Commentationes Mathematicae Universitatis Caroline

Josef Mlček
 Valuations of structures

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 4, 681--695

Persistent URL: http://dml.cz/dmlcz/105961

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

20, 4 (1979)

VALUATIONS OF STRUCTURES
 J. MLČEK

Abstract: This paper is a contribution to the development of the alternative set theory. A typical special result among those presented is the following: Let $a=\langle a, f\rangle$ be a set-semigroup and let $a / Q=\left\langle Q, \rho / Q^{2}\right\rangle$ where $Q \subseteq a$ is a $\pi-$ class be a substructure of a. Then there exists a set-mapping $h: a \rightarrow \operatorname{RN}(\geq 0)$ ($R N(\geq 0)$ is the class of non-negative rationals) such that $h(f(x, y)) \leq h(x)+h(y)$ and $h(x) \doteq 0 \equiv x \xi_{1} Q$ holds for each $x, y \in a$. (Ás usual, we write $z=0$ if $|z|<n$ for all finite natural numbers n.)

We present more general results; namely, they concern some richer structures than that of a semigroup, deal also with proper classes, and the universe Q of the substructure a / Q is a 6 - or π-class.

As a consequence of our results we obtain a metrization theorem.

Key words: Structure, valuation, σ-class, π-class, metrization.

Classification: 02K10, 02K99, 08A05, 54JO5
§ O. Introduction. Great numbers of important structures are constructed in the alternative set theory by using π-classes. For example, real numbers are constructed as fac-tor-classes of the π-equivalence $\stackrel{0}{=}$ on the class $R N$ of rational numbers. (See [V].) The topological structure is comprehended as a π-equivalence on a set-theoretically definable class. In this paper we study structures which are described by using σ-classes and π-classes only. Let us explain
our problems an more detail on the structure $\left\langle a^{2}, \sim\right\rangle$, where a is a set and \sim is a π-equivalence on a. Using some ideas of the proof of the classic metrization lemma, we can prove that there is a set-mapping $h: a^{2} \rightarrow \operatorname{RN}(\geq 0)$ ($R N(\geq 0)$ denotes the class of non-negative rationals) such that $h(x, z) \leqslant$ $\leqslant h(x, y)+h(y, z), h(x, y)=h(y, x), h(x, y) \triangleq 0 \equiv x \sim y, h(x, y)=$ $=0 \equiv x=y$ hold. (h is called metric of \sim on a_{0}) We can say that h is a valuation of a^{2} in $\operatorname{Ra}(\geq 0)$ such that h respect (in the sense mentioned above) the following couples of operations: the operation ρ (the composition of pairs) and + ; the operation Cn of converse and the identity mapping Id. Moreover, the values of all elements of \sim are exactly in $[\geq 0]=\{x \in \operatorname{RN}(\geq 0) ; x \geqslant 0\}$. We shall describe a class of. structures of the type $\langle A, F, F\rangle$, where F is a binary function and E is a unary function, such that the following statement hold s: if Q is a set-structure of this class and Q / Q is a substructure of a with the universe Q, which is a π-class, then the pair $\langle a, a / Q\rangle$ is valued in $\langle\langle\operatorname{RN}(\geq 0),+, I d\rangle,\langle[\geq 0],+, I d\rangle\rangle$ by a set-mapping similarly as a set-metric of \sim on a values $\left\langle\left\langle a^{2}, 0, C n\right\rangle,\langle\sim, \circ, C n\rangle\right\rangle$ in $\langle\langle\mathrm{FN}(\geq 0),+, I d\rangle,\langle[\geq 0],+, I d\rangle$.

Note that we do not work with set-structures only but the structure a mentioned can be generally a structure from a standard system $\gamma \%$ and the universe Q of the substructure
 ation of the pair $\langle a, a / Q\rangle$ as a class of \nexists. (For the notions of the standard systems and $\pi^{P r H_{-a n d}} \sigma \sigma_{2}$ clase see [M1].)

Let us mentione one consequence of our general resulte. Recall that $x=y$ iff for each set-formula $\varphi(z)$ in FL we have
$\varphi(x)=\varphi(y)$. The following statement holds: there is atric of \doteq on V which is an element of a revealment S_{V}^{*} of the codable class Sd_{V} of all set-theoretically definable classes (i.e., roughly speaking, there is a "formally settheoretically definable" metric of \circ on V. (For the notion of the revealments see [S-V 1.].)

Further results concerning the problems of valuations will be presented in another paper.

§ 1. Preliminaries

1.0.0. We use usual definitions and notions of the alternative set theory and definitions, notions and symbols introduced in [M]. We shall use results obtained in [MI].
1.O.1. Throughout this paper let J8t denote a standard system.
§ 2. e-structures. Valuations
2.0.0. By a structure we mean a $m+n+1$-tuple $a=$ $=\left\langle A, F_{i}, R_{j}\right\rangle_{i \in m, j \in n}, m, n \in F H$, where, for each $i \in m, F_{i}$ is a $a(i)$-ary function, $\operatorname{dom}\left(F_{i}\right)=A^{a(i)}, F_{i}^{m} A^{a(i)} \subseteq A, a(i) \in F_{N}$ and, for each $j \in m, R_{j} \subseteq \Lambda^{b(j)}, b(j) \in F N$.

