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COMMENTAT.ONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,2(1980) 

ON BICOMPACTA WHICH ARE UNIONS OF SPACES 
DEFINED BY MEANS OF COVERINGS 

E. G. PYTKEEV, N. N. YAKOVIEV 

Abstract: Let X be a bicompact space which is the 
union of infinitely many subspaces of a class (P , defined 
by means of coverings: LindelBf, metalindelSf, developable, 
weakly- <fQ -refinable etc. What can be said about the se
quentially of X, about the existence of a G^-point in X ? 
We study this problem and receive some results which are 
applied to the investigation of bicompact subspaces of some 
unions of S -products of metric spaces. 

Key words: Bicompact spaces, sequential spaces, 0^-
point metalindelOf spaces, weakly- cf®-refinable spaces. 

Classification: 54D30 

Let £P be a class of spaces, defined by means of cove

rings. In thi9 note we consider the following problem: if 

a bicompact Hausdorff space is the union of a certain fami

ly of 3paces which are the elements of (P , what can be 

said about the existence of G^-points and about the sequen

tially of this bicompactum? 

In special cases, this question was investigated by 

A.V. Arhangel'skii Ell,[2],[31 and 9ome other authors [4], 

[5]. In this note we considerably strengthen the results of 

the papers and [3J,[5), and solve some problems from [3]. 

Our interest in the bicompacta which are the unions of spa

ces, defined by means of coverings is stimulated also by 
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the fact that every bicompactum which ie embedded in 2-,-pre-

ducts of real limes, ie hereditarily metalindelOf. 

We think that eme of the maim corollaries of this note 

ie that the existence ef a demse set of Gj—points in a bi-

compact Hausdorff space very often implies the eequentiality 

ef this apace. 

We adept the terminology of [63. The epace X is called 

metalindelOf if every open eoverimg ef X can be refimed by 

am opem point-countable ceverimg [73. 

!Oae space X is called weakly-cTQ-refinahie [8] if every 

epem covering ef X can be refimed by an epem ceverimg V = 
s U l/m such that for every x e X there is such a natural m 

that X belongs te at most count ably many elements ef 1/n* 

The class ef weakly-(/9-refinable spaces includes all 

metric £-metrizable, paracompact, developable, metalindellf 

and ether classes ef spaces, defined by means of coverings. 

In this class, the countable compactness is equivalent te 

bicompactness [81. 

If (P is a certain property ef a space, them we say that 

a space X is a pointly- (P-space, if fer every xeX the eub-

spaee X\ x has the property (P . Note that the property ef 

beimg peimtly- £P is weaker than the hereditarily & -pro

perty. 

Now, if t ie a topology on X, then t^ (where X ie 

am infinite cardinal) denotes the A-modification ef % I 63 

(i.e. such a topology en X that the family ef all sets which 

are the intersections ef % many open im X. seta, is a base 

ef this topology). 

2* ̂ -product ef metric epace* X^ with a basic point 
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(X^ ) is a subspaee of a product TT X^ such that for every 

6 > 0 and for every (y^ ) e .2^ , Koo: ^7^%^) > S $ I < 

* # 0 C9]. 

As usually, a iS -product (£-product) of spaces X ^ 

with a basic point (x^) is a sub apace of a product TTX^, 

such that for every (y.̂  ) e 2 (es)) iec -3^+ X^J Ujfr# 

<<i*#). 

A space is called *tf-monolithic [12 3 iff for every A 

\A\&z it follows that nw([A3)-^ ** . 

1* Qy-points and non-trivial converging sequences 

We begin with the following 

Definition !• A point x is called a super Fre'ehet 

paint , if for every A £ X such that x# e LAJ and X - the first 

cardinal such that x €f[A3~ there exists an Alexandrov super-

sequence S£ A such that ISl * X and S converges to x# (i.e. 

Sux # is a one-paint eompaetification of S). 

We also name the space a suptor-Fr£chet space, iff each 

point x#6 X is a super-Fr£chet point. 

Obviously, the super-Fr^chet property implies the Fre"-

chet-Urysen property. 

