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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
20,3 (1979)

A LIMIT THEOREM FOR FUNCTIONALS OF A POISSON PROCESS
Nguyen van HUU

Abstract: Let w be a random point measure defined on
a locally compact topological space X with countable basis
and let «w have the Poisson distribution Q, with intensity
measure » . The asymptotic behaviour of the distribution
function of the random variable Z,(w)= (w(hlxn) as the com-

pact subset KAT X is considered. Thia work also deals with
the rate of convergence to the limit distribution.

. Key words: Stochastic point process, asymptotic norma-
lity, intermsity measure, exponential trend. '

Clnsaj.fication: 60F05

§ 1. Introduction. Poisson processes form an important
class of point processes. Many interesting problems of sta-
tistical analysis of Poisson processes on the line have been
considered in [1] by D.R. Cox and P.A.W. Lewis and (on more
general spaces) by M. Brown [3]. This article is concerned
with the limit distribution of certain linear functionals of
a Poisson process. Limit theorems will be stated in Section
2, The rate of convergence to the limit distribution function
will be considered in Section 3. Section 4 contains some ap-

plications of the results obtained in Section 2,
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§ 2, Limit theorem. Pollowing [4],[5] let us consider
a locally compact topological space X with countable basis.
Iet B(X) be the & -algebra of Borel subsets of X, M = M(X)
the family of Radon measures on (X,%(X)) and ¥, - the clase
of continuous functions with compact supports defined om X.

Let us also consider a Poisson process Q, on X with in-
tensity measure v (» e JL(X)), i.e., a probability distribu-
tion defined on the 6 -algebra < (J{) generated by all open
subsets with respect to the topology of vague convergence x)
with the characteristic functional defined by

1) Q)= [ exp(1e(r)) Qaw)= exp(» (¢1F-1)), 265,

where »(f) =fxf(x)v(dx).

Suppose that w € M is a realization of Q, . Usually
one can only observe the realization « on some compact set
K of X, as X too large.

Let us consider a statistic of the form
() Zg(@) = w(nly),

where I is the indicator of K, h is some measurable function
on X,

The statistic Zy(w) plays an important role for many
problems of testing hypothesis and estimating the parameters
of Poisson processes. The distribution function of Z () de-
pends om h, K and v , and is rather complicated, the asympto-

e ws ww -

x) {®pnl is called to be vaguely convergent to W itt
“n(?) —>w (£) for all TeX,.
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tic theory for such statistics is therefore convenient for
practical purposes.

Suppose that Kn is a sequence of compact sets such that
K, X. Let Z (@)= ZKn((L), and let us consider the asympto-
tic behaviour of the distribution law under Q, of the random

variable of the form
(3) Y (@)=(Z, (w)-a ) /b,
where a , b, (bn7 0, for all n) are constants.

Note that
Zp(w)=2oo iff A ={x:h(x)=*o}c K,Nsupp « -

Consequently, letting

Ry={u: ("“"Ixn-)’zn(f“') * + oo}
we obtain (see [4])

Qv(Rn)lexp(- » (KnA) )e
Consequently, for the existence of the limit distribution of
Y,(@) the necessary condition is
Q),{Zn(@)-i’oo§= 1 - Q,(Ry)=1 ~ exp(-»(AK ))—> leexp(=2X(A))=0
or
(4) »(AK) —> »(A)=v{x:h(x)=*w} = 0
Therefore, in the following theorems we always assume that (4)
is fulfilled.

Let A g2 2(Ky), ¥p(-) be the restricted measure of » on
K, i.e. »y(A)=»(AK), for all K and Ac R (X), and » ()=
= D&('), G,(t) be the characteristic function ch.f. of Z,(w)
under Q, .

We have the following theorems
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Theorem 1. Assume that A= V(X)< co , then

(5) G (t) — exp(ALg(t)- 1)) = G(t), say,
holds, where
(6) g(t)= v (exp(ith))/A

is the ch.f. of random variable h(T) with T being a random
element in X possessing the distribution law »(-)/A .

