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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21. 1 (1980) 

CONGRUENCES GENERATED BY FILTERS 
Jaromir DUDA 

Abstract: The main purpose of this paper is to char-
racterize the nodal filters in lattices (in up-directed 
mee^-semilattices) in terms of congruences. Thus J.C» Var-
let s result, stated for implicative semilattices, is gene
ralized for lattices and up-directed meet-semilattices. 
Further, we give the description of some well-known quoti
ent lattices and quotient semilattices in more precise form. 
Finally, we compare lattice congruences, semilattice con
gruences and equivalence relations generated by filters of 
a lattice. 

Key words: Congruence relation, distributive filter, 
lattice, meet-semilattice, nodal filter. 

Classification: 06B10, 06A12 

1. Introduction and preliminaries. In [5] J.C. Varlet 

has introduced the notion of nodal filter of a meet-semilat-

tice. A filter of a meet-semilattice S is said to be nodal 

if it is comparable with every filter of S ordered by inclu

sion. 

In E53 the nodal filters of an implicative semilattice 

are studied and an intereating characterization of nodal fil

ters in teraa of congruencea ia obtained (see Corollary 3 of 

thia paper). We ahow that J.C. Varlet'a characterization of 

nodal filters of an implicative aemilattice can be generali-
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zed to nodal filters of an arbitrary lattice asfl to nodal 

filters of an up-directed meet-semilattice. 

A filter F of a meet-semilattice < A, A > is a nonvoid 

subset of A such that xAyeF if and only if xeF and ye F. 

A filter of a lattice < A,A , v> is defined as a filter of 

the meet-semilattice <Af A > • 

The principal filter generated by an element a e A will 

be denoted by Ea), i.e. la) * ix€k\xZa\ . Further, we de

note by tf'(A) ( ̂ 0(A)) the set of all filters (principal fil

ters) of A. 

Let < Pf .£> be an arbitrary poset, and let 0^pQ£P. An 

element aeP is called a node of Q if a is comparable with 

every element of Q. 

A poset <Pf -i=> is said to be up-directed if every two-

element subset of P has at least one upper bound in P. The 

poset dual to <P, -O will be denoted by <Pf ~£>
d. <Pf £ >©1 

denotes the poset obtained by adding a new element 1 such that 

l>x for all xe P. 

We use a standard lattice theory terminology and refer 

the reader to L23 for definitions of some further notions 

which we will use here without defining thela. 

I wish to thank J, Dalik for his comments on the preli

minary version. 

2. Preliminary lemmas 

Lemma 1. Let a be an element of a poset <Pf £.> and let 

M be a nonvoid subset of P such that every element of P can 

be expressed as a join of some elements of M. Then a is a no-
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de of P if and only if a is a node of M. 

Proof. The "only if" part being trivial, assume now 

that x is an arbitrary element of P. Then we have x -s.Vlnb 
•V6.1 * 

for some elements rn^e Mf iel. 

If a^rn^ holds for some iel, then we obtain a£x imme

diately. In case af-n-4 for every i e I we get a>m. for eve

ry ie I since a ia a node of M. This implies a -£.V, m^ - x, 

which completes the proof. 

Corollary 1. Let F be an arbitrary filter of a meet-

semilattice S. She F is a nodal filter of S if and only if 

F is a node of £* (S). 

Proof. It is well-known that every filter F of a meei-

semilattice S is the join of all principal filters £f), feF. 

Now the corollary follows directly from Lemma 1. 

Let us recall that an element a of a lattice L is cal

led distributive if and only if a V ( X A y) = (av x) A (avy) for 

all xfy e L. 

Lemma 2. Bvery node of a lattice is distributive. 

Proof. Let acL be a node of a lattice L, and let xf y 

be arbitrary elements of L. 

Case 1. a>x, a>y. This implies a>xAy and thus 

ay(xAy)sa. On the other hand, we have (avx)A(avy) * 

-aAa « a. 

Case 2. a^-x, a^y. Then we get a^xAy and thus 

a v (xAy)sXAy. Further, we have (avx)A(avy) * xAy. 

Case 3* x£a£y. Then av (xAy) « a v i s i and 

(aVx)A(avy) * aAy - a. 

Case 4. x>a>y. See Case 3. 
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A f i l t e r F of a l a t t i c e L i s sa id to be d i s t r i b u t i v e 

i f F i s d i s t r i b u t i v e , as an element of ^ ( L ) . 

