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COMMENTATIONES MATHEMATICAE UNIVERS1TATIS CAROLINAE 

21, 1 (1980) 

IDEAL EQUIVALENCES FOR ALMOST REALCOMPACT SPACES 
I. BLUM and S. SWAMINATHAN 

Abstract: If X is realcompact, Kaplansky 's equality 
holds in C(X)j that is. the intersection of the free maxi
mal ideals coincides with the intersection of the free pri
me ideals. A systematic study is made of the validity of 
this and of other equivalences of ideals in C(X) when X is 
almost realcompact, a-real compact, and c-realcompact. Coun
terexamples are given where appropriate. 

Key words and phrases: Realcompactness, almost real-
compactness, ideals of continuous functions. 

Classification: 54C40, 54D60 

Let C(X) be the ring of real continuous functions on 

a completely regular Hausdorff space X, i?X the Hewitt real-

compactification of X and (IX the Stone-Cech compactifica-

tion of X. When X is realcompact, the ring C(X) has the fol

lowing interesting property, discovered for compact spaces 

by Kaplansky and proved necessary for realcompact spaces by 

Gillman-Jerison E.4] : the intersection of the free maximal 

ideals of C(X) is equal to the intersection of the free pri

me ideals of C(X). For A c fix writing M4 = if €.C(X):A o 

c cl^xZx(f )l and 0A = if e C(X) :Ac i n t ^ l ^ ^ f )J , we see 

that r and 0^ are ideals and Kaplansky's equality can be 

expressed as MP*-X = o^"*. This property is not sufficient 
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for realcompactness. Calling it (Ot-compactness, Mandelker 

C9-3 studied the property and introduced a strictly stronger 

property, ip-compactness (M?X~vX = oP*""*), which is also 

necessary but not sufficient for realcompactness. In simi

lar studies, £6J,i:i2;), ^-compactness (u(*X~X » lfP*""1 )̂ and 

&-compactness (MvX~X = 0vX~X) were defined. On the other 

hand, three generalizations of realcompactnes3, known as 

almost realcompactness, a-realcompac.tness and c-realcom-

pactness, arose in different contexts £2},[3]. The purpose 

of this paper is to make a sy9tematic study of the interre-

lationships between ideal equivalences given by ^-, w--, 

^- and X -compactness properties and the generalizations 

of realcompactness named above. We show that, except for a 

single case, there is no logical connection between the 

firat set of propertiee and the second set of generaliza

tion. In particular, we answer, in the negative, a ques

tion of Riordan Cl2l on' the equivalence of X - and /a-com-

pactnes3, and give examples of (i) an a-realcompact space-

which is not c-realcompact and (ii) a c-realcompact space 

which satiafiee each greek-letter-compactness property but 

is not a-realcompact. 

A summary of the interrelationships is exhibited in 

Table 1. Notation and terminology as in £43. 

1.0. Throughout the paper X will denote a completely 

regular Hausdorff space. X is said to be realcompact provi

ded it satisfies any one of the equivalent statements below: 

1.0.1. Every free maximal ideal of C(X) is hyperreal. 
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Table 1 

real-
compact 

almost 
real-

compact 

a-real 
compact 

c-real 
compact r <"- n Л 

r e a lc ompa c t ne s s + + + + + + + + 

almost realcompactnesэ M + + + + + + м 

a-realcompactne s M y + f Y T Y y,м 

c-realcompactnesз м,н,s н,s H,S + s s ? м 

цr -compactneэs M,H,P H.P H,P P + + + м 
1 

co 
x^-compactnes s M,H,P,W H,P,W H,P,W P,W w + w м 

ы 
1 

^-eompactneэs M,H,P,S H.P H,P P s s + м 

Я-compactness H,P,W H.P.W H,P,W P,W w + w + 

Each space listed at the intersection of row A and column B is an example satisfying proper
ty A but not B. The symbol "+" appears if A = > B holds. 

LEGEND OF SPACES 

Symbol Space Reference 

M Mrowka Space 3.1 

¥ Iэbell Space 3.2 

S üђrchonoff Corkзcrew 3.3 

P Non-realcompact P-зpaee 3.4 

W Countable Ordinals 3.5 

H Mack-Johnson Space 4.0 



1.0.2. Every z-ultrafilter on X with empty intersec

tion contains a countable subfamily with empty intersection. 

