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COMMENTATIQNES MATHEMATICAE UNIVERSITATIS CAROUNAE 

20,3 (1979) 

SMALL-FIBRED SEMITOPOLOGICAL FUNCTORS WITHOUT 
SMALL-FIBRED INITIAL COMPLETIONS 

Jan REITERMAN 

Abstract: The first example of a semitopological func
tor U:^ ~~>£ which is small-fibred but has no small fibred 
initial completion appeared in Herrlich 133 (as a negative 
solution of a problem of J. Adamek): there X was an artifi
cial category (in fact, a preordered class) and the question 
whether there exists such a U:A—> X t say, for X * Set, re
mained open. In this note, we construct such an example for 
any category X which is cocomplete, has a terminal object and 
is not a preordered class. 

Key words: Semitopological functor, initial completion, 
Mac Neille completion, small-fibred functor, strongly small-
fibred functor. 

Classification: 18D30, 18A35 

0. Introduction 

0.1. The present note has three parts. In the first one 

we prove that mtural functors between comma-categories over 

a cocomplete category are semitopological. In the second part 

we present a general construction which yields a semitopologi

cal functor starting from a chain of semitopological functors. 

The third part contains the counterexample in question. 

0.2. Recall that a functor U:A—> X is semitopological 
fi if any U-sink 4UA =*- X; ie 1\ in & has a semifinal solution: 
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by a aolution ia meant any X-map X--£>UA such that for e-

•ery ic I there ie gsA^—> A in A with Ug.̂  « g fi» The 8olu-
&' * 

tion ia semifinal if for any other solution X—s-» UA there 

is a unique h:A—> A' in A with Uh g * g'. 

0.3. further, recall from £13 that a functor U:A—> X 

admits a small-fibred initial completion iff it has a small-

fibred Mac Ifeille completion; this is the case iff U:A—** X 

*8 atrongly small-fibred, that ia t iff there ia no proper 
g/ 

class -fX—> UA^ } <f & I} of X-maps such that the following 

holds: if cT , e e l , cT-jr. g, y then there exists an X-map 

UA~-£> x auch that g^f » Uh for some h:A—-> Â - in A while 

g e f #Uh for all h:A—> A& in A, or conversely. 

!• Comma-categories 

1.1. If SI is a fixed object of a category X, consider 

the comma-category ( jQi -X ) ; objects of (JQLIX) are X-maps 

SI -Î -> x; maps from SI ~^-> X to II-!---> x' in (JCUX) are 

thoaa f:X—>X f in X with too • <*'. The category (114 X) will 

be considered as a category over X: the underlying functor 

U:(&4 X ) — > X is defined by U( a --4- X) « Xf Uf « f. 

Each X-map u: Qf—> £L in X induces a functor (uijC): 

(£.4. X ) _ * (JQ.'4-X) over X defined by (u4X)(il--^ X) » 

« il#~J-VXl^>X. 

1.2. Proposition. If X ie cocomplete then the functor 

(u4fX):(X14 X) —-> {Q.'± X) ia semi topological for every X-map 

u t H # — > S L • 
f± 

Proof. Let •C(«4>.X)Ai—=> A; b i s I? be a non-void 

(u^D-sink in (H'>H)f Ai « ( i l -?%> X^, A « ( J l ' - ^ X). 
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Thus f i : X i — > I and the triangle in the following diagram 

commutes for eTery ic I: 

of 

Let c:X—>T be a coequaliser of the aet it^^c^i -CI—> X; i € 

e U in X. Put B » (-0. — > X) where l3 is the common Talue of 

the compoeitea c -^oC^. Then c:A —*> (ui X>B in (H'^X) becau

se coo * c -?£<*£ u » /.u. It is routine to prore, using the 

uniTersal property of the pushout, that it is a semifinal so

lution of the sink in question. 

The existence of a semifinal solution for the Toid sinks 

in (.0/4 X) is equiTalent to the existence of free objects o-

Ter (Jl'^jp-objects w.r.t. (u^X). Sof if A « (£_'--£» X) is a 

(£.'4-X)-object, consider the pushout 

fl' 1 ^ 1 2 

-1 , if 
X - ». X 

It is easy to see that B * (il~-£-> X') together with jotA —* 

— > (n 4>X)B is a free object oyer A. 
1*3« Oorollary. (n^X) has a left adjoint. 

*•*• Oorollary. The forgetful functor U:( .D.^ J ) — > X is 

semi topological. 

