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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 4 (1979) 

VALUATЮNS OF STRUCTÜRES 
J. MLČEK 

Abstract: This paper i s a contribution to the develop
ment of the alternative set theory. A typical special result 
among those presented i s the following: Let Q,** <a,f>be a 
set-semigroup and l e t &/Q * <Q,f/Q > where QSa i s a # -
class be a substructure of d • Then there ex is ts & set-map
ping h:a —> RN(2r 0) (RN(>: 0) i s the class of non-negative ra
tional*) such that h( f (x .y ) )^h(x ) + h(y) and h l x J i O m x M 
holds for each x f y c a . (As usual, we write z^O i f izi<n 
for a l l f in i te natural numbers n.) 

We present more general resu l t s ; namely, they concern 
some richer structures than that of a semigroup, deal also 
with proper c lasses, and the universe Q of the substructure 
0,/Q is a 6*- or JT-class. 

As a consequence of our results we obtain a metrization 
theorem. 

Key words: Structure, valuation, &-class, 3T -class, 
me trization. 

Classification: 02K10, 02K99, 08A05, 54J05 

§ 0# Introduction. Great numbers of important structu

res are constructed in the alternative set theory by using 

^-classes. For example, real numbers are constructed as fac

tor-classes of the JT -equivalence « on the class RN of ra

tional numbers. (See LV3#) The topological structure is com

prehended as a # -equivalence on a set-theoretically defin

able class. In this paper we study structures which are des

cribed by using 6*-classes and Jf-classes only. Let us explain 
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our problems xu more detail on the structure <a , ̂  > f whe

re a is a a et and ̂  is a of -equivalence on a. Uaing 3ome ide

as of the proof of the classic metrization lemma, we can pro-

ve that there is a set-mapping h:a —> RN(>0) (RN(>0) deno

tes the clas3 of non-negative rationale) auch that h(x,z) .£ 

.£h(x,y) + h(y,z), h(x,y) • h(y,x), h(x,y) = 05XA/y, h(x,y) » 

a Osx * y hold, (h i3 called metric of <v on a.) We can aay 
2 

that h is a valuation of a in BK(> 0) such that h respect 

(in the sense mentioned above) the following couples of ope

rations: the operation o (the composition of pairs) and + ; 

the operation Cn of converse and the identity mapping Id. Mo

reover, the values of all elements of rj are exactly in 

£2.01 » {x€BN( >0);x«0i. We shall deacribe a clas3 of struc-

tures of the type <A,PfE> , where F is a binary function and 

£ is a unary function, such that the following statement holds: 

if Cb is a set-etructure of this class and Ct/Q ia a aubstruc-

ture of Cb with the universe Q, which is a 3f -class, then the 

pair <d,a/Q> is valued in «BN(> 0),+fId> , < I z 0Jf+fId » 

by a set-mapping similarly as a set-metric of -̂  on a values 

«a 2,o fCn>f <<vf o fCn»in «HN(£ 0),+,Id> ,<l > 03,+,Id». 

Note that we do not work with set-etructures only but 

the structure CL mentioned can be generally a structure from 

a standard sy9tem W, and the universe Q of the aubstructure 

d/Q can be a sr^-or a tf^-clasa. Then we conetruct a valu

ation of the pair <Cb,Cl/Q>as a clas9 of Mt. 

(For the notions of the standard systems and <rr^-and 6f^-

class see EM1J.) 

Let us mentione one consequence of our general results. 

Recall that x«-y iff for each set-formula f (z) in FL we have 
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<i> (x) 2*g> ( y ) . The following statement holds: there la a met

ric of =- on V which is an element of a revealment Sd.? of 

the codable class Sdv of all set-theoretically definable 

classes (i.e., roughly speaking, there is a "formally set-

theoretically definable" metric of -ft on V. (For the notiom 

of the revealments see ES-V 1.3.) 

Further results concerning the problems of valuation* 

will be presented in another paper. 

§ 1. Preliminariea 

1.0.0. We use usual definitions and notions of the al

ternative set theory and definitions, notions and symbols 

introduced in [Ml] • We shall use results obtained in I Mil. 

1.0.1. Throughout this paper let Wl denote a standard 

system. 