1.0.3. Every maximal eozero cover of X has a countab

le subcover. (A covering of X is said to be maximal if it 

does not have a finite subcover, and i3 maximal with res-

pect to this property.) 

1.0.4. X « VX. 

The proof8 of these equivalences may be found in £2] and [43. 

1 . 1 . The fo l lowing d e f i n i t i o n s are general izat ions of 

the s p e c i f i c formulations of realcompactnes9 noted above. 

1 . 1 . 1 . Almost realcompact, i f every u l t r a f i l t e r of r e 

gularly c losed subsets of X with empty in tersec t ion contains 

a countab le subfamily with empty i n t e r s e c t i o n ; 

1 . 1 . 2 . a-realcompact. i f every u l t r a f i l t e r of c losed 

sub se t s of X with empty i n t e r s e c t i o n contains a countable 

subfamily with empty i n t e r s e c t i o n ; 

1 . 1 . 3 . c-realcompact. i f , for every p e fSX-X there 

e x i s t s a decreasing sequence {A j n e N } of regular ly closed 

sub3ete of (&X, with p enik^neX}, while n ^ n X l r t *K$-* 0. 

As noted in the introduction, the space X is 

1.1.4. ^-compact, if oP*"* - u^"X 

1 . 1 . 5 . Tf - c o m P a c t > i f oP x ~ x a nP x -^ x 

1 . 1 . 6 . ^-compact, i f MPX*X » M?X" X 

1 . 1 . 7 . A.-compact, i f 0xVC-x » | l^x"x
# 

1 .2 . Almost realcompactnefl8 i 8 a c losed , hereditary 

and productive property, and, i n completely regular spacea, 

- 84 -



is preserved by perfect maps, a-realcompactneas ia closed, 

hereditary and ia preeerved by perfect mapa 12]. The follow

ing implications are known: 

1.2.1. X ia realcompact -=-> X ia almoat realcompact C2J 

1.2.2. X ia almoat realcompact =>X ia a-realcompact 

[2a 

1.2.3. X ia almoat realcompact «-» X ia c-realcompact 

15] 

The following characterizations of the ideals noted below 

are useful in the study of the propertied 1.1.4. - 1.1.7.: 

1.2.4. oP*"* «tf eC(X)|sx(f) i9 compactn4,7BJ 

1.2.5. oF~ v X = M P ^ - ^ = {f €C(X)]sx(f) ia pseudo-

compact J £6] 

1.2.6. MvX~X » -tf eC(X)|coz(f) ia realcompact*. 

vX—X 

To prove 1.2.6., let fell , and aa3ume for a contradic

tion that cozx(f) ia not realcompact. If f° denotes the 

continuous extension of f to v X, then coz jt = v(cozxf), 

[13. Since cozxf ia not realcompact, it followa that there 

ia p c (coz^tv J-coZyf. Thu3 p £^X-X£cl/-xZx(f) -= 

=- cl-j-Z^ff1' ). (The first inclusion follow3 from the aa-

aumption, the second by £4,8.8].) Thi3 i3 imposdible since 

cozvXf
v n Z x ( f

v ) = 0. Conversely, if coZyf is realcompact, 

then coz^u cl^xZx(f), as the union of a compact and a real-

compact set, is realcompact, and contains X, hence must also 

contain vX. It follows that i>X-X&cl«xZx(f) . This comp

letes the proof of 1.2.6. 

1.2.7. 0vX~X =* *f€C(X)(sx(f) » cl^^Cf)]. 
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To prove 1.2.7., let f €.0° " , and assume for a contradic

tion that Pec\>xSX(f)"SX(f)* T h e n p e^x""x> tsnti hence 

peint^xc.UxZ(f). It follows that int-xcl ^ ( f ) ^ coz f4=0. 

This is impossible by L4, 6.5(IV)3, since any xccoz f must 

satiafy f(x)>r for some real number r, and hence is con

tained in the zero set 4y|f(y)£^], which is disjoint from 

Z(f). Hence 0vX~X g,-Cf £ C(X)|Sx(f) = c^jSjtf)i. Conversely, 

if some f e C(X) satisfies Sx(f) = clvXSx(f), then 

cl/gxSx(f)-Sx(f) ̂ (^X-vX, and cl^S^f) <= X u (pX-<uX). Thus 

tSX-clgxSx(f) is open in flXf and contained in cl/3xZ(f). 