Corollary 2 . Every nodal f i l t e r of a l a t t i c e i s d i s 

t r i b u t i v e . 

3 . Congruences generated by f i l t e r a . We denote by 

9flt^F^ ^ e congruence r e l a t i o n of an algebra (It generated 

by a subset F of C/L , i . e . S^tF^-fUG €. £ (C£);Fx F £ 9 } . 

Further, we wri te 9 »tF] instead of 0 < A gjstF], the equiva

lence r e l a t i o n of A generated by F. 

The fo l lowing theorem g ives a character izat ion of 

®<S A > ' F ^ whenever F i s a f i l t e r of an up -d i rec ted meet-

s e m i l a t t i c e < S , A > . 

Theorem 1. Let F be an arbitrary f i l t e r of an up-d i r ec 

ted meet -semi lat t ice < S , A > • Then 

S / 0 / S A\LF1 » < { F v E s ) ; s € . S % , £.> ; th i s isomorphism i s 

given by t s 3 0 < s A \ t F 3 \—> F v t s ) for 8 6.S. 

Proof. F i r s t , the mapping h:a i — ^ F v t s ) , s 6 S i s a 

meet-homomorphism of S onto ^ i F v t s ) ;s e S\f s > s ince 

h ( a A b ) = F v C a A b ) = F v ( t a ) v t b ) ) = ( F v t a ) ) v ( F v t b ) ) = 

= h ( a ) v h ( b ) for every a , b e S . 

Further, by the Homomorphism Theorem (see t 3 ; p . 573) , 

i t holds S/Ker h ^< { Fv [ s ) ; s 6 S } , c > and thi3 isomorphism 

i s given by Cs3Ker hi—> F v t s ) for s £ S . 

F ina l l y , we claim that Ker h = 8 < s N s fF l . Clearly 

®<S > ^ F ^ - K e r n s ince F><F£Ker h. Conversely, l e t a, b 

be such elements of S that ( a , b ) c K e r h, i . e . F v l a ) = F y t b ) . 

This imp l ies that f A a = f A b for some element f e F. Denote 
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by u an upper bound of O m e n t a a, b f f; obviously u e F . 

Then we get (f , u ) e * * * S 8 < g xCF3 and thus a-uA a s f A a* 

s f A b s u A b = b (#<S f A>* F 3) - Hence we have a l s o 8 < g A>£F]2 

o Ker h . Summary, @<s A ) CF3* Ker h holds and the proof 

i s complete. 

The fo l lowing theorem i s a s l i g h t modif icat ion of the 

well-known r e s u l t concerning d i s t r i b u t i v e i d e a l s of a l a t 

t i c e (see [ 1 ; Lemma 2 .53 and £2 f Ch. I l l , § 3 , Theorem 4 3 ) . 

Theorem 2 . Let F be a f i l t e r of a l a t t i c e <L f A , V > . 

Then the fo l lowing three condit ions are equiva lent : 

(1) F i s a d i s t r i b u t i v e f i l t e r ; 

(2) L / e < L A v > t F 3 ^ < { F v C a ) j a e L } f c > d , t h i s isomorphism 

i s e f fec ted by 

[ a ] 0 < L A V)CF3 \—>FvCa) for a d L ; 

<3> 0 < L , A , v > r F 3 = 9 < L , A > C M -

Proof (1) implies (2): The proof of this part goes along 

the same line as the proof of Theorem 1 and is therefore om

itted. 

(2) implies (3): Combining (2) and Theorem lf we obtain 

(3). 

(3) implies (1): By Theorem 1 and hypothesis, we get 

e<L,A,v>tF3 S *(a>b>eLxL;Fv£a)--Fvtb)S * 

= -((afb) e Lx.L;f Aa*f A b for some element f e F}. 

By the dual of [2; Ch. IIIf § 3, Theorem 43 , F is a distri

butive filter of the lattice L. The proof of Theorem 2 is 

completed. 

Now we are going to give the above-mentioned characte

rization of nodal filters in terms of congruences. First, 
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we present a result characterising the nodal f i l t e r s of up-

directed meet-semilattices. 

