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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21. 1 (1980) 

ATTRACTORS AND A FIXED POINT THEOREM IN LOCALLY CONVEX 
SPACE 

HWEI-MEI KO\ KOK-KEONG TAN2 

Abstract: Let X be a Hausdorff locally convex space 
and 0 be a non-empty complete convex subset of X, and l e t 
f:G—-»Gbe continuous. We prove that i f ( i ) { f :n=-l f2 f . . .] 
i s equicontinuous and ( i i ) there exists lf£G which i s an at
tract or for compact sets under f, then f has a fixed point. 

Key words and phrases: Locally convex space, equi-con-
tinuous" attractor ror compact sets under f, fixed point, 
compact open topology. 

Classification: Primary 47H10 
Secondary 54H25 

!• Introduction. Let X be a topological spate and f: 

:X —r>X be a map. A subset If of X is said to be an attrac

tor for compact sets under f [8J if (i) If is non-empty com

pact and f-invariant and (ii) for any compact subset C of 

X and any open neighbourhood U of M, there exists an inte

ger N such that f^OrS U for all n^N. In H8J a conjecture 

suggested by F.E. Browder was stated as follows: 
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Conjecture 1. Let G be a closed convex subset of a 

Banach space X and f :G—> G be continuous. Assume that the

re exists a set MEG which is an attractor for compact sets 

under f. TJien f has a fixed point (?).. 

An affirmative answer to Conjecture 1 will give a ge

neralization of the Schauder's fixed point theorem. 

In C2] a partial solution to the above conjecture was 

obtained as follows: 

Theorem (L. Janos and J.L. Solomon): Let G be a clo

sed convex subset of a Banach space X and f :G—-* G be conti

nuous. Assume that (i) there exist9 a 3ub3et M£G which is 

an attractor for compact sets under f and (ii) the family 

i-^a-O. *s ^"i001-*""11101*8* 'Then f has a fixed point. 

In this paper we generalise the above theorem to local

ity convex spaces and thus partially generalize the celebra

ted Schauder-^chonoff fixed point theorem. Finally some re

marks concerning attractors are also discudsed. 

2. Wallace's Theorem and its application. Let X be a 

Hausdorff topological semigroup. S is said to act on X if 

there is a continuous map # :SxX —>X such that 

tf(slf jr(82>x))
s tfU-^Sg-x) for any s-^SgCS and xeX. If 

seS, we denote by Fn(s) the closure of the set •ia
in:m>n3. 

Let P(s)=- r-^s) and K(s) -fKr^s) :n >1K The following 

theorem can be found in C9]: 

Theorem (Wallace): Suppose S acts on X. Let s e S be 

such that F(s) is compact and let AS X be nonempty compact 

such that sA2 A. Then for each s-̂  e r(s), s-jA-sA and s-̂  acts 
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as a homomorphism on A. In particular, the unit of K(s) 

acts as the identity map on A. 

Note that if P(s) is compact, then K(s) is a compact 

topological group (see C73). 

Lemma 1. Let X be a compact Hausdorff space and f :X 

-—> X be continuoua. If A = fLf^X), then f(A) » A. 

Proof: That f(A)£A is clear. To prove that Acf(A), 

let x e A. Then there are x^e X such that x = fn(xn) for all 

n=l,2,... . Since X is compact, the sequence (f "" (-0)ns-i 
n^-1 

haa a convergent aubnet, say t (x^ ) —> x . As f is con-

n < * noc 
tinuous, we have f (Xĵ  )—>f(xQ). But f (^ ) = x for all 

cC oC 

oO , it follows that f (xQ) = x. If xQ were not in A, then 

there exist disjoint open sets U and V such that * 0eU and 

A£V, since X is regular. As 4f^(X)}^ - is a decreasing se-

quence of nonempty compact sets such that f\r CX) = AcV 
(TV-'S 

there ex i s t3 a p o s i t i v e integer N such that f ^ X J S V far a l l 

n> N. Since ( n , ) ^ i s a subnet of (n) , , for t h i s p a r t i c u 

lar N, there e x i s t s o&n such that oc £ c6«=^ n . - 1 > N. But 
w O CC 

n - 1 
then 06 2: oCQ=$> f (X)£V, so that the point xQ , being 

n - 1 
the l i m i t point of t f * (X^ )) , belongs to V. This cont -

cC 

radicts the aesumption that x e U and Ur> V * $ • Hence x e A, 

and x = f(xQ)ef(A). Therefore A£f(A). 

