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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21, 1 (1980) 

HOMEOMORPHISMS OF POWERS OF METRIC SPACES 
Vera TRNKOVA 

Abstract: We construct a connected metric space X ho-
meomorphic to X but not homeomorphic to X . We prove that 
there e x i s t s no countab le metric space homeomorphic to X* 

2 but not to X . 

Key words: Connected metric spaces, powers of metric 
spaces. 

Classification: Primary 54B10, 54G15 

Secondary 54D05, 54E35 

In 1973, a metric space X homeomorphic to Xr = XxXxX 

but not to X = XxX was constructed, see C3]« The construc

ted space X was a coproduct (= disjoint union as closed-and-

open subsets) of infinitely many metric continua, hence far 

from being either countable or connected. In the present pa

per, we construct a connected metric space X homeomorphic to 

X"* but not to JT and prove that there exists no countable 

metric space with this property (although there exists a 

countable strongly paracompact space X homeomorphic to XJ but 

not to X^, see C51). Some possible strengthenings and gene

ralizations are sketched in 15. at the end of the paper. 

1. Lemma. Let X , X, be non empty countable topologi-
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cal spaces* I«t XQ contain two disjoint closed-aad-open 

subsets homeomorphic to X, and X, contain two disjoint 

closed-and-open subsets homeomorphic to XQ. Then XQ is ho

meomorphic to X.̂ « 

Proof, a) Clearly, both XQ and X^ are infinite. Put 

1-Cf J} * iO,l^ . Let -»xk -pX-̂  2,xk ^,... } be a sequence of 

all elements of X^, xk n t x k m for n + »* One can find ea

sily disjoint closed-and-open subsets A^ -̂, B^ ^ of the 

space Xfc such that 

A ^ j is homeomorphic to X-̂  and xk 4̂* A^ .,, 

&%9\ is homeomorphic to X.. 

Since A^^ is homeomorphic to X-̂ , there exist disjoint clo

sed-and-open subsets A^ 2, B^ 2 of the space Â . ^ such that 

*lc,2 ifl homeomorphic to Xfc and x^ 2^"*k 2' 

3^2 ®̂ homeomorphic to X.. 

By induction, we construct disjoint closed-and-open subsets 

Aj.. n, Bjj.̂  of the space A-̂  nm^ and such that A^ .^X^, 

Bk,n* Xj *** ̂ ^ Consequently 
CÛ 

fv ^ -k,n " 0' 

b) Let h^ be a homeomorphism of A n onto B^ -

and g n a homeomorphism of A-, onto B #+2* Moreover, 

denote by hQ a homeomorphism of X onto B^ 1 and by gQ a 

homeomorphism of X-̂  onto BQ 2« We define 

vo • V Ao,l» 

*0 = %
N(A1,1U v v > . 

ana, by induction 
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Vn = *o,nN(Ao,n+lu W V l ^ 

*n = A l , n ^ l , n + l U V V > ' 

We define X :X0 —> X1 by 

%(x) a hn(x) for xeVn, 

Mx) = ̂ ( x) for xegn
1(Wn). 

Then X is a homeomorphism of XQ onto X, . 

2* Theorem. Let n be a natural number, n > 2 . Let X 

be a countable metric space homeomorphic to A - Xx . ..xX 

(n-times). Then X i3 homeomorphic to X . 

Proof. If X i9 finite, then nece33ari3y card Xe€0,l5, 

hence X-^-X^. Let ua 3uppo9e that X is infinite. If X contains 

no isolated point, then X is homeomorphic to the ordered spa-
2 

ce of all rational numbera, hence X ~ X again. If X contains 

iaolated point9, then either it containa preciaeUy one iso

lated point or it containa infinitely many iaolated points. 