Then ^X-X s (J X-cl.^if) £ int^l.jZ (f) and so f c O v W . 

1.2.8. X is realcompact ̂ => X is if-compact -4X is 

7^-compact 

1.2.9. X is realcompact =» X is X-compact --=-> X is 

^-compact. 

1.2.10. X is Y~ c o mP a c t ss=^ x *-s ("--compact. 

1.2.8. and 1.2.10. are due to liandelker £93, 1.2.9. was pro

ved by Riordan tRl]. 

2.0. In this section we shall present the onily new po

sitive implication which holds between these properties. We 

need the following definition: 

2.0.1. X is said to be a weak-cb-space, if, for every 

positive, normal lowersemicontinuous function g defined on 

X, there exists a function feC(X) such that 0 <f (x)^ g(x) 

for all x e X. 

Weak cb-spaces were defined by Mack and Johnson [8, 3.1J 

where the first of the following two results is given: 

- 86 -



2.0.2. If X is pseudocompact, then X is a weak cb-

space. 

2.0.3. If X is almost real compact and a weak cb-space, 

then X is realcompact [2, 1.2J. 

We are now ready to prove: 

2.1.1. X is almost realcompact *===> X is Y-compact. To 

prove this statement, it suffices to show that ill £ 

c Or , or, in view of 1.2.6. and 1.2.7., equivalents, that 

any fc C(X) with pseudocompact support has compact support. 

Let fcC(X) with S^Cf) be pseudocompact. Since Sx(f) is clo

sed, it is almost realcompact, and since it is pseudocompact, 

it is also a weak-cb-space. Thus by the above-noted result, 

Sg(f) is realcompact and pseudocompact, and hence compact by 

[4, 5.93. 

3. Counterexamples. In this section we shall consider 

five spaces which provide counterexamples to show that no ot

her logical relations hold between the properties under con

sideration. 

3.1. Our first example is the space M, constructed by 

Mrowka [101, which is the union of two closed, realcompact 

subspaces VL and Mp, but is not realcompact. It is well-

known that M is almost realcompact: the identity mapping from 

the topological sum M-.vu ML-, to M is perfect, and the domain is 

realcompact. By the remarks of section 1.2, the perfect ima

ge of a realcompact space must be realcompact. It follows by 

1.2.2. and 1.2.3. that M is also a-realcompact and c-real-

compact . We shall now show that M is not A,-compact: 
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3.1.1. If X is &-compact, and if feM
v X
"

X
, then 

S„(f) is realcompact. 

To prove this, note that by hypothesis we have feM
v
 " = 

= 0
v X
~

X
. Hence cl ^ ( f ) = S

x
(f) by 1.2.7. and so S

x
(f) is 

a closed subspace of the realcompact space vX and thus re

alcompact. 

3.1.2. M is not X-compact. 

The subsets M-. and M
2
 of M each contains a copy of the real 

line L and the points in the upper half of the Euclidean 

plane with rational coordinates, topologized by letting 

neighborhoods of points p of L to be of the form 4pl o D 

where D is the interior of a disc tangent at p. Thus we may 

agree to denote the points of M-M
2
 by their Euclidean coor

dinates (x,y), where y>0, and the points of M-M-. likewise, 

with y<0. M is constructed from the topological sum of M-, 

and M
2
 by choosing a suitable identification of the points 

of L&M^ with those of L&M
2
. Thus the points of M^n Mg 

could each be labelled (x,0) using two distinct values of x. 

Using this notation, it follows from the construction of M 

that the following function is continuous on M: 

y if m = (x,y)#M
1
nM

2 

t(л) {y iг • = IX, 

0 if mfcMjП M2 

The cozero set of this function is the discrete (hence real-

compact) space M - (M^nM^), while the support of this func

tion is the non-real compact space M. Hence M is not &-com

pact. 

We conclude our discussion of the space M by noting that sin-
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ce M is f -compact, hence also ^-compact and ^a-compact 

by (1.2.1), the question of Riordan till on the equivalen

ce of A- and /U-compactness is settled in the negative. 