Proposition 1. If X is a biconpactum, x#6 X, and 

X\-Cx#l is a metalindelCf space, then xQ is a super-Fr^chet 

point• 

Proof; 1st x#e LA} and if ixQfA} * X • Let ^ be a 

point-countable covering of X « I A3 N*x 0* by open seta,such 

that I1U3-Y x# for every B e f . 

Suppose, first, that X* j^#. For each x&X let us in

dex the elements of *y , containing x as iI-L(x),H2(x) ,••• 
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...,Uk(x),..4 and let ^(x) *^J^iyx)}. Let x^e A, and 

for every natural n choose x^cA \ JJx y ,(x.)# 

(A \ jju^ rn-x'^+^t otherwise x##EA3). The set -ix^ is 

discrete in Y. Really, let z £Y and U & -y such that Uaz. 

Now, if Uiax for some n, then U = ̂ (x^) f o r s o m e * *ad fl# 

x <̂ U for every m>max4k,n} . It follows that xn—-> xQ, be

cause CAl is & bicompactum. 

Suppose that % > -tf#. Let y Q^A and for every * oo~-r JM.A) 

choose y ( X >£4\Ui'y(y / i):/J<oc? . (A x U -C <f (yft): fh^cc}^ 

4=0, otherwise i|f(x0>A) < X )* The set iy^ i cc ^ H (X) is 

obviously discrete in Y and Ky^ : oo -c 12 Ui) 11 * ̂  .It fol

lows that ŷ .—-> x , because [A3 is a bicompactum. 

Proposition 2, Let X be a pointly-metalindelOf bicom

pactum, then X is Fr^chet-Uryson and a set of G^-points is 

dense in X. 

Proof: X is a Fr^chet-Uryson according to Propositioa 

1. Then according to one lemma of A.V. Arhangel'skii £6J, 

there exists a countable Sox and a bicompact P£X which is 

G^ in X such that LS12F. Let x@€. F, then [ S . ] \ * x * = Y is a 

metalindelSf space, but Y is separable, therefore Y is Lin-

delOf and this implies that xQ is a G^-point in [S3 . It fol

lows that xQ is a G^-point in F and hence in X. 

Proposition 3» Let X be a bicompactum, t(X)-£.K f X « 

* U -Ix^: cC << &>-\ and for each oc 

1. if A ^ X ^ and A is countable, then [A]y is Linde-

lBf, 

2 . i f FcX^and F i s a bicompactum, then F contains a 

G^-point ( i n F) , 

then X a l so contains a G p p o i n t . 
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Proof: On the contrary, suppose X does not contain «ay 

Gj-point, then every G^-bicompactum F in X also does not con

tain any Gy-point. Suppose that (& -< ca-, and for each oc •< /3 

we have already defined a family of bicompact £*£? with the 

following conditions: 

1) F̂ , £ F ^ if oc':> oo", 

2) F^is a ("y-bicompactum in X, 

Let us construct Fp with the same properties. Let F* » 

- H C F ^ : oo < /S ? . Then F^ is a Gj-set in X. If PJnX- + 0, 

then let x-̂  be an arbitrary point of F5 n X^ and K-̂  be an ar

bitrary Gj—bicompactum in F°, containing x-,. Suppose j < o. 

and for each O G < j we have already cone true ted a family of 

points {x^l and bicompacta K^ such that: 

a > XcCe K ^ X/3 * 

b) C-Cx^,: oc/< o* J J n K ^ a 0 , 

c) K / £ K /,. i f 06'> ac", 

d) K^ i s a Gj-bicompactum i n F 2 . 

Let Kj = H i K ^ : 06 < j ? . I t i s a Gpbicompactum in f* . 

There are two p o s s i b i l i t i e s : 

I . t -CCx^ : cc'< j j j o K<jn X^ , 

II. there exists x- £ (K^n X^ ) \ [ KJi x^ : oc < jl3. Then 

let K« be an arbitrary G^-bicompactum, containing Xj and con

tained in K^\L£x,: oc < j }3 (it is possible because of the 

condition 1. of our proposition). It is clear that a) - d) 

are fulfilled. 