Purther, G(t) is the ch.f. of the random variable ¥ §,
where - is some constant, ? has the Poisson distribution
with the mean value A , iff h = », »-a.e. . G(t) is al-
ways the ch.f. of a nonnormal random variable.

The case A = is more interesting.

Theorem 2. Suppose that A = ao . Then the following
conditions (i),(ii) are sufficient for the existence of num-

ber sequences {a } and -ibn& with b, — o such that
(7)) Fa(y)= QY ()< yd = Q {(Z (w)-a,)/op< ¥} — F(y)

where, here and in the sequel, the convergence is meant in
the weak sense,

(1) a/aY2 5 o (o - finite)

(11) P{(S,- a )M < yi— K(y)

where
L4,]

Sy =, =, hlxy)
is the sum of independent random variables h(x, ) with x .,
k=1,2,..0, LA, ], being identically distributed independent
random elements in X possessing the common distribution law
Yu(e)/A, for each n and with [QA ] denoting the entire of
Ape
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Further, F has the form
(8) Fy) =xkx¢_(y)
where ¢ _(y) is the normal distribution function with mean
value zero and variance ocz.

Notice. ¢, (y) is the distribution function with jump
one at zero, whereas ¢;(y) is redenoted by ¢(y).

Proof of Theorem 1. It is easy to see that the ch.f.
G,(t) of Z, under Q, is defined by

G, (t) =EQv(exp(it(a (hIKn)) )=Q,)n(th)

9)

=exp( u)n(exp(it.h)- 1))=exp(.7un[gn(t)- 1))
with
(10) gn(t)= ‘>>n(exp(:i.th))/.?Ln

Since A, — A as KnT X, g,(t) converges to g(t) smad
(5) follows from (9).

The second statement of Theorem 1 comes true iff g(t)=
=exp(iy t), but this occurs iff h(x)=y, » -a.e.. )

As to the last statement, let us suppose inversely that
G(t)=exp(iat - b2t2/2), then g(t)=1+iat/d - b°t2/2) .

However, the right hand side of this equality is not a
ch.f.. This proves the last statement.

Proof of Theorem 2. Let V, be a Poisson distributed
random variable with mean fILn. For the sake of simplicity we
suppose that A, is an integer.

Put A (y)=PiV <y}

A =PLV = 20/ % 31 = & (3 a2 4))

It is obvious that A,(y) — ¢ (y) since .7tn——->-7|. = 0 .
It follows from (9) that
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k
oy (mexp(-2) B 2B (gt =
(11) R k=0 yy

_ 1/2
=], &)V ()= fw[%“)]”n A an, ()
‘oo

Let kx(t), £(t) be the ch.f. corresponding to K, F and
Hy(t), k,(t) be the ch.f. of Y, (S, -a,)/b,, respectively.
It is easy to see from (11) that

%(t)aexp(-itun/bn) Gn(t/bn) =
0 12
'Im[%(tnlwmn exp(ity%/hn;'{f)' dLn(y) —>

t 2.2
— k(1) [ emiccty) a¢ (y)=k(t)exp(-c®t?/2)

This proves Theorem 2,

Remark. According to Theorem 2 the problem of investi-
gating the convergence of Fn(y) reduces to the classical li-
mit problem for the sum Sn of independent random variables,
and with the aid of this theorem we can obtain a large class
of limit distributions of 2.

The following theorem states conditions for asymptotic
normality of 2,

We say that Z is asymptotically normal N(%,b:) ir

sup IF((Zn-an)/bn< ¥y) -¢y}—0

_w<4‘,<m

Theorem ‘}. Assume that J\.n~—>oo « Then necessary and
sufficient conditions for the existence of number sequences
{a,} and {b;} with b >0 and b —>® such that
(1) gp(e)= »(K N{x:|h(x)> £b,})—> 0 as n—> for all
£ >0 i

. 2

(i1) 2, is asymptotically normal N(an,bn)
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are that there exists a number sequence {dn‘Q with dn———> o
such that
(a) Cﬁﬂ "(hzlxnsn)”"’ 0O where Snl{x:lh(x)lé a,3