§ 2. e-structures. Valuations 

2.0.0. By a atructure we mean a m*n+l-tuple &, * 

*<AfFifHj> iem j € n f m,ncF»f where, for each ic m, F.̂ ^ is a 

a(i)-ary function, dom(Fi)*A
a(l), F|Aa(i)cAf a(i)eFK and, 

for each jcm, fij£Ab(^, b(j)eFN. 

We say that a class B A is a universe in (b iff, for 

each ±€ m, F.jBP* '£ B holds. A substructure of the structure 

a is a structure <B,F i/B
a ( i ),R jnB

b ( j )> i € m ^ where B 

is a universe in CX/ . We denote the substructure presented by 

CL/B. If there is no danger of confusion, we write <B,FitB.> 

instead of <B,F,/Ba(i),R,nBb( j ) > . m . . * i f J i£mfr3<n 

2.0.1. A covariant (contravariant resp.) e-structure 

is a structure < A,FfE> where F is a binary function, S is a 
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unary function and the following holds: (1) F is associa

tive on A, 

(2) EoE = Id 

(3) F(E(x),E(y)) « E(F(x,y)) 

(F(E(x),E(y)) « E(F(y,x)) resp.) 

holds for each x,yc A. 

^ e-structure ie a covariant or a contravariant e-struc-

ture. An e-structure &=<A,F,E> is a commutative e-structu

re iff F is commutative on A • 

Then Ct ie covariant and contravariant simultaneously. An e-

structure <A,F,Id> is covariant. It is contravariant iff it 

is commutative. Let &*<A,F,E> be an e-structure. We defi

ne the binary relation on A as follows: 

x < 3 f a y ~ O z € A)(F(x,z) = y ) . 

I f there i s no danger of confusion, we shall write simply -<r 

instead of «<i- . 
Q/ 

Proposition. The relation <a^ i s transit ive on A. 

2 .0 .2 . Examples* (1) A structure <A,F> i s a aemigroup 

i f f <A,FfId> i e a covariant e-structure. 

(2) < N,+,Id> ia a commutative e-structure. 

(3) Let RN(£0) « -{x€BN;x^O?, HN(>0) • f x 6 RNt|x>05. 

< W{Z 0),+,Id> and<RN(>0),« ," > are commutative e-struc-

tures. 

(4) We put, for XS.N, Xg * it* ; cc e 15. <N2, • ,Id> i s 

a commutative e-structure. 

(5) Let a be a s e t , a + 0 . Then <P(a),u ,Id> , <P(a),r\ ,Id> 

are commutative e-structures. 

(6) We define the mapping F°:(V2u iOj)2—-> V2u iOl as 

follows: F°«x,y>, < u , v » * <x,v> (0 resp.) i f f y =- u (y4=u 
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reap . ) and F°(W,0) » F°(OfW) * 0 for each WeV^u-fOi. 

F° i s an associa t ive function on V ui 03 and, consequen

t l y , <V u \0 i fF°,Id> i s an e -s t ruc ture f which is not commu

t a t i v e . Let R be a t r a r e i t i v e r e l a t i o n . Then <R u -£0-?fF°fId> 

i s an e -s t ruc ture and the following holds : 

(VufcRvHO^Hi--*- 0)& ( VucRuiOiKO-sa u s u = 0 ) . 

2 -0 .3 . Lemma. Let <AfFfE> be an e - s t ruc tu re . Let A f 

A^ be classes such tha t A0S A-̂ S A and IEFfEll(AofA1) hold. Let 

Q i » E-A i nA i for i • 0 f l . 

Then QQ£ AQS Q ^ ^ a n d > f o r i m 0 f l f FwQ^£Q l f E ^ c 

c Q i . 