Proof. U « (#4*X) where 0 is the map from the initial 

object of X to XL . 

2. A general construction 

2.1. Let L be a large lattice such that 1) each tanaAe* 
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subset of L has a least upper bound, 2) for ewery e e L, the 

class -f cf 6 L; oT < t } i» a set. 

Let 4 (oc e L) be categories over a category X and U^ : 

:A -—> X their underlying functors. Let U^* :JU-^ -î fot', /SeLf 

<£*&($) be functors OTer X such that U^^ is identical for e-

Tary 06 and U ^ JJ*Y « tf^— wheneTer oc .6 /3 ̂= f . 

Define a category A * .£ A with an underlying functor 
i_» **& 

U • ? 0. :i - > X as follows: 

(i) obj 4 is a disjoint union of obj A^(oc € L); 

(ii) if A6 obj A^ f Be obj A^ then A(AfB) • A ^ (A,^^ B) if 

oo A /I and A(A,B) * 0 otherwise; 

(iii) the composition is defined in an obvious way; 

(iT) UA • U^ A for A in A ^ f Uf « U^ f for f e A(AfB)f Ae obj A . 

2»2» Proposition, Let X be cocomplete. Let all U^ :A—> 

— * X (oc c L) be semitopological and let each U ^ :J^ — > A ^ 

haTS a left adjoint F ^ tk^—.> A« • Then U:A—>X is almost 

semitopological in the sense that if a U-sink has a solution 

then it has a semifinal solution. 

2»3* Corollary. Suppose that X has, in addition, a ter

minal object 1. Let A* be the category obtained from A by ad

ding a formal terminal object co with maps A — > co (Ac obj A*). 

Then the extension U* :A* — > X of U:A ~-> X defined by U*oo * 1 

is semitopological. 

Proof of 2.2. Let 4 U A ^ ^ > X; ie I? be a U-sink in X. 

For ewery ie If let A^c obj Jknjr±)* If the sink has a solution 

then the class J « -CA(i); ie IJ is bounded; so it is a. set; 

denote C its least upper bound. For each x £ & f let X > 
g, 

-—-^ U}Bt be a semifinal solution of the Ut-sink 
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f.1 
{UA^ ** Xf A ( i ) » t} i n Ax • Consider t h e n a t u r a l maps 

h%~J±+V%& 9%9 B t . As tI tU,^F i e rB t » U l * ^ and \B% « UBt , 

we can form a mul t ip le pushout {UF l t fBz —-*--> Cj i e J j of t h e 

s e t -IX >UB > U ^ B t ; i e J j . As U coincides with % 

on A6 f maps 9^ form a Ug-sink -{U6F^ B^^—*> Cf t e J ? i n A^ 

which has a semifinal so lu t ion C~£>u^B. Now i t i s easy t o see 

t h a t C — > UB serves as a semif inal s o l u t i o n of the o r i g i n a l 

U-sink i n X. 

3 . The counterexample 

3 . 1 . Let X be cocomplete with a te rminal ob jec t 1 and 

l e t X be not a preordered c l a s s ; the l a t t e r means t h a t the re 

i s H G obj X such t h a t card X ( i l f I l ' ) > l fo r some -&' j the ob

j e c t ft w i l l be f ixed i n what fo l lows . 

Let A he the category over X whose ob jec t s a re of the 

form A « ^ x » ^ i j ^ i 6 n j ^ ' * o r v a r i o u a o rd ina ls cT and v a r i 

ous f i n i t e ord ina ls n , where Xe obj Xf h* • : H — > X i n X.c 

Morphisms i n A from A to B - ^ # * ^ * i i ^ i £ n # \*t<5'^ a r e " t ^ 0 8 e 

f :X —>X* i n X with .Thy « h ^ , i f n * n ' and cT* S' j o t h e r 

wise we put A(AfB) » 0 . The underlying functor U:A—> X i s de

f ined by U(X f (h i j ) ) « Xf Uf * f. 

Let U*:A*—*X be obtained from U:A—>X by adding a f o r 

mal terminal object a? as i n 2 .3* 

3 . 2 . U* :A*—*Xis semi t o p o l o g i c a l . 