Theorem 3. Let F be an arbitrary f i l t e r of an up-di

rected meet-semilattice <Sf A > . Then the following three 

conditions are equivalent: 

(1) F i s a nodal f i l t e r ; 

(2) S / 9 < s A >CF3«<i3\F f ^ > e 1, this isomorphism i s ef

fected by 

Cs3 6 < g A>CFJ V~* s i f fl€S\F, and 

Csl 0 / S A \ [ F J .-—^ 1 otherwise; 

(3> e < S , A > l F 3 » 0 S [ ' J -

Proof. (1) implies (2): By Theorem l f we have 

S / # < s vCF3 £ <-iFvCs) f-seS* f £ > d . Further, <-iFvfs)f- ae 

€S]f £> d * < { F J U { C s ) f - s € S \ F ? f £ > d = < S \ F f . 4 > e i since 

F is comparable with erery filter ta)faeS. .Analogously, by 

hypothesis ana Theorem 1, we obtain the explicit description 

o t e<S..>tF:l-

(2) implies (3): Immediate. 

(3) implies (1): Assume that 8<g XCF3- 0gCF3 and choo

se a e F , x e S \ F . Clearly, CaAx3 9 < s ^ 3 « £a3 ® < s t A > ^ A 

A Cx3 ®<S^A>^^ holds (in the quotient semilattice 
S / Q < S , A > t » > -

Further, denote by u an upper bound of elements a, x. 

Then x £ u implies the inequality Cxi 9 < s ^CF3^Cu3 Q<S A \£-?3 

(in the quotient semilattice S/ Q / s v£F3) and a 4 u implies 

u e F -= t a i e SCF3 * Ca3 9<s f A> m > iwe* L a 3 e < s A> [ F J = 

3 t t t ^ < S f A > m -

Summary, we get t x 3 8 < s A>£F3££a3 Q< g A>£*3 and thus 
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[x] Q ^ s A\CF] » {xj since xeS\F. This means that S A X - I 

which is equivalent to a> x for every acF. Hence we have 

FgHx) for all X G S \ F . 

By Corollary lf we conclude that F is a nodal filter of 

S. 

An immediate consequence of Theorem 3 is 

Corollary 3 (J.C. Varlet C51). Let F be an arbitrary 

filter of an implicative semilattice <S fA f=-=>fl> . 1:hen the 

following two conditions are equivalent: 

(1) F is a nodal filter; 

Proof. It is well-known that ®<g A -x iy IpJ s 

* 0,s v£F] for every filter F of an implicative semilattice 

<S fA f-= .>,l> (see, e.g., [4]). Applying Theorem 3f we obtain 

that (1) is equivalent to (2). 

Now we direct our attention to the nodal filters of lat

tices. 

Theorem 4> Let F be an arbitrary filter of a lattice 

<LfAf v>« Then the following four conditions are equivalent: 

(1) F is a nodal filter; 

(2) 1/ 8^L A v>
t P j ~ ^ L x p» ^ > © If t h i s isomorphism is ef

fected by 

La:i 9<LfAfv>
[P3 H-» a if aeL\F, and 

La J Q < L A v>tF] r-~> 1 otherwise; 

(3) e < L , A , v > t P 3 s 0 < L , . > - « • QL™i 
(4) G<L,.)« - 8LtF]. 

- 7 -



Proof. (1) implies (2): Let F be a nodal filter. B&r 

Corollary 2f F is distributive and thus --/£•-. vtyJ ^ 
S iJ f/S f V / 

--=. < - { F v t a ) ; a e L 3 f c> d h o l d s . The r e s t of the proof i s we-

ry s imi lar to the proof of .Theorem 3 f so i t can be omitted. 

(2) impl ies ( 3 ) : Clearly, 0 < L A V>-"*J ^ 6 < L A / * " * 2 

2 ©LLFJ ho lds . Applying hypothes i s , we find that 
Q < L f A f v > ^ - Q < L , A > ^ - » L ™ -

(3 ) impl ies ( 4 ) : Obvious. 

(4) impl ies ( 1 ) : Applying Theorem 3 to the up-directed 

meet - semi la t t i ce < L, A > f we get that F i s a nodal f i l t e r 

and the proof of Theorem 4 i s complete. 

The fo l lowing simple example shows that for an a r b i t r a 

ry meet - semi la t t i ce Theorem 1 and Theorem 3 are f a l s e . 

Kxample. The diagram of the meet -semi lat t ice < S , A > 

i s shown in F ig . 1. Let us consider that F * 4 a 3 . Clear ly , 

we have Q < s A > ^ * ® S ^ ~ ^ S * H o w e v e r » 

( i ) S / 6 < s A > [ F 3 ^ < C F v t s ) ; s e S ? f c > d does not hold; 

( i i ) F =- -Câ  i s not a nodal f i l t e r . 

b 

Fig . 1 . 
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