diagrem (& induced t ¢ ), then Ker he &, and
nim @) e Fg. Now consider the diagram

_..._g_._> P
Lo, l 8o T,
—_—

" N

R0

where 7y, r, are natural epimorphisms. In the same way as in
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the proof of Proposition 2.12 we obtain Ker g SKer f oy,

and hence Kerg €8 Ap'ms(Q) .

Corollary 2.15. Let r be an idempotent cohereditary ra-
dical, s be a cohereditary radical, M e R-mod and P be a modu~-
le possessing an (r,2)-projective cover 0 —> K——»Q-—sf-) P—> 0.
Then (Q/(sApsm (Q)nKerg),% ) where $ is induced by ¢ is
an (r,2,s,2,M)=-projective cover of P.

Proof: By Propositions 2.13, 2.14 and 2.4.

§ 3. (r,i,s,j)-qugsiprojective modules

Proposition 3.1. Let r,s be two cohereditary radicals
and Q; € R-mod i &€ 11,2,...,n}, Then Q;® Q,® ... ® Q, is
(r,2,s8,2)-quasi-projective if and only if Q; is (r,2,s,2)=
quasiprojective anﬁ (r,2,a,2,Qj)-projective for every i,j e
e{1,2,...,n3, i+ j.

Proof: It follows:immediately from Proposition 2,3 (i),

(iv)o

Proposition 3.2. Let r,s be two idempotent preradicals
and Q be an (r,2,s,2)-quasiprojective module. If K is a cha-
racteristic submodule of Q such that K e 3"1_ N fr"s then Q/K is
(r,2,s,2)-quasiprojective,

Proof: Obwious.

Proposition 3.3. Let r be an idempotent cohereditary ra-
dical and s be a cohereditary radical. If a module P possesses
an (r,2)-projective cover 0 —> K —>» Q@5 P— 0 then
(V/(sa p{P} (Q)nKer @), @) where & is induced by ¢ is an
(r,2,s,2)-quasiprojective cover of P.

Proof: Use Propositions 2.4, 2.13 and 2.14.
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Corollary 3.4. Let r be an idempotent cohereditary radi-
cal, s be a cohereditary radical and P& R-mod possessing a pro-

Jjective cover 0 —>» K—> Q2-> P-—> 0. Then (Q/(C 1P} (r(Kere):
8sap

:Q)NnKer @), P) where & is induced by ¢ is an (r,2,s,2)-qua-
si projective cover of P,
Proof: By Proposition 3.3 and [11] Proposition 2.10 (vii).
Following closely the ideas of J.S. Golan (see [8]) we ob~-

tain Propositions 3.5 - 3.8 which are included here without

the proof.

Proposition 3.5. Let r be an idempotent cohereditary ra-
dical. Then the following are equivalent:
(1) Every (finitely generated) R-module has an (r,2)-projec-
tive cover.
(ii) Every (finitely generated) R-module P has an (r,2)-quasi-

projective cover 0 —>K—> Q—> P—> 0 with K¢ F .

Proposition 3.6. Iet r be a cohereditary splitting radi-
cal (i.e. every module splits in r). Then the following are e=-
quivalent:

(i) Every finitely presented R-module has an (r,2)-projective
cover,
(ii) Every finitely presented R-module P has an (r,2)-quasi~

projective cover 0—> K—» Q —> P —> 0 with K e ‘71"

Proposition 3.7. ILet r be an idempotent preradical for
R-mod. Then R = R/F(R) is a completely reducible ring if and
only if for every simple R-module P R@®P is (2,r)-quasipro~

jective in R-mod.

Proposition 3.8, lLet r be an idempotent preradical such

that ¥ is pseudoheredi tary. Then the following are equivalent:
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(i) Every R-module is (r,2)-projective,

(ii) every R-module is (r,2)-quasiprojective,

(iii) every finitely generated R-module is (r,2)-quasipro-
Jjective.

(iv) The class of all (r,2)-quasiprojective R-modules is clo-
sed under the formation of finite direct sums.

(v) R/F(R) is a completely reducible ring.
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