In the former case, X ~ lxJ o R, where x ia the isolated 

point and R is homeomorphic with the apace of rational nua-
2 

bera. Then, c l e a r l y , X2--X again. F i n a l l y , l e t us suppose 

that X contains i n f i n i t e l y many i a o l a t e d p o i n t s . Then X con

ta ins two d i s j o i n t closed-and-open aubset3 homeomorphic to 

XxX, namely r T ^ X x X x ^ a - J x . . . x ^ a - ^ ) and h ' ^ X x X x ^ l x 

x . - . x - l a p l ) , where h i s a homeomorphism of X onto X11 and 

a-p a 2 are two d i s t i n c t i s o l a t e d po ints of X. C l ear ly , X̂  

contains two d i s j o i n t clo3ed-and-open sub se t s of X. Conse

quently , we can uae the lemma with XQ = X, X, s A . 

3 . The aim of the reat of the paper ia to predent a 

con3truction of a connected metric apace X homeomorphic to 
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X"* but not to XT. The construction is done in the category 

Wk of all metric spaces of the diameter -̂  1 and all their 

contractions, i.e. mappings f:(X,d)—>(X',d') such that 

d'(f(x),f(y))-£ d(x,y). Hence, let us present some important 

properties of the category (Vll , first. Isomorphisms of Ml 

are precisely isometric bisections. The category JMj has all 

products; the product of a collection i(X , d . ) j oc 6 k\ is the 

< 

space (X,d), X = TT X^ , d = sup d^ , with the usual projec

tions aroft:(Xfd)—^(X^d^). We denote it by TT (X^d^). 

The category IMl has also all coproducts; the coproduct of a 

collection ^(X^jd^) | oc & k\ is the space (X,d), X = U X^ x 

K-foo}, d((x,od),(y,oc)) = d^Xjy), d( (x,<*,), (y,o</)) = 1 for 

oo 4- OG' , with the coproduct injections t^ sCX^jd ) — > 

—-v(X,d) sending xeX to (x,oc>). We denote it by 

We also can make identifications of points in objects 

of IMi . If (X,d) is an object of IMl and RcXxX is given, 

then there exists a morphism q:(X,d)—• (X,d) such that q(x) = 

= q(y) whenever (x,y)e R and every morphism f of (X,d) in

to an arbitrary object with f(x) = f(y) for all (x,y)eR fac-

torizes uniquely through q. The space (X,3) is obtained as 

follows. First, denote by q0;X-~> /„ the factor-mapping, 

where E is the smallest equivalence containing R, and for 

x,y e /-g put dQ(x,y) = inf S,. ^^n'^n^ w n e r e t n e infimum 

is taken over all tupples a^jb^ja^jbp,...,a^,by such that 

q0(a1) = x, q0(bk) = y and q(bn) = q(an+1) for n=l,...,k-l. 
Y 

Then dQ is a pseudometric on /«; define a surjective map-
Y — 

ping p: /£ —*X by p(x) = p(y) iff dQ(x,y) = 0 and, for any 

x,j6X, put d(x,y) = d0(p"
1(x),p""1(y)). Then q = qQ-p:(X,d)-> 
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— > (X,d) has all the required properties. We say that (X,d) 

is obtained from (X,d) by the identifications of x with y 

for all (x,y)e R. 

4. Denote by JL the class of all isometric injections. 

A11 «i6 -chain is every presheaf in IMl over a well-ordered sche

me UCX^d^)!^ » if^ac ±(l ) sucn that every ft is in ^ # 

Every M,-chain has a colimit in IMl created as follows. De

note by (X^-Cf^J^ ) a colimit of the presheaf of the underly

ing sets and define a metric d on X such that for every x,y6 

e X find an 06 with x . y e ^ i X ^ ) and put d(x,y) = d^f^ (x), 

f (y)). Then, clearly, ({X9&)fif^l) is a colimit of the gi

ven J/L -chain. 

If there is no danger of confusion, a space (X,d) will be de

noted only by X. 

Lemma. In IMl , colimits of M-chains commute with fi

nite products. More precisely, if Jp^ = (iX^ J^ %ifr (CioC€n^ 

are M -chains over the same scheme, i=l,...,n, colim 3*> = 

then 

colim ^ = ( IT X,, -C T7T f. , t ). 

Proof is straightforward. 