Proof. The r e l a t i o n Qj[SA^f i =- 0 , l f i s obvious. 1) We 

prove tha t AQS Q1# Let x£A Q . We have E ( x ) € A l f xcA-^ and x * 

= E(E(x)). Thus x c A i n E w A 1 . 2) We prove that F ^ C Q ^ Let 
x t y € QQ. Thus x , y c A0 and x * E(u) , y * E(v) hold with some 

u f vc AQ. We have F(x,y)c A^f F(u fv) 6.A^ and F (v f u)6A 1 . Thus 

F (x,y) * F(E(u),E(v))c E ^ holds . We deduce from t h i s tha t 

F(x,y)€ A ^ n E * ^ . 3) Let us Drove tha t E^Q^S Q^ holds for 

i = 0 f l . Let xeQ^ . 3&en xcA^ and there i s a y c A^ such tha t 

x » E(y) . Consequently, E(x) 6 A^A B"A. holds . 

2 .0 .4 . Let d be an e - s t ruc tu re . Let Qf B be universes 

in OU . The t r i p l e < a , ft/Q, &/B> i s cal led a t r i a d over Q, . 

Let Q/(Q,B) denote t h i s t r i a d . A t r i a d of the type # ^ (or a 

#3&- t r i ad ) i s a t r i ad &(Q,B) such that d e 93t , B € ffit 

and Q i s a 6 - c l a s s , We define a t r i ad of the type tr^ (or 

a 31*^-triad) analogously. 

Examples. (1) <Nf+fId> (FN,iOi)f <N2> * f Id> ( F ^ , - t l | ) 

are 6*°-triads. 

(2) Let a be a s e t , a4-0 and l e t Q be an idea l on P ( a ) . 
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Then <P(a)fu fId> (Qf*tO$) is a triad. Suppose, moreover, that 

Q is a ti (tf resp.)-class. Then the triad presented is a G -

triad (# -triad resp.). 

(3) The equivalence -=. on RN is defined as follows: 

(Vxfy€HN)(x^ys(Vn)(lx-y(<iv(x>n&y>n)v(x-<-n&y-<-n)). 

We put C£0] * *,ycHN(> 0)}y;5:OJ. Then 

<HN( >0),+fId> (C^OJf-CO^) is a jr°-triad. 

2.1.0. Let Q, * <AfF,E> , & « <A,FfE > be e-structures. 

A mapping H:A—> A is called valuation of & in <t iff for 

each x,y-cA holds: 

H(F(x,y))^ F(H(x)fH(y)) 

H(B(x)) = B(H(x)). 

Let &(QfB)f S,(QfB) be triads. A mapping H:A —> A is called 

valuation of the triad <X(QfB) in the triad E(^,B) iff H is 

a valuation of CU in U and we have for each x-eA: 

xcQs5H(x)-£ 3, x€BsH(x)cB. 

Example. The mapping H:N —> N2 sending QO to 2°° is a 

valuation of <N,+ ,Id> (FNf*0S) in <N2, • fId> (FN2>{lJ). 

Proposition. Let CU be an a-strueture and let -^4^ be 

reflexive on A. Let Q/(Q,B) be a triad over Ct and let A*c A 

be an universe in &, . 

(1) 0//A'(QnA'fBnA') is a triad over &/A'. 

(2) Identity mapping Id is a valuation of fl,/A'(QnA'f 

Br\A#) in Q,(Q,B). 

Proof. (1) follows from the fact that Q A A ' and BnA' 

are universes in <l/A'. (2) Identity mapping is a valuation 

of Cb/A' in & (by using of the reflexivity of - ^ ). 
»w ^ ,-V +J 

Proposition. Let ct0<AfFfB>be a commutative e-struc-

ture and let 0UQ,B) be a triad. Suppose that there exist 
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points a, q t b e A such that b-<3q<a, and b e B f qe3 -B , a e 

cA-Q. 

Then, for each triad *$* t there is a valuation of (T in 

&(Q tB). 

Proof. Let H be a mapping, defined as follows: 

H(x) • bsax^B, H(x) * qsqi Q-B, H(x) * asxcA-Q, where 

<AtPtB> (QtB) * & . The H is the required valuation. 