We say that a class B A is a universe in Q iff, for each $i \in m, F_{i}^{\prime \prime} B^{a(i)} \subseteq B$ hólds. A substructure of the structure a is a structure $\left\langle B, F_{i} \wedge B^{a(i)}, R_{j} \cap B^{b(j)}\right\rangle_{i \in m, j<n}$ where B is a universe in a. We denote the substructure presented by a / B. If there is no danger of confusion, we write $\left\langle B, F_{i}, R_{j}\right\rangle$ instead of $\left\langle B, F_{i} / B^{a(i)}, R_{j} \cap B^{b(j)}\right\rangle_{i \in m, j \varepsilon n^{*}}$
2.0.1. A covariant (contravariant resp.) e-structure is a structure $\langle A, F, E\rangle$ where F is a binary function, E is a
unary function and the following holds：（1）F is associa－ tive on A ，
（2）$E \circ E=I d$
（3）$\quad F(E(x), E(y))=E(F(x, y))$

$$
(F(E(x), E(y))=F(F(y, x)) \text { resp. })
$$

holds for each $x, y \in \mathbb{A}$ ．
An e－structure is a covariant or a contravariant e－struc－ ture．An e－structure $a=\langle A, F, F\rangle$ is a commutative e－structu－ re iff F is commutative on A ．

Then a is covariant and contravariant simultaneously．An e－ structure $\langle A, F, I d\rangle$ is covariant．It is contravariant iff it is commutative．Let $a=\langle A, F, F\rangle$ be an e－structure．We defi－ ne the binary relation on A as follows：

$$
x \triangleleft_{a} y \equiv(\exists z \in \mathbb{A})(F(x, z)=y)
$$

If there is no danger of confusion，we shall write simply Δ instead of Δ_{a} ．

Proposition．The relation Δ_{a} is transitive on A ．
2．0．2．Examples．（1）A structure 〈A，F〉 is a semigroup iff 〈A，F，Id〉 is a covariant e－structure．
（2）$\langle N,+, I d\rangle$ is a commutative e－structure．
（3）Let $R N(\geq 0)=\{x \in R N ; x \geq 0\}$ ， $\operatorname{RN}(>0)=\{x \in R N ; x>0\}$ ． $\langle\operatorname{RN}(\geq 0),+, I d\rangle$ and $\left\langle\operatorname{RN}(>0), \cdot,^{-1}\right\rangle$ are commutative e－struc－ tures．
（4）We put，for $X \subseteq N, X_{2}=\left\{2^{\infty}\right.$ ；$\left.\propto \in X\right\} .\left\langle N_{2}, \cdot\right.$ ，Id \rangle is a comutative e－structure．
（5）Let a be a set，$a \neq 0$ ．Then $\langle P(a), \cup, I d\rangle,\langle P(a), n, I d\rangle$ are commutative e－structures．
（6）We define the mapping $F^{0}:\left(V^{2} \cup\{0\}\right)^{2} \rightarrow V^{2} \cup\{0\}$ as follows： $\begin{aligned} F^{0}(\langle x, y\rangle,\langle u, v\rangle) & =\langle x, v\rangle \text {（0 resp．）iff } y=u(y \neq u \\ & -684-\end{aligned}$ － 684 －
resp.) and $F^{0}(w, 0)=F^{0}(0, w)=0$ for each We $\nabla^{2} \cup\{0\}$.
F^{0} is an associative function on $V^{2} \cup\{0\}$ and, consequently, $\left\langle V^{2} \cup\{0\}, F^{0}, I d\right\rangle$ is an e-structure, which is not commutative. Let R be a trarsitive relation. Then $\left\langle R \cup\{0\}, F^{0}, I d\right\rangle$ is an e-structure and the following holds:
$(\forall u \in R \cup\{0\})(\dot{u} \Delta 0) \&(\forall u \in R \cup\{0\})(0 \triangleleft u \equiv u=0)$.
2.0.3. Lemma. Let $\langle A, F, E\rangle$ be an e-structure. Let \mathbb{A}_{0}, A_{1} be classes such that $A_{0} \subseteq A_{1} \subseteq A$ and $\mathbb{H} F, \mathbb{E} \mathbb{I}\left(A_{0}, A_{1}\right)$ hold. Let $Q_{i}=E^{\prime \prime} A_{i} \cap A_{i}$ for $i=0,1$.

Then $Q_{0} \subseteq A_{0} \subseteq Q_{1} \subseteq A_{1}$ and, for $i=0,1, P^{\prime \prime} Q_{0}^{2} \subseteq Q_{1}, E^{\prime \prime} Q_{i} \subseteq$ $\subseteq Q_{i}$.

