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SUFRCIENT CONDITIONS FOR THE ASYMPTOT1C EFFICIENCY 
OF ESTIMATES 

Dano VORUČKOVA 

Abstract: In this paper there are considered conditions, 
under~which estimates of parameters of regular densities are 
efficientf with a special respect to the maximum likelihood 
estimates. 

Key words and phrases: Regular density, asymptotic ef­
ficiency, Fisher information, maximum-likelihood estimate. 
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!• Introduction., 1:he lower bound for the variance of 

the unbiased estimates of unknown parameters - the Cramer-Rao 

bound - can be found in special families of densities. Unbia­

sed estimates, the variance of which attains the lower bound, 

are called efficient. However, unbiased estimates need not ex­

ist, or they need not be the best ones. Nevertheless, it can 

be shown, that there exists such a family of densities, that 

only "almost" unbiased estimates of parameters are good and 

that the Cramer-Rao bound is "almost" attained by their vari­

ance. 

Hajek's results concerning these estimates were publish­

ed in the lecture-note [3], mostly without proofs. This con­

tribution aims to fulfil this lack partially. 
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2. Asymptotic efficiency. Let us consider a density 

f(x,0 1 (Lebesgue or discrete) with an unknown parameter Q 

and let us assume throughout the paper that f (x, 0 ) is regu­

lar in the following sense. 

Definition. We say that a family of densities f(x,0 ), 

0 c A, is regular, if f(x, 0 ) has for every x e R the conti­

nuous derivative f(x,0 ) * ( d/d9 )f (x, 0 ), the Fisher infor­

mation 

-co ' 

is continuous in 0 , 1(0 )>0 for every Be A, A is an open 

set. 

Uiese regularity conditions are weaker than the ones u-

sually introduced in the literature (Cramer, Rao). Asymptotic 

properties of estimates are investigated there for densities 

having the third derivatives with respect to 0 • However, the­

se assumptions are unnecessarify strong. The following propo­

sition, which is a limit version of the Cramer-Rao inequali­

ty, holds for estimates of parameters in regular families of 

densities. 

3:heorem 1.1. Let T be an estimate of & e A c R, corres­

ponding to the random sample of a size n. Then, 

(1) lim liminf sup [n E0(T -0 )
2J >I~ 1(0 ) 

BirO <tt->«> i§-01-c& y n 

holds for every 0 e A. The equality in (1) is attained only 

if 

(2) n 1 / 2 £ Tn -'0 - I~
1( 0 )Zn( 0 ) J - A 0, 

where 
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Proof. The assertion follows from 12], Theorem 4.1, when 

we choose X(y) m y and use Theorem A 4. Q.E.D. 

Definition. An estimate T is called asymptotically ef­

ficient, if it satisfies (2). 

In £3], there is published a theorem (with a brief refe­

rence instead of a proof), which yields a criterion how to re­

cognize whether an estimate is asymptotically efficient. We 

shall introduce the Theorem also here, with a little more de­

tailed proof, because we can use it later for the proof of the 

asymptotic efficiency of maximum likelihood estimates. 

Theorem 2.2. Let Tn be an estimate of 9 . !3:he necessa­

ry condition for the asymptotic efficiency of T n is the asym­

ptotic normality ( 9 ,n I ( 6 )). The sufficient condition 

for the asymptotic efficiency of T n is the asymptotic norma­

lity (0 n fn"
1 I ( 9)), for every 9 n — » 9 for n —> oo , 

9 e A, where 8 n is a real value of a parameter 9 under a 

sample of a size n. 

.Proof. It follows from Theorem A.4 of £23, that the regu­

larity conditions imply conditions of the local asymptotic nor­

mality of £23 with P t * I(t) ana A n t = n 1 / 2Z n(t). We choose 
o 

again ^g(y) = y » 

Necessity. The asymptotic efficiency means (2), so that 

the asymptotic distributions of n 1 / 2(T R - 9 ) and n
1' 1 ( 9 )x 

x Z n ( 9 ) , respectively, are the same. 

Furthermore, according to £23, 
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X (n1/22n( 0 )) ~ > N(Ofn
-"1 l"a( 9 )). 

Sufficiency* Let us assume that (2) does not hold. Then, 

there exist such a aequence Qn that the relation (4.2) of 

Theorem 4.1 from [21 with 0 » 9^ and t = 9 does not hold, 

either, so that n ' (T^ - © n ) is not asymptotically 

HCO,! * 1 ^ ) ) . Q.B.D. 

3. Asymptotic efficiency of maximum likelihood estimates. 

The asymptotic efficiency of maximum likelihood estimates under 

the conditionsf mentioned in Part 2, which were introduced by 

Cramer and Rao, respectively, is well-known. The same proposi­

tion holds for estimates of parameters of regular densities 

under a monotonity assumption. 

Theorem 3.1. Let 9 e A c R. If the function £(xf 9 )/f (xf B ) 

is nonincreasing in B for every x, the maximum likelihood es­

timate of 0 is aeymptotically efficient and it may be recei­

ved as a solution of the equation 

m, t{x*fB) 

(3) #ar - J H . o. 
* » * f (x.1,9 ) 

Proof. Hie assumption that f (x, 9 )/f(x, 0 ) is nonincrea­

sing in 9 for every x, implies that log f (x, 9) is a concave 

function of 0 . Then, the solution of (3) maximalizes 

log.TT4«Xi» 0 ) . 

It follows from the fact that the density f(xf0) is regular, 

that the assumptions of Proposition 6 of [13 are satisfied. 

(The function (f(xf 9 ))1^2 is studied in [21, Appendix.) Ac­

cording to this Proposition with probability tending to 1 for 

n — > GO there exist such maximum likelihood estimates 9 n, 
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that 
r<e) 

£{гУг(Іi -в)/&)-*ҖO.Sm ) , n - > c o 
n
 ( 6

Z
( ) + y( ))

2 

where 

6T
2
( 0 ) = limaup t"

2
 f (^(x, 0 )- ̂ ( x , 0* t))

2
 dx 

t-* 0 ' 

and 

r
( 0 ) • I(X'(0))2, 

where X#(t) is the mean square derivative of X(t) = 

« (fl.^/ftMS)) 1 7 2 - 1. 

Applying the Appendix of C 21 again, we can compute easily that 

tf(0 ) « | 1(0) * 6'2(0 ), so that 

xin1/z(%n - e )/0)~> N(of r x (0 ) ) . 

The asymptotic efficiency of 0 n follows from Theorem 2.2 and 

from the regularity assumptions. Q.E.D. 

Remark. Analogical propositions can be formulated for 

0 c AcH* (see 131). 
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