If for every j < co-. we always have the possibility II, 

then we have a free sequence T^-J^^, in a bicompactum af 

countable tightness. That is impossible [61, therefore there 
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i s j@< o>x such that Cix^t c& < $913 3 KfnX^ . If K*. n 

A I|j * 0, l e t F̂  « Kj. But i f rfn X^+ firf then this space 

i s Idndel8f, because C-Cx̂  :oc< j 0 ? 3 n X^ * £{ x^ t 

*•<*<<• j t t i J Y
 an<J because of the f i r s t condition of our pro-

. A1 

position. 

Kj is a Qj'-bicompactum in X, therefore K? does not con

tain any Gj-point and therefore K ^ X * t 90 there exists a 

Oj-bicompactum KcKj such that Kn X« * 10 (here we use the 

fact that KjnX« is IdndelOf). 1st F̂  » K. Obviously, the 

conditions 1) - 3) are satisfied. 

-iF̂  : oc <: &>-] is a decreasing sequence of bicompacta. 

But then O C F ^ : oC-< ^ 4 0 , and that is impossible, be

cause of the condition 3) together with X * U{ X^ tcc< w . K 

Corollary 1. Let X * U{ X^ : 00 •< o . j j and X be a bicom-

pactum of countable tightness, then each of the following 

conditions implies the existence of a dense set of Gj'-points 

in X: 

a) for every 06 , X ^ is pointly-metalindelBf\ 
b) ( 2 M > 2 ° ) for every 06 , X .is metalindelSf and 

sequential, 

c) for every oc , X^is embedded in some S -product 

of separable metric spaces, 

d) for every oc , X is ^-monolithic and t(X^ ) ̂  

^#o» 

e) for every 06 , X^is a space with closure-preserv-

ing covering of compact sets* 

In view of Proposition 3 we can arise a problem: is the 

proposition 3 true without the condition t(X)-.»4<0? (or nay 

be some points of Corollary 1?) 
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We have obtained some partial results in this way: 

Proposition 4. Let X be a bicompaetum, X » UI X^ : 

t cC<. c*^? and for every cc , 

1. X^is Lim5el8ff 

2. if Fexpand F is a bicompactum, them F contaims a 

G^-point (in F), 

then X also contaims a G^-point. 

Proof: Suppose it is not true. Then as in the proof 

of Proposition 3 we may define for every cc -c t3 a family ef 

bicompacta {F^} answering the requirements 1) - 3) ef that 

Proposition, if F* * n-C F^ : oc -< /3 ? , them F* is a Gj/-bi^ 

compact urn. Therefore F? 4 *A (otherwise it contains a ap

point). Let yeP? \ X . , p! n X^ is a LimdelSf space, so 

there exists a Gj-bicompactum B(y)ay such that B(y) n(F?n 

O X , ) = 0 . Then F* » F« r\ B(y) also answer the require

ments 1) - 3). It is dear that A* F^ : (I <. o^, and we 

again have the contradiction in view of 3 ) . 

Corollary 2. Let X • U d ^ : cC< o^i and X be a bi-

eompactum. Then each of the following conditions implies the 

existence of a dense set ef appoints in X, 

a) for every ac t X ^ is poimtly-LindelSff 

b) (2 * > 2 ° ) f or every ce , X ^ is LindelBf and se

quential; 

c) for every cc , X ^ is embedded in some S'-product 

ef separable metrie spaces. 

Remark. Parts c), d) and e) of Corollary 1 and part c) 

ef Corollary 2 are the essential generalization ef the cor

responding properties of Eberlein, Corson and monolithic bi

compacta of countable tightness. 
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Proposit ion 5. Let X be a bicompactum, X * Ui X^ : 

: oo -<-• Q xJ i ***<* ^ o r e « c » °6 

1. if A S I ^ and 4 is countable, then [AJX is Linde-
GC 

18f, 

2. if PSX^ and F is an infinite bicompactum, then P 

contains a non-trivial converging sequence, 

then X also contains a non-trivial converging sequence. 