Proof. The relation $Q_{i} \subseteq A_{i}$, $i=0,1$, is obvious. 1) We prove that $A_{0} \subseteq Q_{1}$. Let $x \in A_{0}$. We have $E(x) \in A_{1}, x \in A_{1}$ and $x=$ $=E(E(x))$. Thus $\left.x \in A_{1} \cap E^{\prime \prime} A_{1} \cdot 2\right)$ We prove that $F^{\prime \prime} Q_{0}^{2} \subseteq Q_{1}$, Let $x, y \in Q_{0}$. Thus $x, y \in A_{0}$ and $x=E(u), y=E(v)$ hold with some $u, v \in A_{0}$. We have $F(x, y) \in A_{1}, F(u, v) \in A_{1}$ and $F(v, u) \in A_{1}$. Thus $F(x, y)=F(E(u), E(v)) \in E^{n \prime} A_{1}$ holds. We deduce from this that $F(x, y) \in A_{1} \cap E^{n} A_{1}$. 3) Let us Drove that $E^{n} Q_{i} \subseteq Q_{i}$ holds for $i=0$,1. Let $x \in Q_{i}$. Then $x \in A_{i}$ and there is a $y \in A_{i}$ such that $x=E(y)$. Consequently, $E(x) \in \mathbb{A}_{i} \cap E^{\prime \prime} A_{i}$ holds.
2.0.4. Let a be an e-structure. Let Q, B be universes in a. The triple $\langle a, a / Q, a / B\rangle$ is called a triad over a. Let $a(Q, B)$ denote this triad. A triad of the type $\sigma^{\gamma h}$ (or a
 and Q is a σ^{20}-class, We define a triad of the type $\pi^{8 r}$ (or a $\pi^{00 \ell}$-triad) analogousiy.

Examples. (1) $\langle\mathrm{N},+, \mathrm{Id}\rangle(\mathrm{FN},\{0\}),\left\langle\mathrm{N}_{2}, \bullet, \mathrm{Id}\right\rangle\left(\mathrm{FH}_{2},\{\mathrm{I}\}\right.$) are σ°-triads.
(2) Let a be a set, $a \neq 0$ and let Q be an ideal on $P(a)$.

Then $\langle P(a), U, I d\rangle(Q,\{O\})$ is a triad. Suppose, moreover, that Q is a σ (σ resp.)-class. Then the triad presented is a σ triad (π-triad resp.).
(3) The equivalence $ㅇ=$ on FN is defined as follows: $(\forall x, y \in \mathbb{R})\left(x \doteq y \equiv(\forall n)\left(|x-y|<\frac{1}{n} \vee(x>n \& y>n) \vee(x<-n \& y<-n)\right)\right.$. We put $[\geq 0]=\{y \in \operatorname{RN}(\geq 0) ; y \doteq 0\}$. Then $\langle\operatorname{RN}(\geq 0),+, \operatorname{Id}\rangle([\geq 0],\{0\})$ is a π^{0}-triad.
2.1.0. Let $a=\langle\mathrm{A}, F, \mathbf{F}\rangle, \tilde{a}=\langle\tilde{\mathbf{A}}, \tilde{F}, \tilde{\mathbf{x}}\rangle$ be e-structures. A mapping $H: A \rightarrow \tilde{A}$ is called valuation of a in \tilde{a} iff for each $x, y \in A$ holds:

$$
\begin{gathered}
H(F(x, y)) \triangleleft \tilde{a} F(H(x), H(y)) \\
H(E(x))=E(H(x)) .
\end{gathered}
$$

Let $a(Q, B), \tilde{a}(\widetilde{Q}, \widetilde{B})$ be triads. A mapping $H: A \rightarrow \widetilde{A}$ is called valuation of the triad $a(Q, B)$ in the triad $\tilde{a}(\widetilde{Q}, \widetilde{B})$ iff H is a valuation of a in \widetilde{a} and we have for each $x \in A$:

$$
x \in Q \equiv H(x) \in \widetilde{Q}, \quad x \in B \equiv H(x) \in \widetilde{B} .
$$

Example. The mapping $\mathrm{H}: \mathrm{N} \rightarrow \mathrm{N}_{2}$ sending \propto to 2^{α} is a valuation of $\langle\mathrm{N},+, \mathrm{Id}\rangle(\mathrm{FN},\{\mathrm{O}\})$ in $\left\langle\mathrm{N}_{2}, \cdot, \mathrm{Id}\right\rangle\left(\mathrm{FN}_{2},\{1\}\right)$.

Proposition. Let a be an e-structure and let $-a$ be refle xive on A. Let $Q(Q, B)$ be a triad over a and let $A " s$ be an universe in a.
(1) $\quad a / A^{\prime}\left(Q \cap A^{\prime}, B \cap A^{\circ}\right)$ is a triad over a / A°.
(2) Identity mapping Id is a valuation of $a / A^{\prime}\left(Q \cap A^{\prime}\right.$, $\left.B \cap A^{\prime}\right)$ in $Q(Q, B)$.

Proof. (1) follows from the fact that $Q \cap A^{\circ}$ and $B \cap A^{\prime}$ are universes in a / A^{\prime}. (2) Identity mapping is a valuation of a / A° in a (by using of the reflexivity of ψ_{a}).

