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CONGRUENCES GENERATED BY FILTERS
Jaromir DUDA

Abstract: The main purpose of this paper is to che-
racterize the nodal filters in lattices (in up-directed
meet-semilattices) in terms of congruences. Thus J.C, Var-
let s result, stated for implicative semilattices, is gene-
ralized for lattices and up-directed meet-semilattices.
Further, we give the desacription of some well-known quoti-
ent lattices and quotient semilattices in more precise form.
Finally, we compare lattice congruences, semilattice con-
gr;enc;a and equivalence relations generated by filters of
& lattice.
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1. Introduction and preliminaries. In [5] J.C. Varlet

has introduced the notion of-nodal filter of a meet-semilat-
tice. A filter of a meet-semilattice S is said to be nodal
if it is comparable with every filter of S ordered by inclu-
sion.

In [5] the nodal filters of an implicative semilattice
are studied and an interesting characterization of nodal fil-
ters in terms of congruences is obtained (see Corollary 3 of
this paper). We show that J.C. Varlet’s characterization of

nodal filt ers of an implicative semilattice can be generali-
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zed to nodal filters of an arbitrary lattice amd to nodal
filters of an up-directed meet-semilattice.

A filter F of a meet-semilattice (A, A) is a nonvoid
subset of A such that xAyeF if and only if xe F and ye F.

A filter of a lattice {(A,A,\v)> is defined as a filter of
the meet-semilattice (A, AD.

The principal filter generated by an element ae A will
be denoted by [a), i.e. [ma) = {xeA;x2a} . Further, we de-
note by 3 (A) ( F,(A)) the set of all filters (principal fil-
ters) of A,

Let (P, &) be an arbitrary poset, and let §*QCSP. An
element ac P is called a node of Q if a is comparable with
every element of Q.

A poset (P, £) is said to be up-directed if every two-
element subset of P has at least one upper bound in P. The
poset dual to (P, <> will be denoted by (P, <>9. (P, 4 Y®1
denotes the poset obtained by adding a new element 1 such that
1>x for all x€P.

We use a standard lattice theory terminology and refer
the reader to [ 2] for definitions of some further notions
which we will use here without defining them.

I wish to thank J, Dalik for his "‘connents on the preli-

minary version.

2, Preliminary lemmas
lemma 1. Let a be an element of a poset (P, £)> and let
M be a nonvoid subset of P such that every element of P can

be expressed as a join of some elements of M. Then a is a no-
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de of P if and only if a is a node of M.

Proof. The "only if" part being trivial, assume now
that x is an arbitrary element of P. Then we have x =£\e/lmi
for some elements mye M, i€ 1.

Ir aémi holds for some i €¢I, then we obtain & <x imme-
diately. In case a*:mi for every ie I we get a>m; for eve-
ry i€1I since a is a node of M. This implies a zi\e/l n =X,
which completes the proof.

Corollary 1. Let F be an arbitrary filter of a meet-
semilattice S, The F is a nodal filter of S if and only if
F is a node of F (S).

Proof, It is well-known that every filter F of a meei-
semilattice S is the join of all principal filters [f), feF,

Now the corollary follows directly from Lemma 1.

Let us recall that an element a of a lattice L is cal-
led distributive if and only if avixay)=(avx)A(avy) for

all x,ye L.

Iemma 2, ZEvery node of a lattice is distributive.

Proof. Let acL be a node of a lattice L, and let x, y
be arbitrary elements of L.

Case 1. azx, aZy. This implies aZ xA y and thus
av(xAy)=a. On the other hand, we have (avx)A(avy) =
=aAa = a.

Case 2, a&x, a<y. Then we get a<xAy and thus
av (xAy)=xAy. Further, we have (avx)A(avy) = xAY.

Case 3. x£a<y. Then av (xAy) = avx = a and
(avyx)A(avy) = any = a.