5. We shall use the lemma in the following situation* 

We have a metric space Z and an isometric injection h:2 — > 

— > 7r = Z x Z ^ Z ( x denotes the product in IMl ). We defi

ne a presheaf JP over the set N of all non-negative integers 

as follows. 

XQ = Z, X^ = Z , Һ Q
 = h, 
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and, by induction 

Clearly, .we obtain an A -chain £P» (-IX^^in^^). Put 

(X^h^) s colin (P . Then, by the above lemma, 

X is isometric to X . 

Clearly, if Z is connected, then X is also connected. 

In what follows, we construct a connected space Z and 

am isometric injection h:Z—* 2r such that, for the colimit 

space Xf we shall be able to prove the non-homeomorphism of 

X to X2. 

Observation. If V is an open subset of Z such that 

h(V) * 7x7xT and for every xe 7 there exists d(x)> 0 such 

that dist (xfZ\7)>d(x) and d(x) * min(d(x1)9d(x2) fd(x3)) f 

where (x-^x^x^) » h(x), then hQ(V) is an open subset of X. 

6. fe recall that H denotes the set of all non-nega

tive integers. Denote by m the set of all mappings of N in

to itself and by 0 the constant zero. We consider the addi-

tiom on IT given by 

(f+g)(n) • f(n)+g(n)f 

where + on the right side is the usual addition of numbers. 

For PfOc r f we put 

p + a M f + g | f€ .p fg€G5. 

By 143, there exists a s e t T c - ^ K - C O ? sueh that 

T * T + T + T, Tn(T+T) s 0. 

Put S s i x H , Por every s * (f fn) put e* = f. Since T « T + 

+ T + T, one can find a bisection 

X : S - > S x S x S 

such that, for every s e S . 
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s = s-. + s2 + &*>t 

where (ST*82,83^ = ^^ s^ # 

For every fel^X-lC-H , put 

L(f) =4(n,j)|0<: j£f(n)?. 

Since f 4- <3> , the set L(f) is non empty. For every S€ S, de

fine a bisection 

^•.LCs^) U L(s2) Ji L(s3)—>L(s), 

(where ^si»s2>8i^ = ^(8)) such that 

J>s(n,j) = (n,j) for (n,j)eL(s1), 

f)s(n,j) = (n,s1(n) + j) for (n,j)6L(s"2)f 

f»8(n,j) = (n,s1(n) + s2(n) + j) for (n, j) 6. L(s-j). 

7. Let «€ be a Cook continuum, i.e. a connected com

pact metric space such that for every subcontinuum V a <€ and 

every continuous mapping f:D —> *t either f is constant or 

f(x) = x for all x e D. (A continuum with this property was 

constructed by H. Cook in C13.) Let ik^netil viB*[keWl be 

a pairwise disjoint collection of its non-degenerate subcon-

tinua. We may suppose diam A^ = ̂  for all neN, diam B^ = 

= 2""̂  + . Choose a^e A^ and b^ ̂ , b^ 2 in Bĵ  in the distan

ce 2""̂  • Denote by Vn the space which we obtain from the 

coproduct An u.li B^ by the identification of the image of 

the coproduct injection of a^ with that of b ^ anl the ima

ge of bfc 2 with that of b,+1 .,. To simplify the notation, we 

will suppose Anc Vn, I^c Vn and ^ = b 0 > 1, X>^2 = \ + 1 ^ for 

all k,neN. Hence diam Vn ^ 1, so Vn is in IMl . Denote by V* 

the completion of Vn. Clearly, it is obtained by the adding 
CO 

of a single point to AJ0 Bi_c Vn, denote it by cr* . 
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8. For every f € N^x-ICH ana every I * (n,j)c L(f) 

put I » n. Given f e N N\ 4(3} , we investigate the product 

tin Ml r) ̂ T Jm^J » which is only another description of the 

S p a c e JjN(Vn)f<n)» ,nore citable for the manipulation with 

coordinates. Denote by V(f) its subspace consisting of all 

those points x such that 

(06) only finitely many coordinates of x are outside 

(ft ) the others form a finite subset of .^.J®!-:* 

Moreover, denote by xr(t) the point with all coordinates e-

qual to <f . Put V* (f) » V(f) u id(t)\ (considered as a sub-

space of TT/ Vj ). 