Proof: Suppose, on the contrary, that X does not contain 

a non-trivial converging sequence. 

Suppose fi> < o)- and for each cc -< (I we have already defined 

a family of bicompacta {P^? with the following conditions: 

2) F̂ , is in f in i te . 

We shall construct P^ with the same properties. Let 

P? « O i P ^ : oc <= /J 3 . If /3 is a non-limit ordinal, then P^ 

is infinite according to 2). Now, let (I be a limit ordinal 

and P5 be finite, then if fi a iim o£n and ix̂ c P ^ ^ P.^ ,then 

[-L-f^iJNi.^.^ Pn and is also finite, but it means that 

[ i-^33 is a countable metrizable compactum, and hence con

tains a non-trivial converging sequence and that is impossible, 

therefore P5 is infinite. f 

I. If ¥*r>Xn is finite, then P^\ X^ is infinite, the

refore there is an infinite bicompacum Pj £ P? such that P* r\ 

n Xp - 0. 

II. If P? A X/j is infinite, then it is an infinite clo-

aed set in Xn • Let S be a countable subset of P? n X* , then 

[SJSP? and CSjNX^a-Ly}, because otherwise [S3£X„ and £SJ 

contains a non-trivival converging sequence according to the 
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cond i t ions of our propos i t ion . The same arguments make us su 

re that \ y $ may be considered as a non- iso lated point of [S.l. 

Bes ides , C S ] T
 s [ S ] r \ X a and hence i s a LindelBf space . The-

re fore , there e x i s t m 0^ i n [ S 3 bicompactum B ( y ) a y , contain

ed i n [S3, and a countable covering 4 ^ 5 of CSJnXp such that 
OO 

S^yJ^Cj^U^ U.̂ ) = 0, and therefore B(y)nX/3 =- 0. It is clear 

that B(y) is infinite (otherwise £y} is a non-isolated &J*-

point in IS]) and so we can define F~ =- B(y). Obviously the 

conditions 1) - 3) are now fulfilled. But then according to 1) 

P. i F- : (1 <• o>^} = jZJ and that is impossible according to 3). 

Corollary 3. Let X be a bicompactum, X = Ui X^: oc< cJ-f 

and one of the following conditions be fulfilled: 

1. for every oc , X ^ is pointly-metalindelCf, 

2. for every oc, X^ is ^0-monolithic and tCX^)^^- , 

then X contains a non-trivial converging sequence. 

% 

2. CC-closed spaces and sequential spaces 

In our following arguments, the next notion will play a 

key role. 

Definition 2. We shall call a space countably compact 

closed (briefly CC-closed) if every countably compact subspa-

ce of X is closed in X. 

The class of CC-closed spaces obviously contains all T, 

sequential spaces, but also some other3, far from sequential 

spaces, for example, all T-̂  spaces, in which countably com

pact sets are finite. 

We shall start with the following 

Lemma 1. Let X be a Hausdorff space, xQ e X, and X\{xJ 
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i s a weakly-cTO-refinable space, then for each countably com

pact A£X\-(x05 always [A3£X\ fx 0 * . 

Proof: Let A be countably compact aid k£ X\ {xt\. Let 

% » { U ( x ) such that [ U ( x ) 3 a x 0 j . Let V be a weakly-JB-re

fining of *& • Then according te [ 8 3 we can find a f ini te sub

family of V (denote - t^ t • • • , ^n^» which covers a countably 

compact set A. Now we hare [A3 £.LJtV43 &U{ [U(x)3:U(x) € 

KU\ £ X \ { x 0 U 

Proposition 6. a) If X i s a Hausdorff pointly-weakly-

ofl9-refinable space, then X i s CC-closed; 

b) i f X i s a Hausdorff countably compact space and X\ x0 

i s weakly-oTG-refinable, then t (x 0 )^4< 0 . 

Proof: a) immediately follows from Lemma 1. 

