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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21. 1 (1980) 

ON VECTOR-TOPOLOGICAL PROPERTIES 
OF ZERO-NEIGHBOURHOODS OF TOPOLOGICAL 

VECTOR SPACES 
Thomas RIEDRICH 

Abstract: The paper g ives a summary of t o p o l o g i c a l 
( v e c t o r - t o p o l o g i c a l ) proper t i e s of neighbourhoods of zero 
(nz) of a r e a l ? separated t o p o l o g i c a l vector space ( t v s ) . 
Among other things there i s shown that every nz in the 
space L ro,13 of ( c l a s s e s ) of rea l -valued measurable func
t ions (with the topology of the convergence in measure) con
ta ins a nz W such that each two po ints in L £0,13 \W can be 
jo ined by a f ive-gon in L C 0,1.7 ^W. This i s a p a r t i a l an
swer to a quest ion proposed by V. Klee C53* 

Key words: Topo logical l inear spaces , connected s e t s , 
measuraole functions• 

C l a s s i f i c a t i o n : 46A15, 28A 20, 46E30 

!• Introduction. This paper gives a summary of t o 

po log ica l r e s p . vec tor - topo log ica l propert ies of neighbour

hoods of zero (nz) of a ( r e a l , separated) topo log ica l vec 

tor space ( tvs) which are important in connection with non

l inear operational equations (see [123) . These proper t i e s 

concern homeomorphisms, r e t r a c t i o n proper t i e s , boundedness 

and compactness, product- and t race-propert ies and the con

nectedness of the complementary s e t of a neighbourhood of 

zero - with a new r e s u l t about the space SCO,13 (= L £0,13 ) 

of a l l r e a l (Lebesgue-) measurable functions on [0 ,13 with 

- 119 -



the topology correaponding to the convergence in measure. 

No as9umption is made about the convexity of the neighbour

hoods considered. If (E,t) is a tvs and U£E a nz of E, 

then PTJ(-) denotea the Minkowaki-functional of U, defined 

by p-jU) = inf(t>0|t~1x6U) (xcB). Some of the reaults 

have been announced in C133• 

2. Baaic definitione. If (E,tr) is a tvs and U£ E is 

a nz then U is called radially bounded, if each line 

through zero (denoted by O ) intersects U in a relatively 

compact set. If there is at least one radially bounded nz, 

then (Eft,) is called a locally radially bounded space (this 

notion was introduced by IS. Landsberg £83). U ia called 

8hrinkable. if xeU and O-^t-cl implied that the element 

tx belong3 to int U (interior of U). Ihia notion waa intro

duced by R.T. Ivea (9ee £.23) and eepeciall:y inve9tigated by 

V. JO.ee C 3 3 . Every tvs possesses a ba8i3 of ahrinkable 

nz' s (V. Klee L3J). The map 

/•(PnU))-"1* (x^Esu) 
rTT:E-»E, r^x) =4

 u 
гтj:.ь~^js, Гцix; = -j 

(xбU) 

is called the radial retraction with reapect to U, and we 

call the map ^TJ
:
-5 —> B, defined ty the equation tf-j(x) = 

* (1 + p
r
j(x))"

1
x (x6E) the bounding transformation for U. 

If V is another nz of E, then we call the map $?*.
 V
;E —* E, 

jp
u
(x)(p

v
(x))

-1
x (p

v
(x)*0) 

9
U,7 " 1

 Q (J
^

(X) s Q ) 

the aaaociated radial map of U and V. 
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3. Homeomorphisms; retractions 

Theorem 1. (V. Klee [33.) If (E,t) is a tvs and U is 

an open, shrinkable nz, then ff-j is a homeomorphism from E 

onto U. 

Theorem 2. (V. Klee £33.) If (E,t) is a tvs and U is 

a closed, shrinkable nz, then r-j is a retraction from & on

to U. 