Proposition. Let $\tilde{a}=\langle\tilde{A}, \tilde{F}, \tilde{F}\rangle$ be a commutative e-structure and let $\tilde{a}(\tilde{Q}, \tilde{B})$ be a triad. Suppose that there exist
points $a, q, b \in \tilde{A}$ such that $b \triangleleft q \triangleleft a$ and $b \in \widetilde{B}, q \in \widetilde{Q}-\widetilde{B}, a \in$ $\in \tilde{A}-\widetilde{Q}$.

Then, for each triad \mathcal{J}^{\prime}, there is a valuation of \mathcal{T} in $\tilde{a}(\widetilde{Q}, \tilde{B})$.

Proof. Let H be a mapping, defined as follows: $H(x)=b \equiv x \in B, H(x)=q \equiv q \in Q-B, H(x)=a \equiv x \in A-Q$, where $\langle A, F, B\rangle(Q, B)=\mathcal{T}$. The H is the required valuation.

53. Valuation lemas

3.0.0. We shall prove two lemmas which have the important role for the construction of valuations of σ^{80}-triads and $\pi^{20 \%}$-triads. At first, we introduce the following definition: let $a=\langle A, F, E\rangle$ be an e-structure and let B be an universe in a. A σ-string (π-string resp.) R is called $\sigma(\pi$ resp.) -string in a over B iff $B=R(0), A=R(\operatorname{dom}(R)-1)$ and $\llbracket F, F_{3} \mathbb{I}(R(\alpha), R(\propto+1)), E^{n} R(\propto) \subseteq R(\propto)$ holds for each $\propto \sigma$ $\epsilon \operatorname{dom}(R)-1 \quad\left(A=R(0), B=R(\operatorname{dom}(R)-1)\right.$ and $\left[F, F_{3}\right](R(\alpha+1)$, $R(\propto)), E^{n} R(\propto) \subseteq R(\propto)$ holds for each $\propto \in \operatorname{dom}(R)-1$ resp.), where $F_{3}: \Lambda^{3} \rightarrow$ is the function satisfying $F_{3}(x, y, z)=$ $=F(F(x, y), z)$.
3.0.1. σ-valuation lemma. The following holds in the sense of 88% : Let a be an e-structure and let B be an universe in Q. Let Q be $a \quad \sigma-s t r i n g$ in a over B and let $\xi+1=$ $=\operatorname{dom}(Q)$.

Then there is a valuation H of the triad $a(B, B)$ in $\langle N,+, I d\rangle(\{O\},\{0\})$ such that $Q(\propto) \subseteq\left\{x \in A ; H(x) \leqslant 2^{\alpha}\right\} \leq$ $\subseteq Q(\propto+1)$ holds for each $\propto \in \xi$.
π^{r}-valuation lemma. The following holds in the sense of $\gamma \ell$: Let a be an e-structure and let B be an universe in a.

Let Q be $\approx \pi$-string in a over B and let $\xi+1=\operatorname{dom}(Q)$.
Then there is a valuation H of the triad $a(B, B)$ in $\langle\operatorname{FN}(\geq 0),+, I d\rangle(\{0\},\{0\})$ such that $Q(\propto \subset+1) \subseteq\{x \in \mathbb{A} ; H(x) \leq$ $\leq 2^{-(\alpha+1)} \xi \subseteq Q(\alpha)$ holds for each $\alpha \in \xi$.

The π-valuation lemma follows from the σ-valuation lemma. Really, le $t G$ be a valuation of $Q(B, B)$ in $\langle\mathbb{N},+, I d\rangle(\{0\},\{0\})$ such that $Q(\xi-\alpha) \subseteq\left\{x \in \mathbb{A} ; G(x) \leqslant 2^{\alpha}\right\} \subseteq$ $\subseteq{ }^{Q}(\xi-(\alpha+1)$) holds for each $\alpha \in \xi$. We put $\beta=\xi-\infty$. Thus, $Q(\beta) \subseteq\left\{x \in A_{;} G(x) \leq 2^{\{ }-\beta_{\mathcal{S}} \subseteq Q(\beta-1)\right.$ holds for each $1 \leq \beta \leq \xi$. The required valuation is the mapping $H=2^{-\xi_{.}}$. .
3.0.2. The proof of the 6.-valuation lemma.
I. A path in A is a function t such that $\operatorname{dom}(t) \in \mathbb{N}$ and rag $(t) \subseteq A$. We construct the function [F] with domain

U\{\{t\}>\{< $\alpha, \beta\rangle ; \alpha \leq \beta \& \beta \in \operatorname{dom}(t)\} ; \mathrm{t}$ is a path in $\mathbb{1}\}$ by induction over N :
$[P](t,\langle\alpha, \infty\rangle)=t(\alpha)$
$[F](t,\langle\alpha, \beta+1\rangle)=F([F](t,\langle\alpha, \beta\rangle), t(\beta+1))$.
We shall write more simply $[F](t ; \alpha, \beta)$ instead of $[F](t,\langle\alpha, \beta\rangle)$.