Case 4. x>a>y. See Case 3.
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A filter F of a lattice L is said to be distributive

if F is distributive, as an element of F(L).

Corollary 2. Every nodal filter of a lattice is dis-

tributive.

3. Congruences generated by filters. We denote by

0y [F) the congruence relation of an algebra Ul generated

by a subset F of (L , i.e. By[Fl=M{B e € (U);FxFcB}.

Further, we write O ,[{F] instead of [F1, the equiva-
A <A,8

lence relation of A generated by F.

The following theorem gives a characterization of
9<S A)[Fl whenever F is a filter of an up-directed meet-
9

semilattice (S,A} .

Theorem 1. Let F be an arbitrary filter of an up-direc-

ted meet-semilattice {S, A? . Then
s/ 943’,\)[?] Z{{Fvls);sesy, Q?d; this isomorphism is
given by [a]@<s’l\)LFJ +—> Fvls) for scs.

Proof, First, the mapping his —> Fy[s),8€S is a
meet-homomorphism of S onto {{Fvl(s);ses}, g)d since
h(aAb) = Fvlaab) = Fv(la)vib)) = (Fvia))v (Fvib)) =
= h(a)v h(v) for every a,beS.

Further, by the Homomorphism Theorem (see [3; p. 571),
it holds S/Ker h 2{{ Fvls);se S}, Y9 and this isomorphism
is given by {slKer h+—> Fvls) for ses.

Finally, we claim that Ker h = 8 S,/\')[F]‘ Clearly
G(S’A)[F]QKer h since FxFc Ker h, Conversely, let a, b
be such elements of S that (a,b)¢Ker h, i.e. FvIa)=FyLb).
This implies that £fAa = fA b for some element f€ F. Denote
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by u an upper bound °f ©lements a, b, £; obviously usF.
Then we get (f,u)e FxFg 9<S'A)[r3 and thus a=uA a=fA a=
=fAb=uA b=b (G(S,A)IF]). Hence we have also 9<S'A)[1']2
2 Ker h. Summary, 9(3’,\> [Fl= Ker h holds and the proof

is complete.

The following theorem is a slight modification of the
well-known result concerning distributive ideals of a lat-

tice (see [1; Lemma 2.5) and [2; Ch. III, § 3, Theorem 4]).

Theorem 2. Let F be a filter of a lattice {L,A,v).
Then the following three conditions are equivalent:
(1) F is a distributive filter;
(2) we [F12{{Fv[a);acL}, ;)d, this isomorphisa

{L,A,W)

is effected by

[al @<L,A,V)EFJ +—>Fvla) for aclL;
(3) e(L,A,V>[FJ= 9<L,A)[P].

Proof (1) implies (2): The proof of this part goes along
the same line as the proof of Theorem 1 and is therefore om-

itted.

(2) implies (3): Combining (2) and Theorem 1, we obtain
(3).

(3) implies (1): By Theorem 1 and hypothesis, we get
e(L,/\,v)[m = {(a,b)e LxL;Fyvla)=FvIb)} =

= {(a,b) e Lx L;fA a=fA b for some element fe F}.

By the dual of [2; Ch. III, § 3, Theorem 4] , F is a distri-
butive filter of the lattice L. The proof of Theorem 2 is
completed.

Now we are going to give the above-mentioned characte-
rization of nodal filters in terms of congruences. First,
- 5 -



we present a result characterizing the nodal filters of up-

directed meet-semilattices.

Theorem 3. Let F be an arbitrary filter of an up-di-
rected meet-semilattice (S,A> . Then the following three
conditions are equivalent:

(1) F is a nodal filter;
(2) s/ 9<S'A)[FJ = (8\F,%£7@® 1, this isomorphism is ef-
fected by ’

[s] @<S’A)EIJ > 8 if s€S\F, and

{s] 6<S,A>[FJ +—> 1 otherwise;

(3) 9<S,A)[PJ = 93[!‘].