(®) a =o(C;), »(K;SF)—>0

Further, in this case the constants a,, b, can be defi-
ned by

(12)  ay= »(nIg g ), v2=c2= » (%1

).
Kn®n

Proof of necessity. Suppose that (i),(ii) are fulfill-

ed. Since gn(e) —> 0, there exists a sequence {an} such that
€,V 0 and 8p(e,) —> 0. A

Putting 4 = €,b =0(b,), we obtain v(xnsg)»—» 0

Further, the logarithm of the ch.f. Hn(t) of xn=(zn-
- an)/bn can be extended in the following form (see (9))

Lalf, (4)=-ita/bye » (Lexp(ith/by)- DIy ) =

(13)
-ita,/b +» (lexp(ith/b,)-1] Innsn)+ o(1)
since
| »(lexp(ith/by) - DIy g0)) £2» (K Sp)—> 0
Furthermore,

” »(Lexp(ith/by )=y g =it (hIg ¢ )/by -
1 2 2 2 3 2 2
-ty Ixnsn)/2bn+9 1t1(ay/0,) » (n I%sn)/6bn
with 10l £ 1.

It follows from (13),(14) and from the assumption of
asymptotic normality of Z, that
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2 2
LaHy (1) =-dtay/by it ¥ Iy g )/b-t? (n I%Sn)/zb;‘}
(15)
olti3(a,/663) J)(hZI&S )+ o(1)—> -t2/2,
n

(15) holds iff
Nhal‘nsnm’z‘_’ 1, or G221
and it follows from 4,/b, —> O that 4,/C,—> 0.

Proof of sufficiency. Suppose that (a),(b) are satis-

fied. Then putting in (15) a,= v(hlxnsn), b,=C,, we obtain
InH (t) — -t2/2

i.e. (ii) is fulfilled,whereas (i) follows immediately from

(b) with b =C .

Remark. The statement on the sufficiency of conditions
(a),(b) of Theorem 3 may be considered as a corollary of
Theorem 2,

Indeed, according to Theorem 2.3 in [ 2], Fn(y)-P{(Zn-
-a,)/d < y} —> & (y) iff for any subsequence in‘} of {n} the-
re exists a subsequence 1k} of {n‘} such that F (y) — & (y).
We shall show that the statement holds, provided (a),(b) are
satisfied,

Note that if a,, b, are givenby (12) we have

lan/b, 42/2] 21

The logarithm of the ch.f. Kk, (t) of (S,-& )/b, defined

in Theorem 2 is given by

(16) 1nk,(t)=-ita,/b + A 1ng (1),
where
(17) g,(t)= v(exp(ith/bn)ll%)/ Ape
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On the other hand,
| »(exp(ith/by)Ty o)l » (K, Sp)—> 0
hence
gn(1)= P(exp(ith/oy)Ix 5 )/ Mg otazh =
n
(18) =1 + ita /b, A ~t?/22 + 0(a /b, A )+ o(A;L) =
=1 + itay/b, A ~t?/2 2+ o(A7D).
From (16) - (18) we obtain easily

(19)  1nk (t)= =t3/2 + t%a2/22 b2+ o(1).

On the other hand, for any subsequence in‘} of {n} the-
re exists a subsequence {k} of {n“} such that aﬁ/?tkbi—-»ocz,
hence

(20) lim 1nk, (t)=(cc?-1)t2/2, o 221,
k=0 k

Consequently, by Theorem 2, F,(y) — K* ¢_(y), where K is
the distribution function corresponding to the ch.f,, the lo-
garithm of which is equal to the right hand part of (20).

The logarithm of the ch.f. of K*(pw(y) is therefore equal to

(?-1)t2/2 = c2t8/2= -t%/2.

Consequently, Kx ¢ (y)=¢(y). This proves the "sufficiency”
part of Theorem 3.

Corollary 1. Assume that

2 2

bn‘= »(h IKn)< © , by—>c0 and . &s\x‘Pﬂhih(x)i= o(by).
Then Z, is asymptotically normal N(an,bﬁ) with a= »(hl&).