3.2. In this section we consider a space constructed 

by Isbell, and described in L4, 511. Let E be a maximal fa

mily of infinite subsets of the space N of natural numbers, 

such that the intersection of any two is finite. Let D be 

a discrete set indexed by the members of E. Topologize Y = 

= NuD, by defining, for each d e D, a cofinite subset of e 

as a neighborhood of de. The points of N are discrete. It 

can be shown, as in L4, 511, that ¥ is pseudocompact and 

locally compact, but not compact. 

3.2.1. Let X be a pseudocompact, completely regular 

Hausdorff space. If X has any of the following properties, 

then X is compact: 

(a) almost realcompactness 

(b) c-realcompactness 

(c) tf -compactness 

(d) 1̂  -compactness 

Since a pseudocompact, realcompact space is compact, the (a) 

and (b) parts follow from the results of [2.3. (c) and (d) 

follow from £6, 5.2 and 6.21. 

3.2.2. i|/ is not almost realcompact, c-realcompact, 

ij/-compact, nor 1^-compact. 

3.2.3. Y *s n o t &-compact. 

To prove this, we need the following notation: 

3.2.4. C£J0(X) denotes the family of all functions f in 
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C(X) for which the set -[xeX||f(x)| > 1/nl is compaet for 

every neN. 

3.2.5. MF'X =- C ^ ( X ) n M ? M [6, 3.21. 

3 .2 .6 . If X i s not countably compact, oPx"*X4= C^(X) 

14, 7G2J. 

The result that Y i s not X-compact i s now obvious: since 

Y i s pseudocompact, p ¥ - v ¥ « 0, hence M » jtP*~^--
55 c»<Vt a n d 0^""^= 0 ^ " ^ . I f Y were a-compact, then 

we would have contradicted 3 .2 .6 . 

3.2.7. Y is a-realcompact. 

In order to prove 3.2.7, let U be a closed ultrafilter on 

Y with the countable intersection property. Denote by fd 

the underlying set of Y , with the discrete topology, and 

observe that Y d, being of non-measurable cardinal, is real-

compact. U is a z-filter on Y^, hence is contained in some 

z-ultrafilter X. Let -CA^neNi be any countable subfamily of 

£• By [4, 514.1, each subset of Y is a Qj1 -subset, so that 

An
 s^^n .jJieNi, for each ncN, where each Pn . is a clo

sed subset of Y • Since, for each neN, A neZ, it meets each 

member of U , and hence F . , for at least one in&Hf 

' n 
meets each member of 11 • Since U is an ultrafilter, F 4 c 

n»xn 
e 1t , and since 11 has the countable intersection property, 

there is a point p*n{Fn ^ \ n 6N}=.n-tAnln€ N}#0. Thus % has 

the countable intersection property, and hence converges to 

a point of the (realcompact) space 5!*̂ . But then this point 

must be an adherent point of 16 , and hence Y is a-realcom

pact. 
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3.3. In this section we consider the Qtychonoff Cork

screw, S, constructed by Johnson and Mandelker 16, 7*33: 

Let T be the tychonoff plank, and let A * ¥*x -C<*>$ and 

B = - t c ^ x . N * denote the top edge and right edge of T* • 

Let S* denote the space obtained from T*x N by identifying 

Ax^2n-15 with A*{2n? and identifying Bx-[2n5 with Bx 

x*t2n+l}. Let t denote the corner point (6>-.96.>yn) of S* • 

Let S = S* - {t*. 

This space is known to be -^-compact, but not ijr —com— 

pact and not ^t-compact. Also, T>S « S* • It follows that S 

is not X -compact, 

S is not a-realcompact, since it contains a closed pseu-

docompact subspace «C( QC9 (h ,i) £ S |i=l? • If this subspace were 

a-realcompact, it would have to be compact, and this is fal

se. 

We need the following result E5, 2.43 to show that S is c-

realcompact: The following two statements are equivalent: 

3.3.1. V X is the smallest c-realcompact subspace of 

(SX containg X. 

3 .3 .2 , For every decreasing sequence "^J N of regu

larly closed subsets of X, cl^x(n«tAn\n eNl)* n{clvXA.n)neN}. 