Let X be compact Hausdorff and S * C(X,X) be the fami

ly of all continuous maps on X into itself equipped with 

compact open topology. For f,geS, define f- g =- fog, the 

composition of g followed by f; then S is a Hausdorff topo

logical semigroup. Define 3r:SxX—> X by JT (f ,x) =- f (x), 

for all feS and xeX. Then or is (jointly) continuous (see - 73 -



£31) , and thua S acta on X. I f f e S i 3 such that -If'Sn--

1 , 2 , . . . \ ia equicontinuoua (there i s one and only one com

pat ible uniform atructure on X, s e e L33), then, by Aecol i 

Theorem (aee 113a), T (f) ia compact. Let A « f).f^(X). Then, 

by Lemma 1, f(A) = A. Hence, by Wallace*a Theorem, the u n i t , 

aay r , of K(f) acta as an i d e n t i t y map on A. We claim that 

r maps X onto A and i n f a c t , each g e K ( f ) maps X onto A. 

Indeed, l e t g e K ( f ) and x Q e X, we ahal l ahow that g(xQ)e A. 

Suppose g ( x Q ) ^ A , then there are d i a j o i n t open s e t s U and V 

8uch that g ( x 0 ) e © and ASV. Since (^W)^! i s a d e c r e a s -

ing aequence of compact aete auch that ^ Q , | f n ( X ) c V , there 

ia a p o s i t i v e integer N euch that j ^ W s v for a l l n̂ > N. 

Now g belong8 to the cloeure of Fn - i f 1 : ! ? ! ! ! for a l l n « 

1 , 2 , . . . , then for any neighbourhood W of g, WnF 4=$ for 

a l l n s l , 2 , . . . j j p ick arbitrary f/w v6 * n J ,
n

# Define a par

t i a l order *£ on the aet D * *t(W,n):W i e a neighbourhood o f 

g, n = N, N+1 , . . . J by (W-,,^)& (W2,n2) i f e i ther W-^ W2 or 

W =̂W2 and n,£ i.u. Then (f ( W n ) ) ( w n)&D * s a n e t w n * c n c o n ~ 

verges to g. In p a r t i c u l a r , f ^ n ) ^ x o ^ ~ ^ « ( x
0 ) » O-1 t n e o t ~ 

her hand, for any (W,n)eD, f/w n \ 6 * n F
n > and hence 

f/w n j ( x Q ) 6 .^(X)^ v as n £ N . I t fo l low3 that g ( x Q ) € V which 

contrad ic ta the a83umption that g(xQ) eU and Ur\V » $ . Uius 

g (x ) e. A for a l l x € X and hence g mapa X onto A. This g ive s 

U3 the fo l lowing: 

Theorem 2 . Let X be compact Hauadorff, and f :X—>X be 

continuous. I f - { ^ ^ = - 1 , 2 , . . . I i s equicontinuoua, then each 

g e K ( f ) maps X onto A * f V f ^ X ) . In p a r t i c u l a r , the unit r 

of K(f) i8 a re trac t ion of X onto A. 
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3» Main result. Let L be a Hausdorff locally convex 

space and K£L be nonempty. Then a family F of mappings from 

K into itself is said to be equicontinuous (on K) if for each 

xeK and each neighbourhood U of the origin 0, there exists 

a neighbourhood V of 0 such that yeK and y - x € V imply 

f(y) - f(x)eU for all f e F. The proof of the following theo

rem is similar to that of Theorem 3.1 in C 23. 

Theorem 3. Let G be a nonempty complete convex subset 

of a Hausdorff locally convex space and f:G—> G be a map. 

If (i) {fn:nssl,2,...l is equicontinuous and (ii) there exists 

M9G which is an attractor for compact sets under f, then f 

has a fixed point. 

Proof: Let Y = Uo(M) be the closed convex hull of M. 