To prove b) suppose U l a x ^ and B * U4[S1:S£A^ then B 

- i s countably compact and B £ X \ x Q . According to Lemma 1 B • 

» [BJ , hence [A]ax 0 ; a contradiction. 
00 

Proposition 7. -Let X * A^ X^ and for each i, X^ is a 

Hausdorff weakly - <^0-ref inable and sequential space, then X 

is CC-closed. 

Proof: Let A be a countably compact subspace of X and 

A^ = A n L , then A.* is closed in X-, otherwise there exist 

x0e X.̂ \ A^ and a sequence x^6 A^ such that x.̂  —> x0 but then 

xQ 6 A and hence xQsAi; a contradiction. Therefore A.£ is a 

weakly-dB-refinable, and so A is also a weakly- cTQ-refinable 

as a countable union of such spaces. Hence A is a bicompactum 

according to [ 83, therefore A is closed in X. 

Lemma 2. Let X be a countably compact and CC-closed spa

ce, then 
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a) X i s a space of countable t i g h t n e s s , 

b) i f A£X, then | [ A ] I ^ | A | ° , 

Proof: a) I f ASX and B *- U { [ S ] : S c A I S I ^ # # ? » t h e * 

B i s a l s o countab]y compact and so B * [ B ] . 

b) Let A0 * A and for every oc< ft < o>1 we have a l r e 

ady defined A^ . L e t A ' = UikoCzoo< /3?and ft* { S : S £ A ' 3 

and S be countable d i s c r e t e i » k \ \ . Then \Sh\ -^ I AI ° . 

For every S £ 43 f i x a point x ( S ) e [ S ] \ A ^ and put A^ * 

» A^u{x (S) :S 6 ^ 5 • Then [ A] * U * kp : f l < w - J . Real ly , 

Uikp : (I < CJ-,3 c [ A ] , and i f U -i A^ : (J < o^J i s not 

c losed , then i t i s not countably compact, therefore there i s 

a countable s e t S which i s d i s cre t e i s U U A J p < ^1? • Bu% 

then there i s | 3 # < c^ such that S c A * and so x ( S ) e [ S ] and 

x(S)&A + 1 • This contradicts the f a c t that S i s d i s c r e t e i n 
f • o 

Uikp : (* < o^}. 
Proposi t ion 8 . Let X be a regular countabUy compact 

space with the property that each c losed F£ x contains a 

point of countable character in F, then i f X i o CC-closed , 

then X i s s equent ia l . 

Proof: Let [ A ] c be a sequent ia l c losure of Af and 

[ A 3 C + [ A } . i t fo l lows that [A3C i s not countably compact, so 

there i s a countable S c [ A ] c which* i s d i scre te in f A ] c . Now 

the s e t F » [ S ] \ S c [ A ] s [ A i and F i s c losed in X (because 
c 

S is discrete in itself). Let xQ be a point of countable cha

racter in F. Then xQ is a point of countable character also 

in [SJ, because [S] is a regular and countably compact spa

ce, therefore there exists a sequence -ix^j^S such that 

x^~-> x , and so x.eCAL, a contradiction. 
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Ji *0 

Proposition 9. (2 q > 2 ). Let X be a bicompactum. 

Then X is a CC-closed space iff X is a sequential space. 

Let us prove a non-trivial part. Let X be a CC-closed 

spacey then t(X)___ _j-.0 (according to Lemma 2 a)) and so 

t(P) £L -K0 for every closed PiEX. Then according to a lemma 

of A.V. Arhangel'skii C63 there are countable St_-X and a 

Lemma 2 b) \ IS1 \ £ 2 ° , hence ($ I -̂  2 ° . Now if 2 ̂  > 2 * 

G^ in P bicompactum $ such that CS J 3 $ • But according to 
_*/, . .,..__ ̂  .. ^ _-*„ 

then there is y a G^-point in $ and so it is a point of 

countable character in P. Now according to Proposition 8, X 

is sequential. 

*A *0 
Corollary 4. (2 > 2 ). If X is a bicempactum, X « 

DO 

« *}Uj X^ and for each i f X̂  i s a sequential weakJy-cTQ-refin-

able space, then X i s a sequential space. 

It follows from Proposition 7 and Proposition 9. 