Lemma 1. Let t be a path in $A, \alpha \leqslant \gamma+1 \leqslant \beta \in \operatorname{dom}(t)$. Then
$[F](t, \alpha, \beta)=F([F](t, \alpha, \gamma),[F](t, \gamma+1, \beta))$
holds.
This follows by induction on $\beta-\infty$.
Let t be a path in $A, \operatorname{dom}(t)=\vartheta+1$. We define the path $\overline{\mathrm{t}}$ with $\operatorname{dom}(\overline{\mathrm{t}})=\vartheta+1$ sollows: $\overline{\mathrm{t}}(\infty)=\mathrm{t}(\vartheta-\infty)$. $\tilde{F}: \mathbb{A}^{2} \rightarrow A$ is the function so that $\tilde{F}(x, y)=\tilde{F}(y, x)$ holds for each $x, y \in A .[\widetilde{F}]$ is defined similarly as [F].

The following lemma can be proved by induction on $\beta-\infty$.

Lemma 2. Let t be a path in $A, \operatorname{dom}(t)=\vartheta+1$. Then

$$
[F](t, \alpha, \beta)=[\tilde{F}](t, \vartheta-\beta, \vartheta-\alpha)
$$

holds for each $\alpha \leqslant \beta \leqslant \vartheta$.
II. We put for each $x \in \mathbb{A}: G_{Q}(x)=\min \{\propto \leqslant \xi ; x \in Q(\alpha)\}$. Thus, G_{Q} is a function, $G_{Q}: \Lambda \rightarrow N$, and we have $G_{Q}(x) \leq \propto \equiv x \in$ $G Q(\propto), \propto<G_{Q}(x) \equiv x \notin Q(\propto)$ for each $\propto \leqslant \xi$. We shall write more aimply G instead of G_{Q}. The index Q denotes only that G_{Q} is constructed from Q and this notion will be used in 3.0.3.

We define the function $G^{*}, G^{*}: A \rightarrow N$, as followe:
$G^{*}(x)=0$ iff $x \in B, G^{*}(x)=2^{G(x)}$ iff $x \in A-B$.
Let t be a path in A. We put

$$
v_{Q}(t)=\sum\left\{G^{*}(x) ; x \in \operatorname{rng}(t)\right\} .
$$

We shall write more simply V instead of V_{Q}. V is a function, rng $(V) \subseteq N$.
We deduce from the definition of V that $V(t)=0 \equiv \operatorname{rng}(t) \subseteq B$ and $V(t)=0 \rightarrow(\forall \propto, \beta \in \operatorname{dom}(t))(\alpha \leqslant \beta \rightarrow[F](t, \alpha, \beta) \in B)$.

Let t be a path in $A, \operatorname{dom}(t)=\sigma^{\sigma}+1$. Writing $[F](t)$ ($[\tilde{F}](t)$ resp.) we mean $[F]\left(t, 0, \sigma^{\prime}\right)\left([\tilde{F}]\left(t, 0, \delta^{\sim}\right)\right.$ resp. $)$. Note that whenever $[F](t, \alpha, \beta)$ appears, then we assume that $\langle t,\langle\alpha, \beta\rangle\rangle$ is an element of $\operatorname{dom}([F])$. We use the similar convention for the terms $[F](t),[\widetilde{F}](t, \alpha, \beta),[\tilde{F}](t)$.

Lemma 3. Let $z \in A$ and suppose that $[F](t)=z$. Then
(*)

$$
v(t) \neq 0 \rightarrow 2^{G(z)} \leqslant 2 \cdot v(t)
$$

holds.
Proof. By induction on dom(t).
(i) Suppose that $\operatorname{dom}(t)=2$. Assume, for example that $G(t(0)) \leqslant G(t(1))$. Thus $G(z) \leqslant G(t(1)+1$ holds and we have $2^{G(2)} \leqslant 2 \cdot 2^{G(t(1))}$. If $t(1) \leqslant B$ then $G(t(1))=0$ and, consequently, $G(t(0))=0$. We deduce from this that $t(0) \in B$, which
is a contradiction. Thus, $t(1) \notin B$ holds and we have $2 \cdot 2^{G(t(1))} \leq 2 \cdot\left(G^{*}(t(0))+2^{G(t(1))}\right)=2 \cdot V(t)$.
(ii) Suppose that the statement (*) holds whenever $\operatorname{dom}(t) \leq \beta+1$ and $\beta+1 \geq 3$ is fixed. Let t be a path in A and let $\operatorname{dom}(t)=\beta+2$. Let $[F](t)=z$ and assume that $V(t) \neq 0$. We shall prove that $2^{G(z)} \leq 2$. $V(t)$ holds.