Proof. Each A-object ( x t ( h i 4 ) i _ t« *+#> c a n bt n a t u r a l l y 

i d e n t i f i e d with i ln^—=-*> X where h i s the X-map from the c o -

product i l ^ of ( n + U * (<f+1) copies of -CI defined by I*-**** • 

a h .y f i ^ n f j & cT 1 here *v>ij* SL—* &-&? a re thw coproduct 
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injections, thus ^ = _S A^ (see 2.1), where 

( i ) L * 6>x Qrd; 

( i i ) for « € L, oc« (n f<f) f A^* (J l n ^4,X) | 

(iii) far ooe L, the functor tJ^sA^—>X is defined to be 

the restriction of U:A—>X; it ie semitopological by 1.4; 

(iv) for o£f (I e Lf co* (nfcOf /3 « (n*f<$")f the functor 

Be A *!.* — > k^ ia defined to be (u^* 4, X) where u^ * : 

: Jl,^ —̂ iljj-*̂ -/ ia induced by the inclusion (n+l)x (oT+i)c--> 

<-—> (n#«H)x (cf'+l); the functor ̂  has a left adjoint by 

1.3. 

So u** i s semitopological by 2.3. 

3 .3 . Let B be the fu l l subcategory of A such that obj B 

consists of oo aid of those (Xf (h^j).i^n j^*) such that a l l 

hnj(j£cT) are pairwise distinct. Let V:B ~~>x be the rest

riction of U. Clearly, 

3.4. ?:B—>X i s small-fibred. 

3.5. B is reflective in 4 . Thus, V:B—>x i s semitopo

logical, too. 

Proof. Let A e obj A he not in obj £• 

a) If the only B-object B such that there exists a map 

A —> B i s B * co then the fr-refleetion of A i s 00 • 

b) Let A • (Xf ( h y ) ^ 4^) admit a morphism f :A—> Bf 

fie obj B, B * <*'fthij>i£B J***** T n e n m~n* d'* & • **** 

m>n for a l l these f; indeed, as A^obj Bf hRB * h ^ for some 

r ^ s ; then h ^ « fh^, * f h ^ * h ^ ; so the h^'a are not pair-

wise distinct; i t follows m#n. 

c) Put A « C^f^M^n*! Uf > where X i s a coproduct 

of X and c.T+1 copies of i t f 
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( i ) 1 ^ - Vh j j ( i i n , j ^ < r ) , 

where >>:X—>Xf i>j:il—-> X ( j ^oT) are the coproduct in* 

ject ions. 

d) We are going to prove that Xeobj B, i . e . that the 

-pj'a are pairwise dis t inct ( j ^ c O . 

Consider any f as in b ) . As -P, u* ( j £oO are coproduct 

injections, there i s h:X—>X# with 

( i i ) hvA • h ^ ( J £ c O , 

hi> « f. 

Aa Beobj Bf the hj l /a ( j &cT) are pairwise d i s t inc t . B&r Tir-

tue of ( i i ) , so a re the **;'•• 

e) Let us proTe that T> :A —>1 i s a B-reflection of A. 

Indeed, i> i s a morphism from A to I by ( i ) . Let f:A—>B 

be as in b ) . We are to find f':A—>B with 

( i i i ) f V « f. 

The map f', being an A-map from A to Bf should satisfy f'h^ j = 

« h.{j ( i £ n + l , i&<f)9 that i a , 

(iT) *'-»h.y » h y ( i £ n f j^oT) , 

(T) * # * j - ! & l f j U * c O . 

Aa -Pf i>j are coproduct injections, there is a unique f' sa

tisfying (iii)f(iT)f(T)f Ti» f' determined ty (iii)f(T). 

3.6. V:B—>X is not strongly small-fibred. 

Proof. For eTery ordinal <f , let X^ be the coproduet of 

c/+l copies of -Q. .It follows easily from the fact that 

card X (J19H
/)>1 for some IX* that all coproduct injections 

7>j-il—> X ^ (j .4cT) are pairwise distinct. So kj- * (X^ f 

*ni:Pi-M) jz.̂  e obj B where hQj » %>j(;j-£cT). Let .^-:X^—>il 
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be the co-diagonal map. Fu r the r , l e t Y^ be t he coproduct of 

X^ and of XI , and l e t h,:X--~•> X^f g^ -A-—^X/ be the copro

duct i n j e c t i o n s . Put B ^ * ^ V » ^ n i j ) i 4 i i^d") where h^ j * g^ , 
n l j * Hf^oj ^ *<*")• Again, B^6 obj &. Then fo r t/4-- 6 , say 

cT> £ , the map $/*fc+i i s a ft-map from A g + 1 to B^ f while 

gf + 1 i s not a Ji-map -from A f + 1 to B e • The proof i s f i n i s h 

ed . 
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