Theorem 3. Let C&tx) be a locally radially bounded tvs 

and U and V two closed, shrinkable radially bounded nz. If 

there are real numbers cc > 0, (h ^ 0 with U & ooV and V s= 

B /SU (U and V absorb each other), then g?-j ylU is a homeo

morphism from U onto V. 

Proof. Let U, V and oc ;> 0, (J?0 as in the assumption 

be given. The inclusions US«;V and V l i l lU imply the inequa

lities py(x).4 cGp-j(x) and p-j(x) 4t (5pv(x) for all x£ E res

pectively. Prom the shrinkability of U and V followa the 

continuity of P-j(-) and Py(.) (3ee C3J). The radial bounded-

nes9 of U and of V impliea that p-j(x)#-0, Py(x)4=-0 for x^o. 

We denote the map y-j vlU by y . Then, by elementary cal

culation, cp is infective and qp(U) = V; the inverse map

ping is given by y" (z) = 9>vu(z) (zeVsi&i) and cp (o)» 

- o. From the above mentioned properties of p-j(.), Py(.) fol

lows easily the continuity of cp for X6U\*C©}. To show the 

continuity of op in the point x = o, let an arbitrary nz W 

be given. Without loss of generality, W is closed and shrink* 

able. Then, for xei W we have J&r x-J-0 

Pw(<j(x)) = pu(x)(pv(x))~
1pw(x) 4(3pw(x) = pw((3x)^l 

i.e. <j(x)tW. The continuity of cjp" follows analogously. 
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A counterexample, if the inclusion VgflU does not hold 

for any /I .-> 0 is given by the apace B s C£0,1] of all re

al-valued continuous functions on the closed interval 1.0,1] 

with the usual sup-norm topology, defined by II x II = 

= sup ix(t)l, if we choose the nz 's 
041^ 1 

U = {xfeEl ttxll £ 11 and V = 4xeBl / 1 ( x ( t ) ) 2 d t i . l L 
o 

Then, the radial map <J-J -Ju is no homeomorPhism, because 

its inverse maPPing is discontinuous at x = o (consider a 

sequence x e E with 

i5 1 . . .1 . .5 Л -
PţI(xn) = llxjl = - anđ p7(xn) - C .£ (xn(t))^ đt]- f 

n 

n = 1,2,...). Let us additionally mention that U and V are 

ij\ fact homeomorPhic (but not under the radial ma P), becau

se they are closed convex bodies in an infinite dimension

al Banach soace (see £6]). 

4. Boundedness and compactness 

Theorem 4« Let (E,t) be a locally radially bounded 

tvs and U a closed, radially bounded nz. If the boundary 

3U is bounded (in the vector toPological sense), then U is 

also bounded. 

Proof. From the radially boundedness of U we get the 

inclusion U£ 1.0,1] ©U. If dU is bounded, then [0,1] QV is 

also bounded. It follows that U is bounded. 

Theorem 5. Let (E,ir) be a finite-dimensional tvs. 

Then any closed, radially bounded and starshaPed nz is com-

oact. 
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For a proof see 1101• 

Theorem 6. Let (E,r) be an infinite-dimensional tvs 

and U-£ E a closed nz. Then 8U is not compact. 

Proof. For any nonempty set A9 E we define 

K(A) = iy e Ely = tx; xc A, t£ OJ = [0fa> )A 

and denote KUxl) simply by K(x). Now we assume that 3U is 

compact. Then the set K(x) n dV is compact for all x=fc.o 

from E. From a theorem about the properties of K(.) it fol

lows that K(9U) is locally compact (see till, Satz 4). The

refore is K(aU)=#.E and there is an x 4 0 from S with 

K(xQ)nKOU) = to} (otherwise we would have K(x)£ K(dU) for 

every x-f-o, this would imply K(3U) = E which is excluded). 

There is a cT> 0 with tx e U for O^t £ of . Oherefore is 

K(xQ)£int U, otherwise we would have K(xQ) r> KOU)=Ho5. 