We put $c=V(t)$. Let σ^{\sim} be the maximal natural number such that $2^{\delta^{\sigma}} \leq c$. If $\sigma^{\sigma} \geq \xi-1$ then $2^{G(z)} \leq 2^{\xi} \leq 2^{\delta+1} \leq 2 \cdot 2^{\delta} \leq$ $\leq 2 . c$ and, consequently, the statement in question is proved. Assume $\quad \sigma^{\sim}<\xi-1$.
(\propto) Suppose that $G^{*}(t(0)) \leq \frac{c}{2}$. Let $\gamma \in N$ be a maximal number such that

$$
\mathcal{V}(t \wedge \gamma+1)=\sum_{\alpha=0}^{\gamma} G^{*}(t(\propto)) \leq \frac{c}{2} .
$$

Obviously, $0 \leq \gamma \leq \beta$. Moreover, $0 \neq G^{*}(t(\gamma+1)) \leq c$ and
 $+2, \beta+1)$.
Suppose that $\sum_{\alpha=0}^{\gamma} G^{*}(t(\alpha)) \neq 0$. We deduce from the induction hypothesis that $2^{G(z)} \leq 2 \cdot \frac{c}{2}=c$. Thus, the following relation holds:
(*) $\quad G\left(z_{1}\right) \notin \sigma^{2}$. It is easy that
(**) $G(t(\gamma+1)) \leq \delta \quad$. We deduce as above that
(***) $G\left(z_{3}\right) \leq \sigma^{\sigma}$
follows from $\alpha=\sum_{\gamma+2}^{\beta+1} G^{*}(t(\alpha)) \neq 0$.
The relations $(*),(* *),(* * *)$ hold too in the case if

$$
\sum_{\alpha=0}^{\gamma} G^{*}(t(\alpha))=0 \text { or } \sum_{\alpha=\gamma+2}^{\beta+1} G^{*}(t(\alpha))=0 \text {. We have } z=[F](t)=
$$

$=F\left(F\left(z_{1}, t(\gamma+1)\right), z_{3}\right)=F_{3}\left(z_{1}, t(\gamma+1), z_{3}\right)$ and $F_{3}^{\mu} Q^{3}(\delta)=Q(\delta+1)$.
We deduce from this that $z \in Q\left(\delta^{\sim}+1\right)$. Consequently, $G(z) \leq \delta^{\sim}+1$

holds, and

$$
2^{G(z)} \leq 2^{\delta+1}=2 \cdot 2^{\delta} \leq 2 c=2 \cdot V(t)
$$

follows immediately.
(β) Suppose that $G^{*}(t(0))>\frac{c}{2}$. Then $\sigma^{*}(t(\beta+1)) \leq \frac{c}{2}$. Thus, $G^{*}(\bar{t}(0))=G^{*}(t(\beta+1)) \leqslant \frac{c}{2}$ hold s. We have $[\tilde{F}](t)=z=$ $=[F](t)$ (by using the lemma 2). We deduce similarly as in the case (α) that $2^{G(z)} \leq 2 \cdot c$ holds.
III. The following definition of the function $H: A \rightarrow N$ is justified:

$$
H(x)=\min \{V(t) ;[F](t)=x\} .
$$

We shall prove that H is the valuation in question. (a) $H(x)=0 \equiv x \in B$. Suppose that $H(x)=0$. Then there exists a path t in A such that $H(x)=V(t)$ and $[F](t)=x$. Thus, $x \in B$ holds. Suppose that $x \in B$. We have $G^{*}(x)=0$ and $H(x)=0$ followe from the relation $H(x) \leqslant V(\{\langle x, 0\rangle\})=G^{*}(x)=0$. (b) $Q(\propto) \subseteq\left\{x \in A ; H(x) \leqslant 2^{\alpha}\right\} \subseteq Q(\propto+1)$ holds for each $\alpha \in \xi$. At first, we prove that ($\times x$) $\quad x \in A-B \rightarrow 2^{-1} \cdot 2^{G(x)} \leq H(x) \leq 2^{G(x)}$ holds.

Proof. Let t be a path in A such that $[F](t)=x$ and $V(t)=H(x)$. We have $V(t) \neq 0$ and, consequently, $2^{-1} \cdot 2^{G(x)} \leqslant$ $\leq V(t) \leq H(x)$. The statement $(x x)$ follows from this and from the relation $H(x) \leq V(\{<x, 0>\})=G^{*}(x)=2^{G(x)}$. We are proving (b). Let $x \in \mathbb{A}$ be such that $H(x) \leqslant 2^{\infty}$ and $x \in B$. Te have $2^{G(x)-1} \leqslant H(x) \leqslant 2^{\alpha}$ and, consequently $x \in Q(\alpha+1)$ holds. Conversely, let $x \in Q(\alpha)-B$. We have $G(x) \leq \propto$. We deduce from this that $H(x) \leq 2^{G(x)} \leq 2^{\infty}$.
(c) $H(F(x, y)) \leqslant H(x)+H(y)$ holds for each $x, y \in A$. This follows immediately from the construction of H .
(d) $H(H(x))=H(x)$ holds for each $x \in A$.