Proof. (1) implies (2): By Theorem 1, we have
S/ 8¢g AP E <{Fvla);ses}, ), Further, ({Fvis); sc
GS},;)d ={{FiU{[s);8e S\ FY, eydz ¢ S\F,4&>® 1 since
F is comparable with every filter [ 8),s€ S. Analogously, by
hypothesis aml Theorem 1, we obtain the explicit description
of 9(5"\){?]0

(2) implies (3): Immediate.

(3) implies (1): Assume that G<S'A)[FJ= es[m and choo-
se acF, xe S\F, Clearly, [anx] 6<S,A>EF] = [a) 6<S’I\>[F)A
Alx] G<S,A)[FJ holds (in the quotient semilattice
:74 6< S/Q[F]).

Further, denote by u an upper bound of elements a, x.
Then x4u implies the inequality [x2 6<S’A)[rjs [ul €, S,A)[FJ
(in the quotient semilattice S/ Q< S A)[!'J) and aZu implies

b
ueF = [al@ gIF] = [a) 6(5,/\)[?]’ i.e. [a] 6< S,A>[PJ =
=(u) G(S’A)[F].

Summary, we get [x] °<s,,\>”"“=[°3 Ch S’A)[r] and thus
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[a] 6<S’A>[PJ/\[x] 8¢ s‘/om = [x] 6<3'A>[F]. However,
[x] G< S,/\)[F] = {x} since xc S\ F. This means that aA x=x
which is equivalent to a2 x for every acF. Hence we have
Fc[x) for all xe S\ F.

By Corollary 1, we conclude that F is a nodal filter of
S.

An immediate consequence of Theorem 3 is

Corollary 3 (J.C. Varlet £51). Let F be an arbitrary

filter of an implicative semilattice (S,A ,=»,1)> . Then the
following two conditions are equivalent:
(1) F is a nodal filter;
(2) G< S,ny=>,1) [F]l= estr].

Proof. It is well-known that 9<S,A,=>,l) [F] =
= 9<S’A>[F] for every filter F of an implicative semilattice
{8,A, =>,1) (see, e.g., [4]). Applying Theorem 3, we obtain
that (1) is equivalent to (2).

Now we direct our attention to the nodal filters of lat-

tices.

Theorem 4. Let F be an arbitrary filter of a lattice
{LyA,Vv Y. Then the following four conditionms are equivalent:'
(1) F is a nodal filter;

(2) I/6<L’A’V)[1‘J-.'-‘-'.<L\ F; £>® 1, this isomorphism is ef-
fected by

[a] 6<L’A'v>[l'] —> & if ae¢ L\F, and

[a] Q(L,A,V>[F] —> 1 otherwige;

G) 8 A F1 =0y oy [F1= 8, (F];
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Proof. (1) implies (2): Let F be a nodal filter. By
Corollary 2, F is distributive and thus IJG(L,A,V)[IJ =
2 {{Pvia);acl}, c) 9 holds. The rest of the proof is we-
ry similar to the proof of Theorem 3, so it can be omitted.

(2) implies (3): Clearly, 9<L,/\,v)[r3 2 6<L‘A)[132
20 t[?] holds. Applying hypothesis, we find that

a(I.,/\,v)[’] = e(L,A)U‘:l = 6,[F).

(3) implies (4): Obvious.

(4) implies (1): Applying Theorem 3 to the up-directed
meet-semilattice (L, A) , we get that F is a nodal filter

and the proof of Theorem 4 is complete.

The following simple example shows that for an arbitra-
ry meet-semilattice Theorem 1 and Theorem 3 are false.

Example. The diagram of the meet-semilattice (S, A )
is shown in Fig. 1. Let us consider that F = {aj. Clearly,
we have @<S,/\>[FJ = 04[F] = wg. However,
(i) s/ 6( S,A>[?j§({tv[s);sesi, s)d does not hold;
(ii) P ={al} is not a nodal filter.
av b
c

Fig. 1.
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