§ 3. Valuation lemmas 

3.0.0. We shall prove two lemmas which have the impor

tant role for the construction of valuations of O'^-triads 

and -ar^-triada. At first, we introduce the following defi

nition: let & s <AtPfB> be an e-strueture and let B be an uni

verse in d . A € -string (ST -string resp.) R is called 6f (ar 

reap.)-string in 0/ over B iff B * R(O), A * R(dom(R)-l) and 

!lPtP3I (R(oo)tR(«*+l))f E"R(o6)cfi(a5) holds for each cc <s 

<sdoa(R)-l (A * R(0), B * R(dom(R)-l) and tPfP33 (RCoo+1), 

R(o*))t E"R(o£)£ MloC) holds for each oce dom(R)-l reap.), 

where *3:* — > A is the function satisfying P3(x,ytz) « 

* P(P(xty),z). 

3.0.1. 6^-valuation lemma. The following holds in the 

sense of #t : Let CL be an e-structure and let B be an univer

se in d . Let Q be a 6* -string in Ob over B and let §+1 * 

* dom(Q). 

Then there i s a valuation H of the triad & (B,B) in 

<N,+,Id> (£0$t€0*) such that Q(e£ )s - tx 6A.jH(x)* 2* i Sk 

SQCoC+l) holds for each cc e | • 

#-valuat ion lemma. The following holds in the sense of 

Wk : Let 0/ be an e-structuxre and l e t B be an universe in Q, . 
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Let Q be a 0f-string in Qs over B and let § +1 « dom(Q). 

Then there is a valuation H of the triad Q,(BfB) in 

<HNf(> 0),+,Id> (-tO}f€03) such that Q(o£+l)£-Cxc A; H(x)£ 
£2-C<-t+i)5j£Q(oG) nolds for each ^ 6 | # 

The #-valuation lemma follows from the 6*-valuation 

lemma. Really, let G be a valuation of CL(BfB) in 

<Hf + ,Id> («C0i,i05) such that Q(£-*)s-txc A; G(x)* 2
<*3c 

SQ(c-(ot>n)^ a°l<-te *oT e^ch oc c £ . We put ^ « £ - O G . Thus, 

Q((S)ffixeA| G(x)*2$-*teQ(/J-l) holds for each 1£ fi ** f . 

The required valuation is the mapping H » 2~*»G. 

3.0.2. Qie proof of the 3? -valuation lemma. 

I. A path in A is a function t such that dom(t)c N and 

rng(t)sA. We construct the function TFJ with domain 

U<{ tj x i <o6 f (3> J *C-* (3 & 0 € dom(t)J J t is a path in A* 

by induction over N: 

[F3(tf <<*,,<*>) « t(oo) 

LF](t,<oC,/3+l>) - F([Fl(t,<*C f j 3 » f t ( / 3 + l ) . ) . 

We shal l write more simpty tFJ ( t f 0 c , t3) instead of 

rFJ(t f<oc, ft> ) . 

Lemma 1. Let t be a path in A, cc £ y+l& ft €dom(t). 

Then 

CFJ(tfoC, ft) m F(CFJ(tfoCf r ) , £ F J ( t , r + l , ^ ) ) 

holds. 

This follows by induction on (3-oc . 

Let t be a path in A, dom(t) • i^+l . We define the path 

t with domCt) » 1 > + I i 8 follows: t W ) - t ( ^ - o c ) . 

F:A —•* A i s the function so that F(x,y) * F(y,x) holds for 

each x , y c A . CF3 i s defined similarly as IFJ. 

The following lemma can be proved by induction on /S-oe . 
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Lemma 2. Let t be a path in A, dom(t) • <fr +1. Then 

LPJ(t^,(3) » t$l(tf&-(I f <&-<&) 

holds for each co £ t3 *6 & . 

II. We put for each x£A: GQ(x) » min \<c & £ jx€Q(oc)}# 

Thus, GQ is a function, GQ:A—> N, and we have QQ(X)£<&& X6 

6Q(oO), oo* GQ(x) = x<£Q(oS) for each oc ̂  | .We shall writs 

more simply G instead of GQ. The index Q denotes only that GQ 

is constructed from Q and this notion will be used in 3.0.3. 

We define the function G*f G*;A~*- N, as follows;: 

G*(x) * 0 iff x€B, G*(x) * 2 0 ( x ) iff x€A-B. 

Let t be a path in A. We put 

VQ(t) » Xi G*(x);xerng(t)}. 

We shall write more simply V instead of 1^Q. t^is a function, 

rng(ina*. 