We shall prove (d) by using the following leman.
Lemma 5. Let t be a path in $A, \operatorname{dom}(t)=\vartheta+1$, and let $\alpha \leq \beta \leq \vartheta$. (1) $V(E \circ t) \leq \vartheta(t)$.
(2) If Q is covariant then $[F](E \circ t, \alpha, \beta)=E([F](t, \alpha, \beta))$.
(3) If Q is contravariant then $[F](\mathbb{F} \circ \bar{t}, \alpha, \beta)=$
$=B([F](t, \vartheta-\beta, \vartheta-\alpha))$.
The proof of this lemma is straghtforward and we omit it.

- We prove that
(ㅁ)

$$
H(y) \leq H(E(y))
$$

holds for each $y \in A$. Suppose that $E(y)=x$. Let t be a path in A such that $[F](t)=x$ and $\mathcal{V}(t)=H(x)$. Assume covariant Q. Then $[F](F \circ t)=E([F](t))=F(x)=y$. Assume contravariant a. Then $[F](E \cdot \bar{t})=E([F](t))=E(x)=y$. We have $V(B \circ \bar{t}) \leqslant V(E \circ t) \leq V(t)=H(x)$ and, consequently, (\square) is proved. We deduce from (\square) that

$$
H(y) \leq H(E(y)) \leq H(E(E(y)))=H(y) .
$$

Thus, the statement (d) is proved. The proof of the G-valuation lemma is finished.
3.0.3. Remark. (1) The valuation H from the previous proof is defined as follows: $\langle x, y\rangle \in H \equiv y \in \mathbb{A} \& x=\min \left\{V_{Q}(t)\right.$; $[F](t)=x\}$. Thus, there is a normal formula $\Phi^{\prime}(x, y, x, y)$ of the language FL such that

$$
\langle x, y\rangle \in H \equiv \Phi^{\prime}\left(x, y, \alpha, v_{Q}\right)
$$

The function V_{Q} is constructed by a normal formula again. We deduce from this that there exists a normal formula $\Phi(x, y, x, Y)$ of the language FL, satisfying

$$
\langle x, y\rangle \in \mathbb{H} \equiv \Phi(x, y, Q, Q) .
$$

(2) Let Q, R be σ-artings in Q over B, where B is an universe in an e-structure $a=\langle A . F . E\rangle$. Let $\operatorname{dom}(Q)=\operatorname{dom}(R)$
and suppose that $Q(\propto) \subseteq R(\propto)$ holds for each $\propto \in \operatorname{dom}(Q)$. We put

$$
H^{Q}=\{\langle x, y\rangle ; \Phi(x, y, a, Q)\}, H^{R}=\{\langle x, y\rangle ; \Phi(x, y, a, R)\}
$$

Then $H^{R}(x) \leqslant H^{Q}(x)$ holds for each $x \in A$.
Proof. Let x be an element of A. Then $G_{R}(x) \leqslant G_{Q}(x)$. (For G_{Q} see the previous proof.) We deduce from this that $V_{R}(t) \leq V_{Q}(t)$ for each path t in A. The required propositiom follows from this immediately.
§4. Scales for $\sigma^{\partial \gamma}$-triads and $\pi^{\partial \gamma \zeta}$-triade
4.0.0. A triad \mathcal{T} is called scale for the type σ or ($\pi \not{H}$ resp.) iff \mathcal{J} is a $\sigma^{0}\left(\pi^{0}\right.$ resp.)-triad and, for each triad $\widetilde{\mathcal{T}}$ of the type $\sigma^{\partial r}$ ($\pi{ }^{\circ r}$ resp.), there exists a valuation H of $\widetilde{\mathcal{T}}$ in \mathcal{T} such that $H \in$ 歽.

4.0.1. Theorem

(1) The triad $\langle N,+, I d\rangle(F N,\{0\})$ is a scale for the type $\sigma^{20 r}$.
(2) The triad $\langle\mathrm{RN}(\geqq 0),+, \mathrm{Id}\rangle([\geq 0],\{0\})$ is a scale for the type $\pi^{x r}$.

Proof. Let $a=\langle A, F, E\rangle$ be an e-structure and let $a(Q, B)$ be a σ^{308}-triad over a. We have $\llbracket F, E \rrbracket(Q, Q)$. Thus, there is a σ-string S of $Q, S \in \notin \notin$, and $B \subseteq S(0) \subseteq S(\alpha) \subseteq A$, $\llbracket F, E \mathbb{I}(S(\alpha), S(\alpha+1)$) holds for each $\alpha+1 \in \operatorname{dom}(S)$. (This follows from [M1] 2.1.0). Put, for each $\propto \in \operatorname{dom}(S)$,

$$
\langle x, \alpha\rangle \in P \equiv x \in S(\propto) \cap E^{\prime \prime} S(\propto)
$$

We deduce from 2.0.3 that P is a σ-string of Q and $B \subseteq P(0) \subseteq P(\propto) \subseteq A, F^{n \prime} P^{2}(\propto) \subseteq P(\propto+1), E n P(\propto) \subseteq P(\propto)$ hold for each $\propto+1 \in \operatorname{dom}(P)$. Evidently, P is an element of 3ℓ. Let $\delta \in N-F N$ be such that $2 \delta<\operatorname{dom}(P)$. Let R be a relation, satis-