For every y c 9U we set t(y) = sup -Lt:>0|ty £ 8Uf. From the 

compactness of K(y) A 5U we have t(y)< + co (y c dU). In ad

dition we have the relations t(y)ye3U and ty^ U (t>t(y)). 

U is closed and therefore the relation 9UfgK(-x ) does not 

hold. It follows the existence of an y c 8U with yQ e 9U 

and y ^ K(-x ). We denote the linear subspace of E spanned 

by x^ and y^ by E^ and define U = UnB A. It is easy to show ** 0 v o ** 0 o o v 

that the relations K(xQ)£ i n t ^ ; dQVQQ 3Uf- t(yQ)y0 e 30U0 

hold , here is intTJ resp. 9J.1 the interior and the boun-1 0 0 ^ 0 0 

dary of U with reapect to the space E . Since dim E = 2, 

there is a compact nz of EQ with 9QU0iWo, for which EQ\ WQ 

ia connected. From t>t(y ) follows the relation ty ^ U and 

we have K(x^) !§ int,TJ . Therefore follow the relations 0 0 0 

(EQN W0)n (E0N UQ) + 0 and (SQ\ VQ)n intQUo*0 , 
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and in addition follows from ^0^0§ *0 the equality 

which contradicts to the connectedness of E \ Wrt. 
o o 

5. Products and tracea 

Theorem 1. Let (-S^t^) and (E^,^) be two tvs; V^ 

re3p. U2 dhrinkable nz in E* resp. E2. Then U-. x TJ2 is a 

shrinkable nz. of E-,x E2. 

Theorem_8. Let (E,^) be a tvs and EQ a closed linear 

sub3pace of E; U a closed shrinkable nz. Then UQ = UnE Q 

is a closed shrinkable nz of E (with the induced topolo

gy) and we have 

30U0 =aUnB 0 and P^ = p ^ 

( 3 : boundary in E ).-

The (simple) proofs of th. 7 and th. 8 are omitted. 

6. Connectednes9 propertie3 

We con9ider a question, propo3ed by V. Klee in f5], a-

bout the connectednesa properties of the complement of nz's 

in general tvs. 

From the results of Klee follows the Proposition 1. (see 

L5]). 

Proposition 1. (see £53, Theorem A). Let (E,r) be a 

tvs with dim E£2. Then every neighbourhood U of zero con

tains a nz W such that E N I is connected. Indeed, W can be 

chosen so that each pair of points of E\W is joined by an 

8-gon in E\W. (Here by an n-^on is meant an arc composed 
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of n oritewer line 3egments.) 

Klee direct3 the attention to the fact that if (E,r) 

is locally convex, the 8-gons of Proposition 1 are repla

ced by 2-gons if W is closed and 3-gons if W is open. When 

E is locally bounded, W may be chosen so as to be bounded 

and starshaped, whence the 8-gons are replaced by 3-gona 

if W is closed and 4-gons if W is open. And (one of his 

questions) he asks: "Can the number 8 in Theorem A (-==-> Pro

position 1) be reduced for general topological linear spa

ces?" (see [53). 

In this direction we prove the following theorem about the 

space S(0,1) that is neither locally convex nor radially 

bounded. 

.theorem 9* Let (E|v) be the tvs of all real-valued 

(Lebesgue-) measurable functions (more exactly: classes of 

functions) on the closed unit interval £0,1] with the topo

logy corresponding to the convergence in measure, i.e. E = 

= S[0,13 (= L E0,ll). Every nz of S[0,l3 contains a n z l 

such that each pair of points of S[0,13\ W i9 joined by a 

5-gon in E M , 

Proof. The topology in S[0,13 is given by the metric 

d(f*> "J^i+lffti Igttil d t <*•>««sr°,i3> «/0Vi*<t> -
- g ( t ) l ) dt 

with the function op :[0foo)—> tO f l ) given by q»(t) = 
1 + t 

(O^t<+,i30 ). The function <p is strictly monotone increas-
* 

ing and concave and .lim <y(t) = 1. Let U be an arbitrary 

nz of S[0,13. Then U contains all balls WfcO = 
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= 4 f 6 SC0,1J | d( f ,o)«- <?I for 0<oT £ of^. We consider at 

f i r s t the fo l lowing case 

I ) Let f,gfc SCO,13 \ W(cT) (0<cf £ of0) be so that 

f ( t ) g ( t ) £ 0 ) ( a . e . in [ 0 , 1 3 ) . 