We deduce from the definition of V that V(t) * Osrng(t)i*B 

and V(t) « 0 ->(Voo,/3€ dom(t))(oC £/3-> m ( t , <*, £)c B). 

Let t be a path in A, dom(t) • cf+1. Writing IFJ(t) 

(CFJ(t) reap.) we mean lFl(tfOf<f) (tFl(tfOffsr') resp.). Note 

that whenever lFl(tfccf ft) appears, then we assume that 

<t,<oo,i>» is an element of dom(fFJ). We use the similar con

vention for the terms TFJ(t), r Fl(t,ocf ft ), IFJ(t). 

Lemma 3. Let %ck and suppose that TFj(t) « %. Then 

(•) V(t) 4=0 -> 2G(z)£ 2 . 1T(t) 

holds* 

Proof. % induction on dom(t). 

(i) Suppose that dom(t) = 2 . Assume, for example that 

G(t(0))£G(t(l)). Thus G(z).*G(t(l)+l holds and we have 

2Qizh 2 . 2 0 ( t ( 1 ) )
# If t(l)^B then G(t(D) * 0 and, conse

quently, G(t(0)) » 0. We deduce from this that t (0)cB, which 
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is a contradiction. Thus, t(l)$ B holds and we have 

2.2 G ( t ( 1 > )* 2-(G*(t(0)) + 2G(t(l))} , 2-int). 

(ii) Suppose that the statement (*) holds whenever 

dom(t) £ fi +1 and /3+l<>3 is fixed. Let t be a path in A and 

let dom(t) */5+2. Let £Fl(t) » z and assume that 1 r ( t ) 4 - 0 . We 

shall prove that 2 G ( z )^ 2 • 2f(t) holds. 

We put c * Vit). Let cf be the maximal natural number 

such that 2 ^ c. If cT & f -1 then 2G(z)-£ 2^20*1.*2.2ck 

r̂ 2.c and, consequently, the statement in question is proved. 

Assume cf-c £-1. 

(oo) Suppose that G*(t(0))^|-. Let ^re N be a maximal 

number such that 

T ( t /r + 1 > • 2 o*(t(oo))^§ . 

Obviously, 0 £ y ^ f* • Moreover, 0-#G*(t(^+1))^ c and 

^ S + 2 G * ( t ( o c ) ) - ^ | . We put Z]L « t r j ( t f O f y) f *3 • f F j ( t , ^ + 

+ 2 , 0 + 1 ) . 

Suppose that ^ G*(t(oC ))-#0. We deduce from the induction 

hypothesis that 2G ( z ' -£2»2 *- c. Thus, the following relation 

holds: 
( * > G ( 2 l )^oT . I t i 8 e a 8 y t h a t 

( * * > G ( t ( r +l ) )^oT # We d e d u c e a s fibove thf i 

( * * * ) G(au)£ Of 
p+i J 

follows from * J § + 2 G*( t (06)) + 0. 

The relations (*) , (*<#), (***i hold too in the case i f 

S G*(t(oC)) = 0 or , 21 G*(t(*;)) » 0. We have z » CP3(t) * 
di%0 cC*.y+Z 

m F (F (z l f t (7+ l ) ) , . « 3 ) « F 3 ( « 1 , t ( r + 1 ) , » 3 ) and F ^ W s QfeT+l). 

We deduce from this that s6 6Q(</"+l). Consequently, GU) ^oT+l 
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holds, and 

2 G U ) ^ 2<*1 . 2.2<C 2 c , 2 #2T(t) 

follows immediately. 

(ft) Suppose that G*(t(0))>|. Then G*(t(£ +!))-£ £ . 

Thus, G*(t(o)) * G * ( t ( / 3 + l ) ) - £ | holds. We have iFHt) « z * 

= tFJ(t) (by using the lemma 2). We deduce similarly as in the 

case (oc) that 2G(z)*£ 2«c holds. 

III. The following definition of the function H:A—* K 

is justified: 

H(x) • min^(t); tFj(t) * xj. 

We shall prove that H is the valuation in question. 

