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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

SMALL-FIBRED SEMITOPOLOGICAL FUNCTORS WITHOUT
SMALL-FIBRED INITIAL COMPLETIONS
Jan REITERMAN

Abstract: The first example of a semitopological fune-
tor U:X —= X which is small-fibred but has no small fibred
initial completion appeared in Herrlich [3] (as a negative
solution of a problem of J., Adédmek); there X was an artifi-
cial category (in fact, a preordez-e& class) and the question
whether there exists such a U:A — X, say, for X = Set, re-~
mained open. In this note, we construct such an example for
any category X which is cocomplete, has a terminal object and
is not a preordered class.

§¥ words: Semitopological functor, initial completion,
Mac e completion, small-fibred functor, strongly small-
fibred functor.

Classification: 18D30, 18A35

O. Introduction

0O.1. The present note has three parts. In the first one
we prove that mtural functors between comma-categories over
a cocomplete category are semitopological. In the second part
we present a general construction which yields a semitopologi-
cal functor starting from a chain of semitopological functors,

The third part contains the counterexample in question.

0.2, Recall that a functor U:A—> X is semitopological

if any U-sink {UA—2> X; ie It in X has a gemifinal gsolutionm;
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by a solution is meant any X-map X —&5 UA such that for e-
very ic I there is grLi—-—) A in A with Ug; = g £5. The aolg—
tion ie semifinal if for any other solution X &5 UA’ there
is a unique h:A—> A’ in A with Uh g = g°,

0.3. Farther, recall from [1) that a functor U:A— X
admits a small-fibred initial completion iff it has a small-
fibred Mac Neille completion; this is the case iff U:A— X
is strongly small-fibred, that is, iff there is no proper
class {x—g UA, ; de I} of X-maps such that the following
holds: if o, e € I, '+ ¢ , then there exists an X-map
UA %5 X such that g f = Un for some h:A—> A in A while

8, £+Uh for all h:A—> A. in A, or conversely.

1. Comma-categories

l.1. If Q is a fixed object of a category X, consider
the comma~category (QJ X); objects of (O} X) are X-maps
0 %5 x; maps from O > X to 0 =5 %% in (Q}¥X) are
those £:X —> X* in X with foc = « ‘. The category (024 X) will
be considered as a category over X: the underlying functor
U:(Q) X) —> X is defined by U(Q —% X) = X, Uf = £,

Each X-map u: QO —> Q in X induces a functor (ul X):
(D4 X)—> (2°) X) over X defined by (ulX)( 0 2> X) =
= 0% 0%, ,

1.2, Proposition. If X is cocomplete then the functor
(udX):(Q4 X)— (2} X) s semitopélogical for every X-map
wn'—n . .

Proof. Let {(udX)Ay 4 A; bie I} be a non-void
(ud X)-sink in (VVX), &y = (0 .f% X), A= (N =% X).
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Thus f;:X;—> X and the triangle in the following diagram

commutes for every ic I:

Q’
TN

Let ¢:X—> Y be a coequaliser of the_set {fiocg: QO —>X; i€
€ I?{ in X, Put B = (.Q—e> Y) where (3 is the common value of
the composites ¢ f; o¢s. Then c:A—> (ulX)B in ('Y X) becau-
se cx * ¢ fio¢; u= fu. It is routine to prove, using the

universal property of the pushout, that it is a semifinal so-
lution of the sink in question.

The existence of a semifinal solution for the void sinks
in (Q/) X) is equivalent to the existence of free objects o=
ver (Q') X)-objects w.r.t. (ulX). So, if A = (0%, X) is a
(Q'Y X)-object, consider the pushout

n_® .0 .
= lw’
x —f£ . x
It is easy to see that B = (.Q.-i"—'> X’) together with © A —>
—> (u+X)B is a free object over A,

1.3. Corollary. (ulX) has a left adjoint.

l.4. Corollary. The forgetful functor U:(QJ X)—> X is
semitopological.

Proof. U = (#!X) where ¢ is the map from the initial
objeet of X to O .

2, A general construction
2.1. Let L be a large lattice such that 1) each bemmded
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subset of L has & least upper bound, 2) for every ¢ e 1, the
class {d e 1; 5 < £} is a set.

Let A “(oc € L) be categories over a category X and U_ :
A —> X their underlying functors. Let U, , :A B> A oﬂ‘d' pBekL,
o¢ %3) be functors over X such that U, _ is identical for e-
very o and U., Us, = U, whenever x < R <y,

Define a category A = % A_with an underlying functor
U= %’- U, :A —> X as follows:

(1) obj A is & disjoint union of obj A (< € L);
(11) 4f Acobj A, Bcobj A, then A(A,B) = A (AU .4 B) if
o &  and A(A,B) = & otherwise;

(iii) the compositiom is defined in an obvious way;

(iv) UA = U A for A inA_, Uf = U_f for £e A(A,B), Ac obj Aac'

2.2, Proposition. Let X be cocomplete. Let all U, :A—>
—> X (oc € L) be semitopological and let each Udﬁ :A@ —> A
have a left adjoint !‘ocp A —> 5/3 « Then U:A —> X is almost
semitopological in the sense that if a U-sink has a solution

then it has a semifinal solution.

2.3. Corollary. Suppose that X has, in addition, a ter-
minal object 1. Let A¥ be the category obtained from A by ad-
ding a formel terminal object co with nﬁps A —> oo (Acobj A*).
Then the exten;ion U* ;A% —> X of U:A —> X defined by U =1
is semitopological.

£
Proof of 2.2. Let{UA;—>»X; ic I} be a U-sink in X.