Then a l so the l i n e segment 

£*>&! = - t h e S [ 0 , l 3 I h 'Xf + (1 - 3 , ) g , 0^-X ^ 1 i s con

tained in the complement SCO,13^ W(o0. Indeed we have un

der these assumptions the equal i ty 
J 

d(A,f + (1 -A)g ,o ) = J g > ( U f ( t ) + (1 - A ) g ( t ) | ) d t = 

J 

* J <g>(Alf(t)|+ (1 - J U I g ( t ) l ) d t ( 0 4 A.4 1) 

and by the concavity of y(.) the inequality 

/ 9Ulf(t)|+ (1 -A)lg(t)l)dt £ &f0 g>(|f(t)l)dt + 
jf 

+ (1 -A) f <j>(|g(t)l)dt = Ad(f,o) + (1 -A)d(g,o) 

(O* A 4 1). 

Since d(f ,o) 2 cf ; d(g,o) £ <? it follows that 

d(Af + (1 - A)g,o) £ cf(0 & X 4s \) which proves our assertion. 

II) Now choose of with 0-<cf< min(^fc£) and let two arbit

rary chosen elements f and g of (S[0f13)N W(o0 be given. 

We define the functions (elements of S[0,13) f and g by the 

equations 

A rf(t) t with f(t)4-G 
f(t) = J (0^t4l) 

<-l if f(t) = 0 

(& is defined analogously). 

We have the relation .f(t)-f (t)2 0 (t<s£0,l3) (resp. 

§(t)g(t)£ 0 for all tetO,l]). In addition £«, (SC0,13)\ W(oD, 

because, with A =-Ct6C0,lJl f(t)+0?f 
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4 
d(f,o) = / g(|r(t)l)dt £ J^g>(lf(t)|)dt = d(f,o)£ of. 

Also g 6 (3110,13 )\W(oT). 

Now we define the functions (elements of S[0,13) r 

and g by the equations 

ř(t) •Í 
f(t) (Oété| 

(ì<tél) 

anđ 

~ f0 (0£t4i) 
g(t) -J * 

lg(t) (J<t6i). 

We consider the sequence9 (nf) and (ng) (n = 1,2,...). For 

all n = 1,2,... we have the relations nf(t)r*(t)£ 0 and 

n|(t)g(t)£0 (tet0,13) and for all n = 1,2,... and all 

m = 1,2,... the relation (n£(t)) (mg(t))£ 0 (teC0,13). The 

sequences of functions (<y(njf(t)| )) resp. (cjp(ml&(t) I )) 

(n,m = 1,2,...) converge monotonely increasing to 1 on 

[0,^] and 0 on (̂ ,13 resp. 0 on [0,^3 and 1 on (|,13 becau

se if(t)|>0 (0^t^|) resp. i|(t)|>0 (|<t£l). 

From the Levi's theorem it follows that 

^ 1 % 1 
lim d(nf ,o) = 4 and lim d(mg,o) = •&. 
ms+co * m,-+oo * 

Therefore, we have (see the choice of cT ) 

d(n0f,o)^oT and d(m0g,o)£oT 

for sufficiently great nQ, m . 

From these results and the considerations under case 

I) it follows that the following pairs of elements of 

(sro,l3)\ W(oO) are joinable in this set (SCO,13 ) \ W(o0) by 
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the joining l ine segment. The union of these l ine segments 

gives the desired 5-gon: 

Cf , fJuLf ,n 0 f lu i :n 0 f ,m 0 f luLm 0 f ,g3u[g ,gJ 

which joins f and g in the complement of W(oO. 
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