Observation. The space V* (f) is connected. 

9. Let S,A, j>fl be as in 6. For every scS, with A(s) = 

s ^fli>a2>s3)» d e f i n e 

f8:V*(8)->vV*(I1)><y*(fl2)xV* (i3) 

such that y(<r(a)) = ( o'ts^), <y(s2), <r (s*3)) ani, if x€V(i), 

Ya(x) a (xlfx2,x3) with ^(3-^) s # (£)*x) f o r a 1 1 i=1t2»3| 
> s 

Zt L(s.j) (where srTg denotes the y£-th projection). 

Observation. Y 8 is an isometric injection which maps 

V(s) onto V(S 1 )xV(s 2 ) .K V(s3). 

10. Put V » JigVd) (i.e. the underlying set of V is 

/>y$(V(s)x4:s'?)). For (x,s)eVput <tf(xfB) = ((x^s-^, 

(x2,s2),(x3,s3)), where (s-pS^s-j) = Jl(s), (xlfx2,x3) = 

-* Y a(x). Then f is an isometric bijection of V onto V**. 

Proposition. V is not homeomorphic to \H. 
2 

Proof. One can verify easily that V is isometric to 
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11 V ( f )x{n*. Since Tn(T + T) « J0 and every V(f) i s 
U T + T 
/rtfc N 

connected, it is sufficient to prove the following assertion. 

If V(f) is homeomorphic to V(g), then f =- g. 

This follows from the fact that, for every telr \±0} and 

every n£N, the value f(n) is equal to logtc^l), where ca 

is the cardinality of a maximal system 36 of homeomorphisms 

of Aw into V(f) with the following properties. 

(i) If h e 9€- , yehlij.), then, for any m#n, any sub-

continuum D of Vm such that a ^ D and any continuous mapping 

g:D—* V(f) such that ye g(l», g is constant; 

(ii) if h,h'e W, , then hCa^) =- h ' ^ ) . 

For, by the properties of the Cook continuum <£ , h © «ir~ is 

either constant or .-€ s n and h o ^ is the inclusion A^—•> 

— > V . If X * m + n, then the value of h * JT* is equal to 

a^, by (i). If Z - n and h o #£ is constant, then the value 

of h o ^ is equal to a^ by (ii) and the maximality of 36 • 

Hence, the homeomorphisms from #6 are in one-to-one corres

pondence with non-empty subsets of the set «tl,... ,f tn)}. 

11. Denote by 0 the set of all non-zero integers. Let 

us suppose that -tC^jke^J is a system of non-degenerate aub-

continua of the Cook continuum <t such that the system 

U J n e N j u C B ^ k e N j u i C - ^ l k e 0} is pairwise disjoint. We 

may suppose diam Ck = 2~
( l k* + 1 ). Choose ck lf ck 2 in C^ in 

the distance 2~ ( l k l + 1 ). Denote by C the space which we obtain 

from .-L-.Y C
K
 by the identification of (the image of the co-

product injection of) c , 2 with c, .^ and c-̂  2 with c,^ ^ 

for all k c 3\{-l^# Clearly, diam C - 1 (a simple counting 

of the diameter of C is the reason why zero is omitted in 0 , 
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i.e. we glue C , immediately with CL). To simplify the no

tation, we suppose again that C-^cC for all k and c_-, 2 -
= cl 1» ck 2 = ck+l 1* Cenote ty C* a completion of C. It 

is obtained by the adding of two points to C, let us denote 

them by c+ and c_ (where c+ is the limit of the sequence 

ic-y, ^} with k —> + oo and c_ with k —» - oo ). Denote by W 

the aubspace of the space C ° consisting of all points x 

such that the set of all coordinates of x form a finite sub-

set of C; denote by cr + (or cf_) the point of (C*) with 

all coordinates equal to c+ (or c_, respectively). Put W* = 

- W u -Cô , -/_?• Then W* is connected. Now, let 

&: AT a tf„ix #„ >#„ 
0 o o o 

be a bisection. We define an isometric injection 

YW:W*-—*- W*xW*xW* 
by T w

 ( a+) = ( °+» °+» °+)> VW(<*J = (C-> cr-> vJ and> 

for xeW, Y*w(x) = (xlfx2,x^), where ^ n(
xi) = ^<s(n)^ 

for i=l,2,3, n e -HQ. Clearly, y ^ maps W onto WxWxW. 