Since vS = Su-(t$, we shall show that S i s c-realcompact 

by showing that S must contain a s tr ic t ly smaller c-realcom

pact subspace* Indeed, consider the following decreasing 

sequence of regular3y closed subsets of S: For each n £ N, 

letB^iU, (b , i ) d Sji> n | . I t can be verified that 

t £ M c l v X B n | n * N S , while c3vX(MBn |n6 N}) =- 03.^(0) -- 0. 

3 .4 . We consider next the non-realcompact P-space P 
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constructed in L4, 9L3. It is the subspace of the space 

W(CL>2) of all ordinals less than <G->2 obtained ty deleting 

all non-isolated points having a countable base. We denote 

it by P. Recall the following definition: 

3.4.1. A completely regular space X is called a P-spa-

ce if, for every p e (*>X, Op = Mp. 

It follows that P is if -compact and A,-compact. Since a pseu-

docompact support in P is itself a P-space, it is compact. 

Thia means that P (or any P-space) is f-compact, and thus 

also 7?-compact. In what follows we need the concept of a 

cb-space L73,till. 

3.4.2. A space X is a cb-space. if for every positive, 

lowersemicontinous function g defined on X, there exi9ts 

f £C(X) such that 0<f(x)4g(x) for all x6X. 

It follows from .Dykes L2.1.10, 3.13, that a cb-space which 

is almost realcompact, or a-realcompact, or c-realcompact 

must be, in fact,realcompact. We shall show by proving the 

following result that P has none of these properties: 

3.4.3. P is a cb-space. 

Since W(co2) is normal and cb, L4, 511(b)3 by a result of 

Mack L7, Theorem 63, it suffice3 to 9how that P is an F6 

subset. Indeed, for each o c e l i ^ ) - P, let *tVn(os )[nc Nl 

be a countable base at cc . For each neN, let F = W(a>2)-

- utVn(oc) 1 oc g W(c*>2) - Ph Each Fn is closed in M{ o>2) f 

and P = u-iFn|n cNi, an F6- -subset. 

3.5. Our final example is the space W of countable or

dinals. This space is normal and countably compact [4, 5.123, 
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hence a cb-space. It follows as above that W is not almost 

realcompact, a-realcompact, or c-realcompact. Johnson and 

Manielker C6, 7*21 note that W is ^-compact, but not ly-

compact, and hence not T?-compact. Since by pseudocompact-

ness, ftW = \> W, and sinde alao W is /a-compact W must be 

X-compact as well. 

4.0. The only question left open is whether every c-

realcompact space must be 'ri-compact. From 1.2.8. and 2.1.1. 

a c-realcompact which is not ^-compact cannot be almost 

realcompact. Examples of c-realcompact spacea which are not 

almoat realcompact exiat. One euch i3 the space H conaider-

ed by Mack and Johnson in [81 p. 240-41. To describe it we 

start with the space T* where 

T* = t(6ff*) £W* ( C J 1 ) X W * ( C J 1 ) : ^ t l 

and l e t A and B denote r e s p e c t i v e l y the top edge and the d i 

agonal of T. Let H* be the space obtained from T*.x N by i d e n 

t i f y i n g Ax-t2n-l$ with k*l2n\ and Bx{2nS with B*{2n+lJ . 

F ina l ly l e t w denote the cornerpoint ( a)^f co^) of H* . Then 

H = H* - iw$ . By L8, p . 649J thia 3pace H ia c-realcompact 

but not almoat realcompact. One can ahow, aa in 3 . 3 , that 

i t i a not a-realcompact e i t h e r . However i t turns out that H 

i s ^-compact . This fo l lows from the fol lowing r e s u l t of 

Johnson-Mandelker [ 6, 6 .4J: 

4 . 0 . 1 . Let ^X denote the smal les t ^-compact sub3pace 

of f&X which containa X. Then ^X = X u i n t * x v X . Since H = 

= H* = Hu-lwi i s not l o c a l l y compact 1 8 , 2411 but H i s l o 

c a l l y compact, we have H = in^gH and hence H * ^ H . Thus H 
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i s ^-compact. 

Further, since w i s a P-point of W* (-co-^xW* ( a ^ ) , w i s 

a P-point of |SH (P-point property i s preserved by quoti

ents) . Thus MvX"X a Mw = 0W « M"X~X and so H i s ^-compact. 

Hence H i s also jU-compact and y-compact. 
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