Pying: $\operatorname{dom}(R)=\delta^{\prime}+1, R^{n}\{0\}=B, R^{n}\left\{\sigma^{N}\right\}=A, 1 \leqslant \propto<\delta \longrightarrow$ $\rightarrow R^{n}\{\propto\}=P(2 \propto)$. It is easy that $R \in \not \partial t$ and R is a $\sigma-$ string of Q. Moreover, R is a σ-string in a over B. We deduce from the σ-valuation lemma that there is a valuation $\mathrm{H} \in \gamma_{\ell}$ of $a(\mathrm{~B}, \mathrm{~B})$ in $\langle\mathrm{N},+, \mathrm{Id}\rangle(\{0\},\{0\})$ and $\mathrm{x} \in \mathrm{Q} \equiv(\exists \mathrm{n})$ $\left(H(x) \leqslant 2^{n}\right.$) holds. Consequently, H is a valuation of $a(Q, B)$ in $\langle N,+, I d\rangle(F N,\{O\})$ and the part (1) of the theorem is proved. The part (2) can be proved quite analogously as the part (1).
4.0.2. Remark. Let $\alpha(Q, B)$ be a triad and suppose that $a \in S d_{V}, B \in S d_{V}$. Assume that Q is a σ-class which is not a σ^{0}-class. Then there exists a valuation H of $a(Q, B)$ in $\langle N,+, I d\rangle(F N,\{O\})$ and $H \in S d_{V}^{*}$. But no valuation of $Q(Q, B)$ in $\langle N,+, I d\rangle(F N,\{O\})$ is an element of Sd_{V}.

Proof. The existence of a valuation, which is a $\mathrm{Sd}_{\mathrm{V}^{-}}^{\mathrm{-}}$ class, follows from the previous theorem (because $a(Q, B)$ is
 - $\sigma^{\text {Sd }}{ }_{\text {-triad }}$.

Suppose that there is a valuation of $\alpha(Q, B)$ in $\langle N,+, I d\rangle(F N,\{O\})$ and let $H \in S_{V}$. Let $\xi \in \mathbb{N}-F N$. Then $R=$ $=\{\langle x, \propto\rangle ; H(x)<\propto \& \alpha \epsilon \xi\}$ is a $\sigma-s$ tring of Q and $R \in S d$, Thus Q is a σ^{0}-class, which is a contradiction.
4.1.0. Let Q be an equivalence on a class A. The mapping $H: A^{2} \longrightarrow \mathrm{RN}(\geqslant 0)$ is called metric of Q on A iff the following holds for each $x, y, z \in A$:
$H(x ; z) \leqslant H(x, y)+H(y, z), H(x, y)=H(y, x), H(x, y) \geqslant O \equiv\langle x, y\rangle \in Q$, $\mathbf{H}(\mathrm{x}, \mathrm{y})=0 \equiv \mathrm{x}=\mathrm{y}$.

Metrization theorem. Let Q be an equivalence on \mathbb{A}, $A \in \mathscr{O r}$, and let Q be a $\pi^{\gamma r l}$-class. Then there exists a metric H of Q on $A, H \in \neq$.

Proof. Let $\mathrm{E}^{0}: \nabla^{2} \cup\{0\} \rightarrow \nabla^{2} \cup\{0\}$ be the mapping defined as follows: $\mathbb{F}^{0}(\langle x, y\rangle)=\langle y, x\rangle, F^{0}(0)=0$. Then $a=$ $=\left\langle A^{2} \cup\{0\}, F^{0}, E^{0}\right\rangle$ is a contravariant e-structure and $\mathcal{T}=$ $=a(Q \cup\{0\},\{\langle x, x\rangle ; x \in A\} \cup\{0\})$ is a $\mathbb{T}^{00 \ell}$-triad. Let $G \in$ got be a valuation of \mathcal{T} in $\langle\operatorname{RN}(\geq 0),+, I d\rangle([\geq 0],\{0\})$. A metric in question is the mapping G / A^{2}.

Corollary. (1) There exists a metric H of $\xlongequal{\circ}$ on V, so that $H \in S d_{V}^{*}$.
(2) There is no metric of 으 on V which is an element of Sd_{V}.

Proof. (1) follows from the metrization theorem. (2) follows from [MI], 1.0.7 and from 4.0.2. (For the equivalence 으 see also § 0.)
references
[K] J.L. KELLEY: General Topology, Van Norstad Comp., Inc., 1961.
[MI] J. MLČEK: Approximation of σ-classes and J-classes, Comment. Math. Univ. Carolinae 20(1979), 669-679.
[S-V 2] A. SOCHOR and P. VOPĚNKA: Revealments, to appear in Comment. Math. Univ. Carolinae 21(1980).
[V] P. VOPENKA: Mathematics in the alternative set theory, Teubner-Texte, Leipzig 1979.

Materfaticky ustav

Universita Karlova
Sokolovská 83, 18600 Praha 8
Československo
(Oblatum 4.6. 1979)