Proof. Corollary 1 fellows immediately from Theorem 3
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by putting
sup |h(x)! if suplh(x)]— @
e {7 ;
n

v av
b%/a if sup Ih(x)|+4>c0
Km«

Corollary 2. (Theorem of Brown (1972).) ILet »,, Vo @
be Radon measures on (X, 3(X)) and Py, Y5 < © . Further,
suppose that the following conditions (i),(ii),(iii), or (i),
(ii),(iv) are satisfied:

(1) 1)2 << ))1’ fl'dvl/dso » f2=du>2/d§o .
(ii) There exists a finite positive number M such that

vl{x: (In(f,/f1(x))) > M3 < o0 +
(i1)  2([(£/2))%-11% 1) )= ©  far all ¢>0,

c
where
D =ix:| [, (x)/2) ()12 -1]< e 3.
(iv) There exists a finite number M, such that
1’1{:: lin(£,/2) Z M t=co .

Then, as K 1 X, (a,(IKnln(tzlfl)) is esymptotically nor-
mal N(an'brzx) under Qvl’ where

8= ¥ (An(y/8))I o ), b2 », (102(2,/2,) Iy s,

with Sy={x:|In(f,/f7) 1 < M3 .

Proof. Corollary 2 can be obtained immediately from
Theorem 3 by putting hsln(fz/fl).

Indeed, for »; << »;, 1n(f,/f;) is well defined
Vy-a.e.. Let us now suppose that (ii),(iii) hold, then

(£,/2))%-1v 2In(2,/2)) 8 1(2,/27)%-11 <,
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hence it follows from (iii) that »;(n?fg, )= emd
2 2 ir cLM
» z v,(h“I fe)
(21) 1 (b Ixhs.” 3¢ xnsc)__,
If (ii),(iv) hold, then M <M and

2
23 2 » (dx) >
bg= ¥, (b IKASH)Z K,,,ni.fM;——lhliMi p P4 >
22)  zM2» (M <lnl<w3nk )2 (73 HInIZ MINK) -
- »;{Ihlz MIN K] —> @

Consequently, choosing dy,= o(b,), a4, — ¢ , then it fol-
lows from (21),(22) that

“(h&
»;(h lnnsdn)—-» co .

c ¢
Further, vl(xnsdn) < -Dl(sdn)——r 0, 8ince
00
Y(sp)= .2, P1(a3< |hl4 4, )< o implies ”1‘s:n’ =

a
=5§mv1(d,j< Ih(& dj+1)“" 0, letting M=dj;<d,<.e. . Thus

the conditions (a),(b) of Theorem 3 are satisfied. The con-
dition », (h=*c0)=0 is also fulfilled since

W (hstw) £ vlksgn)_-) o.
Consequently, the statements of Corollary follows from Theo-
rem 3.

Remark 1. We observe that the assumptions of Theorem 3
are strictly weaker than those of the cited theorem of Brown.

In fact, let »; be Lebesgue measure on the half line
X=[0,0), Pa<< P with d2,/d py=exp(t)=f,(t), £;(t)= 1.

- 557 -



Then h(t)=ln f,(t)=t. It is obvious that conditiom (ii) of
the theorem of Brown is not fulfilled, since

» {lhl>Mi= D {t:it>Mi=o for all M>0,

Thearem 3 is, however, utilizable. Indeed, if K =[0,T ] with
T,* © , letting T =d, we have K N S:'G,

d
b;‘:- fo mtzat = &‘3/3, 8o that 4 = o(bn).