12. Denote by Z the space which J 

we obtain from V u JLL W* , where & e s s 

W* » W* for all s 6 S, by the 

identifications 

(<ria)fa) with (C+,s) for all seS, 

(tf.-s) with (o^,s') for all s,s'eS. 

We may suppose Vc Z, ̂ U $ (W*x ial) c Z and (CY(S),S) = (a+)s), 

((y_,s) = (cr„,s'). Denote the last point by IX • 

Now, we define an isometric injection h of Z into Z . 

We PUt - 50 -



h(x) = y(x) for xeV, 

h(w,s) = ((w1,s1),(w2,s2),(w3,s3) for w e W * , where 

^sl»s2»s3^ = ^^3^9 ^wi>w2»w3^ ~ f|(w)) 

(particularly, h(H) « ( H, -0., II)). One can verify that V 

is an open subset of Z-

13. We have constructed a connected space Z and an 

isometric injection h:Z—.-> Z . From these data, we construct 

an JL -chain 3D as in 5. Denote (Xjih^) = colim 3* . Then, 

by 5., X is isometric to X^ and h (V) is an open subspace 

of X. 

Proposition. The set hQ(V) is precisely the set of all 

xeX which fulfil the following property (p). 

(p) There exists a neighbourhood (7 of x such that, 

for every subcontinuum D of any continuum of the system 

-vCjIk e 3? and every continuous mapping g:D —> Of , g is 

constant. 

Proof. If xehQ(V), it is sufficient to put ff = hQ(V). 

Let us suppose that x£X\h (V). Find the smallest n such 
-1 ln 

that x€.hn(Xn) and put y = h n (x). Then yeX n = Z
J . Denote 

ln n 
by ( y u - " > y n) its coordinates in Z

J . Since y4h Q(V), at 

least one of the coordinates is not in V, say y-,. Then eve

ry neighbourhood of y in X contains a set ^lix ^yg^* ••• 

...x-ly n*i, where It is a neighbourhood of y-, in Z. Since 

y-. is in Z\V, every its neighbourhood contains a homeomor-

phic image of some non-degenerate subcontinuum of some C, . 

14. Proposition. X is not homeomorphic to XT• 
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Proof. The set of all xeX which fulfil (p) is homeo-

morphic to V. The set of all x e r which fulfil (p) is ho-

meomorphic to VxV. But V is not homeomorphic to IT, by 10. 

15. Concluding remarks. One can see that we have con

structed a connected metric space X isometric to XJ but not 

2 

homeomorphic to X . By a minor modification of the construc

tion, one can obtain, for every natural number n£3 f a con

nected metric space X isometric to X11 but not homeomorphic 

to X% k=2,...,n-l. Moreover, any metric space of the diame

ter 4s. 1 can be embedded by an isometric injection eato a 

cloaied subspace of X with this property. To obtain this, it 

is sufficient to embed it in a connected metric space Y of 

the diameter £ 1, to choose yeT and to replace the space C 

in the above construction by the space CxX aid the points 

c+t c. by the points (c+,y), (c_,y). 

16. Open problems. Let us denote, for shortness, by T 

the class of all topological spaces X homeomorphic to Xr but 

not to XT* By the presented construction, T contains a con

nected metrizable space. On the other hand, answers to the 

following questions are still unknown (though, by £ 2 ^ there 

exist two non-homeomorphic metric continua with homeomorphic 

squares)• 

a) Does T contain a compact Hausdorff (or even metriz

able) connected space ? (It contains a compact metrizable 

space, by L61.) 

b) Does T contain at least a separable connected met

rizable space ? 
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