For every ic I, let Aj¢ obJ A1) If the sink has a solution

then the class J = {A (i); i€ I} is bounded; so it is a set;
&

denote & its least upper bound. For each 1 < g , let X—%

g
—> U,B, be a semifinal solution of the U, -sink
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b4
{UAi———ib X; A1) =13 in A, . Consider the natural maps

",
B,—> U,y B¢ B, . A8 U,U,;F,;B, = UE;B, and U,B, = UB, ,

we can form a nml{.’lple pushout {UF, 4B, . A C; 1€ J3 of the
8,

set {X —> UB ———»Ul‘w , 3 v € Ji. As U coincides with Us

on &, , maps @, form a Us~sink {U,E, B,' % Cj;r1e J¢ in A,

which has a semifinal solution C—'L)UGB. Now it is easy to see

that CL UB serves as a semifinal solution of the original

U-sipk in X.

3. The counterexample

3.1. Let X be cocomplete with a terminal object 1 and
let X be not a preordered clasa; the latter means that there
is O c obj X such that card X(0,0’)>1 for some (.’ ; the ob-
ject 1 will be fixed in what follows,

Let A be the category over X whose objects are of the
form A = (X, (hi:))if-n' J‘J) for various ordinals o° and vari-
ous finite ordinals n, where Xe obj X, h : O — X in X.
Morphisms in A from A to B = (X’ ,(h- ')i.*n jed") are those
£:X—> X’ in X with fh = hij if n4n’ and & < 5’ ; other-
wise we put A(A,B) = ¢. The underlying functor U:A —> X is de-
fined by U(X,(h;;)) = X, Uf = £.

Let U*:A* —» X be obtained from U:A —> X by adding a for-
mal terminal object cv as in 2.3.

3.2. U*:A¥ > X is semitopological.

Proof. Each A-object (x’(hij)ién,j!.-d') can be naturally
identified with 0 5 —2 5 X where h is the X-map from the co-
product Qo of (n+l)x (J°+1) copies of (L defined by hm’:j =
=hyj, i4n, j & d; here v'i‘j: _Q.—->.Q.n; ere the coproduct
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injections. Thus A = % A (see 2.1), where

(i) L= wx Ord;
(1) for c€ L, x= (n,d"), A= (ﬂnﬁig);
(1ii) for oce L, the functor U :A —> X is defined to be
the restriction of U:A — X; it is semitopological by 1.4;
(iv) for <, € L, = (n,d), 3= (n°,5), the functor

Uep hp—> A, is defined to be (u ;4 X) where u,;:
: Doy _"Q‘n’d" is induced by the inclusion (n+l)x (0" +1l)c»
> (n“+1)x (5“+1); the functor Uz has a left adjoint by
1.3.

So U* is semitopological by 2.3.

3.3. Let B be the full aubcategary of A such that obj B
consists of co aml of those (x’(hij)ién,:}éd") such that all
hnj(j £d°) are pairwise distinct. Let V:B —> X be the rest-
riction of U. Clearly,

3.4. V:B—>X is small-fibred.

3.5. B is reflective in A. Thus, V:B-— X is semitopo-
logical, too.

Proof. Let Aeobj A be not in obj B.

a) If the only B-object B such that there exists a map
A—> B is B = c0 then the B-reflection of A is co .

b) Let A = (x'(hij)ién,jed‘) admit a morphism £:A —> B,
Beobj B, B = (x’,(n;j)“.,jéﬂ). Then m2n, d = 1% . Even
m>n for all these f; indeed, as A¢obj B, h,, = h, . for some
r48s; then hx;r =fh . =, = h;‘; so the h,;j's are not pair-
wise distinct; it follows m¥n.

¢) Put A= (x'(sij)ién-fl,:iéd‘) where X is a coproduct
of X and dJ'+1 copies of O ,
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1) iij = ¥hyy ($£n, J20),

Enﬂ.,j = »; @ ¢d)
where »:X— X, vj:_Q.-—> X (j £07) are the coproduct in-
Jjections.

d) We are going to prove that Aecobj B, i.e. that the
vj's are pairwise distinct (j £J7).

Consider any £ as in b). As v, Vj (3 £J) are coproduct
injections, there is h:X —>X’ with
(1) hjy=hgs (£,

hp =1,

As Bs obj B, the h;j" (j £0") are pairwise distinct. By vir-
tue of (ii), so are the vj'a.

e) Let us prove that »:A — A is a B-reflection of A,

Indeed, » is a morphism from A to X by (i), Let £:A— B
be as in b). We are to find £ :A—>B with
(1ii) £'» =1,
The map £°, being an A-map from A to B, should satisfy f’sij =
= h:{j (i£n+1, j4J"), that is,
(iv) £'»hyy=hiy (14n, jeo),
(v £° vy = hx;ﬂ,j (J&£0).
As v, »; are coproduct injections, there is a unique 2’ sa-

J
tisfying (iii),(iv),(v), vis £’ determined Y (iii),(v).

3.6, V:B—X is not strongly small-fibred.

Proof. For every ordinal J°, let X, be the coproduet of
o +1 copies of Q . It follows easily from the fact that
card X (0N ,0’)>1 for some ()’ that all coproduct injectioms
i —> Xy (J £J7) are pairwise distinct. So A= (X,
(hij)igo,jed’)e"bj B where hy; 8_ ﬁj(j £d°). Let £ X, —> 0
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be the codiagonal map. Further, let Y, be the coproduct of
Xy and of 0 , and let hJ:XJ-—> X, g‘;:ﬂ.-——?!‘; be the copro-
duct injections. Put By = (Ys,(hi3)j.y ;.. ) where hos = &
hi;} = hshys (§ «d). Again, Bye obj B. Then for d+ e , say
d>¢ , the map g%, .1 is & B-map from A_,, to By, while

8.f ., is not a B-map from A.,, to B; . The proof is finish-
ed.
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