Consequently, by Theorem 3, Z, is asymptotically normal

N(a,,b2) with ,

.ns’[)""t at = 12/2, b2 = 1373,

§ 3. The rate of convergence to limit distritution.
Theorem 4. Suppose that v(lhl3 I&)< c0 and let

ag® »(nIy ), 3= v(h"’i%), o= 2081 1),

2202/ Agi Ty = ¥/ Ags Fp@)= @, 4(Z -8 ) /b <y 3.
Then
3 m?3 1 1/2
(23) M<;\:ga 1B (y)= @ (y)1 & App/bp=d 7 /b " Ay
where A may be taken the value
A= (3/25) 2021/ /(2 )32

with C(t) being the solution of the equation

Cit)
Io‘ (ein®u/u®)an =r/4 + 1/8t

Proof. Let Hn(t) be the ch.f. corresponding to Pn.
Then (see (9))
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Hp(t)=exp{~-ita,/b + »([exp(ith/b,)-1] Ig)is
= expi-itay/bysit »(hly ) —tzﬂ(hzlg)/2b§+ oiti3y, s6vdl=
=exp(-t2/2+0 [t 13y /6b3) with 18141,

hence

2 2 3 3
IH, (t)-exp(-t/2)| =exp(~-t“/2) lexp(8 |t| Yn/6by)-11 £
£01%)3 ¢ /603 )exp(-t2/2+ 1413 y /663 £ 1t13exp(-t2/6) y, /603
provided itlﬁ-Zbi/ Tp=T, say.
In accordance with Theorem 2, p. 137,[61, we have
suplF, (y)- 6 (y)| £
by .

. 1 le H (t) - exp(-tzfz)
T Ly t

| atsc?(1/a y/en vER

We therefore receive from (25)
o0

supl B, (y)- 0 (y)l £ (p/67b3) [ +2exp(-t3/6)at+
%

€21/ ) g p/03 (251 )3 20a 100,

Remark 2. If 57/b]>£M (in general, it is ueually ful-

£illed), then

oup 1, (7)= §(y)1 < 4 azl/?
and this is the best estimation of the deviation between
Fp(y) and ¢(y). Indeed, if h = 1 then 2, ()= «(K,) has Pois-

son distribution with the mean value .1n= ;)(Kn) and it is to

see that
sup\Fn(y)- d(y)1=0( 1;1/2) where Fn(y)=Q),{ [(u.(lg‘)- Ap] a;1/2<
Y

<y}
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Exsmple. Let us consider the example described in Re~
mark 1. We have

Ap=Tps 3T/, v 2212/3, hence 7./b =3 V3/4, thus,
by (23), suplF,(3)- O(y)l  3AV3/41i/2,

§ 4. Some applications

1, Estimating the parameter of exponential trend. Let us
consider a family of Poiseon processes XQQ=Q§7°, 0 ec®} on
(X, B3(X)), where the intensity measure (g possesses the den-

sity with respect to some Radon measure A
dgogld.'/\, =zexp(0T(x)), 6 ¢ ® - an open interval of Rl.

Usually we can only observe a realization w of the pro-
cess Q@ on a compact set Kn of X. In this case let us consider

the -algebra ﬂ,& generated by {w(A):ASK 3. Then, accor-
ding to [4] the restrictions Qén), Q;'n) of Qg, Q, on Jlxn have
the property that Qén)<< Q‘;’n), and the logarithm of the like-
lihood function of the process is given by

= (n) sa0(n)y .
(26) 1, (©)=1n(aqg™ /aQ™)= MK, - pg ;)40 w11y ).

Let
by (8)= 9 (K )= Mg exp(em))

Suppose that hn(e) satisfied the following conditions:
(1) an,(8)/ae= h(IKAT exp(6T))=a,(6), say, and a,(8) is finite,
(11) a®n,(0)/a6°= a(xxnr"’exp(e'r))sbﬁ(e)< ® , and b,(0) >

as n —» @ ,
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(111) € (8)= A(1T13exp(6T) Ig ) is finite and thers exists
& number J°(6)> 0 such that

sup 11C,(6°)1, 16°- 81< 0"} /b3(68) —> 0 as n o0

It is obvious that {ad Qén)/dq;’n), 6 e ®% is an expo~
nential family of one parameter and zn(é")’(“'('nxn) is a com-

plete sufficient statistic for & and is an unbiased estimate
of a,(6). In particular, Z () takes in the form of the sta-
tistic considered in Theorem 2 and 3. We have the following
.ltatement:

Proposition. Assume that the above conditions (1),(ii),
(1ii) are satisfiod. Then the likelihood equation 4I,(6)/46=
=0 or 8,(8)-Z,(w )=0 has under (.)9o unique solution @((&) as
n—> @ and with probability approaching to 1, and 8(«) is
asymptotically normal N(eo,b;z(eo)).