(a) H(x) » O s x c B. Suppose that H(x) » 0. Then there ex i s t s 

a path t in A such that H(x) « V(t) and £F](t) « x. Thus, x c B 

holds. Suppose that x e B . We have G*(x) » 0 and H(x) * 0 f o l 

lows from the relation H(x) ^ V(C<x,0 > S ) s G*(x) * 0. 

(b) Q(ocO£4x€A; H(x)-6 2oC}c Q(o6+l) holds for each oc e f • 

At f i r s t , we prove that 

(xx) xeA-B ~ ^ 2 " 1 * 2 G < x ) ^ H ( x ) ^ 2 G ( x ) holds. 

Proof. Let t be a path in A such that tFJ(t) = x and 

1/(t) • H(x). We have V(t)4rQ and, consequently, 2~X • 2 G ( x ) * 

.^1T(t)^H(x). The statement (xx) follows from this and from 

the relation H(x) ̂  t r ( € < x , 0 > ? ) * G*(x) * 2 G ( x ). We are pro

ving (b). Let xeA be such that H(x)-4 2°° and x€B. Tie have 

2G(x)-l^ H(x)^2
oCand, consequently x€Q(oc+l) holds. Conver

sely, let xcQ(oo)-B. We have G(x) 4 oc . We deduce from this 

that H(x)^2 G ( x )^2° c. 

(c) H(F(x,y)).4H(x) • H(y) holds for each x,y€A. This fol

lows immediately from the construction of H. 

(d) H(E(x)) » H(x) holds for each xaA. 
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We shall prove (d) by using the following l€ 

Lemma 5. Let t be a path in Af dom(t) «i£+lf and let 

oc^/j^i*. (i) V(Bot) £ # ( t . > . 

(2) If Q, is covariant then CF3(Eo tfoc,£) • B(tFj(t ,<*,/?)). 

(3) If d is contravariant then [F3(E o t,oC9p) • 

« E(£F3(tf^-($f^-oC)). 

The proof of this lemma is straghtforward and we otp.t it. 

- We prove that 

(O) H(y)£H(E(y)) 

holds for each y* A. Suppose that E(y) =* x. Let t be a path 

in A such that LFJ(t) * x and lT(t) s H(x). Assume covariant 

& . Then £F3(E*t) » E(tFJ(t)) * E(x) » y. Assume contrava

riant 0/ . Then HF-Hl*!) « E(LFJ(t)) * E(x) * y* We have 

^(Eof) -* V(Bot) 4ir(t) * H(x) and, consequently, ( D ) is 

proved. We deduce from (a ) that 

H(y)4-H(E(y)) .4H(E(E(y))) « H(y). 

Thus, the statement (d) is proved. The proof of, the ^-yalu-

ation lemma is finished. 

3.0.3. Remark. (1) The valuation H from the previous 

proof is defined as follows: <x fy>6H~y€ A & x * miniV^(t); 

[F3(t) * xi. Thus, there is a normal formula §'(xfy,X,Y) of 

the language FL such that 

<xfy>6H -S$'(x,yfQ/fVQ). 

The function VQ is constructed by a normal formula again. 

We deduce from this that there exists a normal formula 

$ (xfyfXfT) of the language FL, satisfying 

< x f y > c H s $(x fy,& fQ). 

(2) Let Q, H be 6-artings in Q over B, where B is an 

universe in an e-structure &,« <A.FJS> • Let dom(Q) - dom(R) 
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and suppose that Q(oo )£ R( <*-•) holds for each oc-cdom(Q). We 

put 

HQ =4:<x,y>,- $(x,y, 0,,Q)$ , H H *l<x,y>; <$ <xfyf &,«$. 

Then HR(x)-^HQ(x) holds for each x€A. 

Proof. Let x be an element of A. Then G R(x)^ GL(x). 

(Por GQ see the previous proof.) We deduce from this that 

1/̂ (t) ̂  ^n(t) for each path t in A. The required proposition* 

follows from this immediately. 

§ 4 . Scales for g ^ - t r i a d s and jr^-triads 

4 . 0 .0 . A triad 7* i s called scale for the type &^ 

( ff'&t' r e s p . ) i f f T i s a &°(jr° resp . ) - tr iad and, for each 

triad T of the type €f^ (ir*3^ r e s p . ) , there exists a valua

tion R of ? in 'T such that H c W, . 