Then Y is a compact ([53) subset of G. Let X = tJLf^Y) be 

the closure of the set Unf
n(Y), where f°(Y) » Y. Clearly X 

is f-invariant. We shall show that X is totally bounded. Let 

U be any neighbourhood of 0. Then there is an open symmetric 

neighbourhood V of 0 such that V + V + VS U. As M + V is am 

open neighbourhood of M and M is an attractor for compact 

sets under f, there exists a positive integer N such that 

fn(Y)cM + V for all n2N. Now for the compact set 

M u U n T (Y), there is a finite sub3et E of G such that 

M u %\ f^YjSE + V. Thus S.f^Y) = iL f^Y) u tL i^Ws 
ffiiQ m-zQ m>sQ m= vi 

£ (E+V) u (M+V) c (E+V) u (E+V+V) = E + V + V. It follows that 

X a U0f
n(Y)c E + V + V + V£E + U. Therefore X is totally 

oO 

L 
<n-

bounded. Furthermore X, being a closed subset of a complete 

set G, is complete and hence is compact (C43). Let A s 

* 0. r (X). Then A is nonempty compact and f(A) * A by 
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Lemma 1 and hence A£ M since M is an attractor for compact 

sets under f. As 4fn.nS5lf2f...} is equicontinuous on X, 

then, by Theorem 2, there exists a retraction r:X—-> A. No

te that g = f o r maps Y continuously into itself. By Schau-

der-T:ychonoff fixed point theorem, there exists yQ& Y such 

that g(y0) = yQ. As r(y0)e.A and A is f-invariant, the equa

lities yQ = g(y0) = f(r(yQ)) show that yQ6 A. Thus r(yQ) * 

« yQ since r is an identity map on A. Bierefore y * 

* f(r(yQ)) = f(yQ). This completes the proof. 

The above theorem generalizes Theorem 3.1 in t. 21 and 

is a partial generalization of Schauder-Tychonoff fixed 

point theorem. 

4. Some remarks on attractors. let X be a topological 

space and f:X—> X be a map. We call a subset M of X to be 

an attractor for neighbourhoods of points (or more appro

priately "a local attractor") under f if (i) M is nonempty 

compact and f-invariant, and (ii) for any neighbourhood U 

of M and any xeX, there is a neighbourhood V of x and a po

sitive integer N such that f^VjsU for all m N. It is 

easy to see that if M is an attractor for neighbourhoods 

of points under f, then it is an attractor for compact sets 

under f. The converse clearly holds if the space X is local

ly compact. We note that Theorem 3 does not give a true ge

neralization to the Schauder-Tychonoff fixed point theorem 

as it requires •Cfn:n-slf2f•..} to be equicontinuous. However, 

the validity of the following conjecture would provide a 

true generalization: 
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Conjecture 2. Let G be a nonempty complete convex sub

set of a Hausdorff locally convex space, and f :G—:> G be 

continuous. If there exists a subset M of G which is an at-

tractor for neighbourhoods of points under f, then f has a 

fixed point (?). 

The above conjecture is not known even if G is a non

empty closed convex subset of a Banach space. 

The following result can be found in L63: 

Theorem (Meyers): Let (X,d) b,e a metric space and f: 

:X—> X be continuous. If the following conditions hold, then 

for each A <s (0,1), there is a metric d, compatible with 

the topology on X such that d(f (x) ,'f (y)) £ Xd(x,y), for all 

x,y eX: 

(i) there is ai&X such that f(a) =-. a. 

(ii) For each xe X, fn(x) —-> a as n —> co 

(iii) there exists an open neighbourhood U of a such that 

for each open neighbourhood V of a there exists a positive 

integer N such that f^tUjsV for each n£ N. 

As an immediate consequence of Meyers' theorem, we ha

ve the following: 

Theorem 4* Let X be a metrizable space, f:X—> X be 

continuous and aeX. Then the following are equivalent: 

(1) For each .A, 0 < A < 1 , there exists a metric d compa

tible with the topology on X such that d(f (x) ,f (y)) ± &d(x,y) 

for all x,y € X and f(a) = a. 

(2) The set {a} is an attractor for neighbourhoods of points 

under f. 

Proof: That (1) =*• (2) is straightforward. It is easy 
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to show that (2) implies conditions (i),(ii) and (iii) in 

Meyers' theorem, and thus (2) -==> (1). 

The following result can be found in C1J: 

Theorem (Janos, Ko and Tan): Let X be a metrizable 

space, f :X —>X be continuous and a*X. Then the following 

are equivalent: 

(3) There exists a metric d compatible with the topology 

on X, such that d(f (x) ,f (y)) < d(x,y) for all x,yeX with 

x4*y, and f^x)—-> a for all x e X. 

(4) The set i&} is an attractor for compact sets under f. 

The statements (2) and (4) are equivalent when the spa* 

ce X is locally compact. Thus we have the following: 

Theorem 5. Let X be a locally compact metrizable spa* 

ce, f:X—> X be continuous and aeX. Then the statements 

(1),(3) and (4) are equivalent. 
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