Proof., At first let us remark that according to (23) of

Theorem 4

(21) sup | Qg 1(2;-8,)/5(8) < yi= b1 £ AC,(8,)/63(8,) — ©

Further,

(28) a8, o")=ay(8,)+ I b2(8 )+ por2C, (6 + x0')/2,
Ip),lwol 21,

Choosing d'mn/‘bn(eo) 8o that w,/b —> 0 and w,(6 ) — @,

2 =0(n3 . .
u;(8,)=0(by/C/) (thie is always fulfilled) we obtain from (28)

;-E(eo T )-Z, () - 8n(85)-2 ()
b,(8,) 5,(6,)

pA un(6°)+0(1)

Consequently, the fumction a,(6)-Z, will change its sign on
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the interval (6,-0",8 +J"). Purthermore, by (ii), for n
sufficiently large a,(6) is strictly increasing, hence the
likelihood equation has only solution 8. Further,

(29) bn(eo)[a-eoj < te= qn('é)< “n(9°+tb;l)<==>

= 2l )< %(9°+tb;1) ’

whereas an(eoﬂb;l) can be extended in the form (see (28))

(30) &y (6, +tbyl)=a, (6, )+tb, (8 )+ @t2C, (6 + cctb ) /202

It follows from (29),(30),(27) and (iii) that

Qg 5(85)08-6,)< t=Qq {12, (w )-agl /by <t * pric,(e.+
+atdb;)/2b33 — (1)

as n—>00 for any t fixed. This proves the asymptotic norma-

lity of Z ().

Example. Let X=[{0,0), K=[0,T; ] with T 40 , T(x)=x,
A be Lebesgue measure, @ = (0,00). Then 6 is the unique

solution of the equation
Tm: Tﬂb
fo x exp(6x)dx= fo xw(ax)=Z (w), say, or equivalently
2
T, exp(6T,)/0 -[exp(8T,) - 11/8%=Z (@)
and it is easy to verify that

Ca(8°)/63(6)n 63/2exp([6°-6-6/21 T,)/6°—> O for all

8°:10°-01< 6/2= 0(6). Consequently, by the above proposition
® is asymptotically normal N(e,b;?'(e)) under Qg with bﬁ(e)z
zriexp(ewn)/e.

Remark. By the theorem of Rao - Blackwell and by the
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above proposition estimate 6 of 6 is asymptotically effi-
cient,’

2, Distinguishing two Poisson processes. lLet us consi-
der two Poisson processes Q”l’ Q”2 and assume that 1 Vo<
<< A , Further, suppose that we have a realization of g on-,
1y on compact subset K at our disposal, Let Ay be 6-algeb-
ra generated by {w(A):AcKi. Then (see [4)) the restric-
tions Q i’ Q‘}‘K of Q,Di, Q, on Ag» i=1,2, respectively, have

the property that Q "‘x« Q‘AK and
i

aQ ﬁix/dQl;exp {A(K)= »3 (K)+ @(Ig In(@d»;3/d2))3, i=1,2,
Consequently, for testing Q,,l against Q"a we can employ

the likelihood ratio test, under which Q,,1 will be rejected
it

exp LAUK)= ¥,(K)+ u(1n(d » /A% )Iy)]

exp [A(K)= ¥, (K)+ w(1n(d »1/dA )I,))

or equivalently
@bIg) > Cx

av, jdpy
where h=1n(a- / ;&—) and the constant C  is defined so that

the test has significance level «(0 < <1), If K is rat-
her large in the sense »;(K)— o , 1=1,2 as K1X we can
employ the asymptotical normality of (w(hlx) in order to de-

fine approximately C, and the power of the test.

Acknowledgement. The author is indebted to Mr. P, Manil
for his helpful and valuable discussion.
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