4 . 0 . 1 . Theorem 

(1) The triad <N,+,Id> (PN,^0j) i s a scale for the type 

(2) The triad <RN( >:0),+,Id> (C^ 07,iO}) i s a scale for 

the type tf ^ . 

Proof. Let Ct s <A,P,B> be an e-structure and l e t 

&(Q,B) be a tf^-triad over d . We have iTF,El (Q,Q). Thus, 

there i s a # - s t r i n g S of Q, S eWt f and Bs S(0) s S(oC )£ Af 

HP,El (S(oo),S(oo+l)) holds for each oc+lcdom(S). (This f o l 

lows from IU13 2 .1 .0 ) . Put, for each ace dom(S), 

<X,oG>€ P s x e S f o c ) A E*S(OC) 

We deduce from 2.0.3 that P i s a € -string of Q and 

B c p ( o ) £ P ( o 6 ) £ A , P-P2(o6)SP(o6+l) f EttP(oc).sP(o<;) hold for 

each ot>+l6dom(P). Evidently, P i s an element of Ml . .Let 

S"B N-PN be such that 2cT-< dom(P). Let R be a relat ion, s a t i s -
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fying: dom(R) » <Al, R"-fOj » B, B»<.<fl * A, l£*> <* <f—> 

--> Rw-foc3 * P(2oO. It is easy that Re^t and R i s a e -

string of Q. Moreover, R is a #-string in (L over B. We de

duce from the #-valuation lemma that there is a valuation 

H 6 M of (X(B,B) in <N,+,Id> {iO?,COJ) and x c Q ~ ( 3 n ) 

(H(x)£2n) holds. Consequently, H is a valuation of &(Q,B) 

in<N,+ ,Id> (FN,-tOj) and the part (1) of the theorem is pro

ved. The part (2) can be proved quite analogously as the part 

(1). 

4.0.2. Remark. Let Ct(Q,B) be a triad and suppose that 

&> €. Sdy, BeSdy. Assume that Q is a 6*-class which is not a 

tf0-class. Then there exists a valuation H of #.(Q,B) in 

<N,+,Id> CFN,-tOi) and HsSo*. But no valuation of &(Q,B) in 

<N,+,Id> (FN,-tOl) is an element of Sdy. 

Proof. The existence of a valuation, which is a Sdy-

class, follows from the previous theorem (because &(Q,B) is 
wSdt 

a tf -triad). 

Suppose that there is a valuation of CL(Q,B) in 

< N,+,Id> (FN,-tO}) and let HcSdy. Let £e N-PN. Then R * 

» i<x,od>; H(x)< ao AoCef J is a 6"-string of Q and Re Sdy. 

Thus Q is a #°-class, which is a contradiction. 

4.1.0. Let Q be an equivalence on a class A. The map

ping H:A*—> RN(^* 0) is called metric of Q on A iff the fol

lowing holds for each x,y,z€A: 

H(x,*)^H(x,y) + H{y,z), H(x,y) » H(y,x), H(x,y)& 0^<x,y>eQ, 

H(x,y) * 0 = x » y. 

Metrization theorem. Let Q be an equivalence on A, 

A € Ml , and let Q be a tr33^-class. Then there exists a met

ric H of Q on A, H e tfl. 
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Proof. Let X°:iru-£ Oi —* V^u -Co3 be the mapping d e f i 

ned as follows: E°«x,y>) =<y,x>, B°(0) - 0. Then &« 

* <A u-tol, P°, E°> i s a contravariant e-structure and (F -

= Ci(QU'iOl9l<xtx>ix€AlulO}) i s a . r^- tr iad . Let G e ®l 

be a va lua t ion of 2* i n <RN(2 0 ) , + , I d > (C£01,"t0.r). A met-
2 

ric in question is the mapping G/*A . 

Corollary. (1) There exists a metric H of-= on Vso 

that H ft Sd|. 

(2) There is no metric of » on V which is an element 

of Sdv. 

Proof. (1) follows from the metrization theorem. (2) 

follows from tMll, 1.0.7 and from 4.0.2. (For the equiva

lence = see also § 0.) 
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