Proposition 10. Let X be a pointly-oT0-refinab3e bicom

pactum, then 

a) t(X)_£y.0, 

b) C2*1> 2"*° ) X is sequential. 

It follows from Lemma 2 and Proposition 9. 

Proposition 11 (main). Let X be a, bicompactum and X = 
oo 

* . L/J Xxf then finy of the following conditions implies that 

X is a sequential space with a dense set of Gj-points; 

a) for every i, X^ is a space with Gj-diagonal, 

b) for every i, ̂  is a weakly-cf9-refinable space 

with a countable pseudocharacter; 

c) for every if X^ is a pointly-metalindtelOf space. 

Proof: In any of these cases, each closed set P<sX has 

- 258 -



a Gr—point (in F). Really, it follows from one theorem from 

[ 2] in the cases a) and b), while in the caae c) for every 
oo 

x eX we have X\-£x } ~ £JA xix*x
0*» hence X\x Q is weakly-

cfS-refinable , so according to Proposition 6 a) X is CC-elo-

eed and hence of countable tightneas (Lemma 2a)). Now, using 

Corollary 1 a) we receive the neceasary fact. 

Beside3, in any of these cases X is a CC-closed space. 

Really, the case c) is clear. In the case b) it follows from 

the fact that X\*x0$ « ^ X^-lx^ and so is a weakly-oTg-

refinable space, as a countable union of such spaces and fur

ther from Propositions 6 a). In- the case a) it follows from a 

theorem of Chaber [11]: if a regular countably compact space 

is the union of countably many spaces and each of them has a 

Gj-diagonal, then X is a bicompactum. 

Now U X• is a sequential space according to Proposition 8. 

OO. 

Corollary 5« Let X be a bicompactum, X »^\J^ X* and 

every X^ be embedded in some S^-product of separable met

ric spacea, then X is a sequential bicompactum with a dense 

set of Gc—points. 

It follows from the fact that every S^-product of se

parable metric apacea ia hereditarily metalindelBf and from 

Propoaition 11 c. 

The laat fact generalizes the well-known oroperties of 

Eberlein bicompacta. ftiis reeult cannot be significantly im

proved, because such a bicompactum need not be a Fr^chet-Ury-

son bicompactum. For example, the so-called separable Frank

lin bicompactum is such a space. On the other hand, there is 

a bicompactum which may be embedded even into the union of 
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two .SJ -products #f 3)^ * {0,1$, but does not kave even a 

countable tightness. It is a space TV ( Co-+ 1). 

Problem: let X be a bicompactum and X * X^u Xg, where 

each Xi is embedded into some 2 * -product of compacta. Does 

X be a Fr£chet-Uryson bicompactum? Is X an Eberlein bicom

pactum? And if X^ are embedded int© the same 21 * -product? 
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tiecKoH KOH$epe*mxx, 1979, CTp. 147. 

[9] C.n. ry^BKO: 0 CBOftcTBax KHOxecTB, jtexamxx B S -npo-

260 



ив ведениях, Доклад* Акад. Наук СССР 237(1977), 
505-508. 

[103 П.Г. АМИРДЖАНОВ: О всюду плотных подпространствах счет
ного псевдохарактера к других обобщениях сепа
рабельности, Доклад» Акад. Наук СССР 234(1977), 
993-996. 

[11] ^• СНАВЕН: СопдИхопа *пхсп хтрху сотрасЪпеав хт соип-
1аЫу сотрасг врасев, Ви11» Асай. Ро1. Зсх. 
Зёг. МаЛп. 24(1976), 993-998. 

[12] А.В. АРХАНГЕЛЬСКИЙ: О некоторых топологических простран
ствах, встречающихся в функциональном аналиее, 
Успехи Мат. Наук 31(1976), 17-32. 

1па*11;и* та*етагхк1 ± 1.Тга1 'акхд яовидага^еппу4 

теспапхкх ШС 833Н ип^егаНеЪ хт. А.М.Оог'кеве 

5Vе^д1оV8к ЗVе̂ д1оVвк 

3 3 5 В 8 3 8 В 
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