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ON MINIMAL POINTS
G. GODINI

Abstract: We extend the notion of minimal point with
respect to a set in a normed linear space X studied by B.
Beauzany and B. Maurey. Using this new notion we obtain a
necessary and sufficient condition for the existence of a
norm one linear projection of a smooth space X onto a clo-
sed subspace Yc X, as well as a characterization of a stri-

ctly convex space.
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Let X be a real normed linear space and Y a linear sub-

space of X, We assign to each nonempty subset M of Y, a sub-

£ . . . . _

set “Y,X of X in the following way: Xe “x,x if xe X and the
re exists no ye Y, y#x such that

Ny-m Nl &« x-mll for all meM

When X is a normed linear space, for x & X and r20, we de-
note
By(x ,r) =ixeX:lx-x l&rd
Then clearly xeMy , if and only if the set
’

MQMBx(m,\\x—mil )nY

is either empty or the sing...on x.
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If X = Y, McX, then the set MX,X is nothing else than
the set of minimal points with respect to M studied by B.
Beauzamy and B. Maurey in [1],[2], and denoted there by

min M.
In Remark 1 below we extend for uY,X some elementary

properties of min M given in [2], the proofs being similar

and simple.

Remark 1. a) For each McY and each real number A we

have M = A .
ave (A )Y’x MY,X
b) For each Mc Y and each ye Y we have (M+y)Y,X =
= My x*e
c . If i
c) If McLcY then we have Mc My x LI,X Mis a

dense subset of L, then MY,X = I‘Y,X'
d) If M is a bounded subset of ¥, then My y is a boun-

ded subset of X.

Some simple connections between MY’Y and uY,X' or My o
’

and MY,X are collected in the next remark, the Proofs being
straightforward.

Remark 2, We have for each McY:
(1) MY,Y = MY,X'\Y
(2) My x¢© My x
The inclusions MY,Ych,X and Mx,x‘“!,x are strictly in ge-
neral as the following example shows.

Example. lLet X = £%° | the Banach space of all real
bounded sequences endowed with the usual norm and Y = Cor
the closed linear subspace of X, of all sequences converging

to zero. For each n=1,2,..,, let ¥n = (nln’ P
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cees Nppre+-)€ Y, where g, =0 for ifn and 7, = 2. Let
M ={y2n:n=l,2,...}cY. Then x=(0,1,0,1,...)eMY’x. Indeed,
let y=(Nqyeee3 Npye--) €Y and let n, be such that | g, 1<1
for n>n . Then for n>%— n  we have lly-y, W 2 V2 - Yop!>1 =
= ix=y,, V| , whence x¢ My x- Since x¢ ¥, My y is strictly in-
cluded in MY,X' Now, x¢§ MX,X since for %=(1,1,1,...) 2 X, we
have || Tz—yanﬂ =1= | x-yanll for each n=1,2,... . Therefore
Mx’x is strictly included in MY,X'

Clearly, when M =1im}, meY, we always have My , =

H

= MX,X = MY,X = M., When M = -iml,mzi, m, ,m, €Y, m$m, these
equalities do not all hold generally, as the next result
shows (see also Remark 3 below).

We recall (see e.g., [ 31) that a normed linear space X

is called strictly convex if for each X)X, € X, X ¥ X5,

X +X,
N x W =8x,0 =1 we have “—T— “ <1.

In Proposition 3 of [2] it was proved that the normed
linear space X is strictly convex if and only if for each
my,m, € X, m$m,, the points of the segment [my,m,] =
=52 m1+(1-.7t)m2:0 A «1% are minimal with respect to M =
= {ml,mz’ﬁ. The following result gives also informations on
min {ml,mz} in arbitrary normed linear spaces.

Let us denote by ex BY(O,l) the set of the extreme
points of By(0,1) (i.e., yeex BY(O,l), ifyeY, iy =1

. Y12 .
and the relations y = —— , yl,yzeB!(O,l) imply yl=y2=y).
Theorem 1. Iet X be a normed linear space, Y a linear

subspace of X and M =4{my,my{, m,my€ Y, my #m,. Then

(3) MY,Y = MY,X = M or T.ml,mz]
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-m
= s . 2
Moreover, MY,X —[ml,m2] if and only if W [
€ ex By (0,1).
Proof. lLet M ={m1,m2§, m),m, €Y, m4 m,. We show first

that M =M . Let DN by Y defi b,

a Y, Y Y, X X6 Y and for ye efined by
1 x-mlll i x-m, i

4) y-= fx=my T + 1 x-my 1 B2t x=m || + |} x-mfi !

it is easy to show that
W y-m &\ x-m; il (i=1,2)
and so xq.lﬁy x* By Remark 2, formula (1) we obtain the first
’
equality in (3).
We claim now that M’Y X is either M or the segment
?
[ml,mzj. Since Mc MY,X’ assuming MY,X*M’ there exists x €
€My y, X ¥m;, i=1,2. Let y be defined as in (4) replacing
]
x by x,. Then Ny-m; | €l x -m; ¥ , i=1,2, and since x €M

Y, X
it follows X, =Y and so

(5) x, = Aom + (1 - A )m,
il X~y ] )
for A = [F3en I e il and we have 0 <A <1. This

proves the inclusion MY’Xc[ml,mz}. Let
x =Adm + (1 -A)my, O=d <,

and we show that xeMY X (The case ‘7t.o< A< 1 is similar.)
’

Iet ye Y be such that

(6) I y-my £l x—ml\l (1 -2 1 m, -m, |

(7) N y-my N &1l x-m, | = A m, -m, (]

Then in both (6) and (7) we have equality, since otherwise

\ y—mlu + y-m A< m,-m, ¥ which is impossible. Therefore

- 410 -



(8) Ny-m 0l = (1 -A) Ymy-m, B

(9) | y-my = A4 oy -m,
Let
1-2 1- A
(10) = 2y + Q- %) w
Yt Y - 1
- 1_ a
Note that by our assumptions on & we have O« 2 <1.

Hence using (10),(8),(9) and (5) we obtain:
u-my N = fx -m |
Nu-my | & 1 xo-mz\l
Since x € MY,X we have u = x, whence by (10) and (5) we ob-
i = A + - = that i . This comple-
tain y m + (1 -A)m, = x, that is xe MI,X omple
tes the proof of (3).

We show now that My y =[m),m,] if and only if
’

m.-m
- € ex . In order to show the "i part, by -
e (0,1). In ord how the "if" by Re
172
mark 1 a) we can suppose lim)-m,fl = 1, and by the above clainm,
o N

it is enough to show that x =

p “‘!,x‘ Let y €Y be such

that “y-mil\éll x-mll = %—, i=1,2, Then as in the proof of the

claim \ly-miu = %-, i=1,2. Let y; = 2(my-y)€ Y and y, = 2(y-m,)e

. AN T
€Y. We have Ny il = 1, i=1,2, and m-m, = === . Since m -

+m
~m, & ex By(0,1), it follows y,;=m,-m,, and so y = m%_z = x,

that is xeuY g+ Conversely, suppose that for m,,m,e Y with
’
N = = = Y12
ny-my il = 1 we have MY,X =[my,m,] and Jet my-m, = ===,

y
yicY,lyi\l =1, i=1,2, Let y = 2-]-' + m,. We have ﬂy-mi“ =i'=

my*my

m+
= ‘\'Jiﬁ"mi“' i=1,2.By hypothesis, & MY,X’ whence
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i o i o
y ==, which implies Y1 = ¥ = my-hy, and so n,-m, €

€ ex BY(O,l). This completes the proof of the theorem.

Remark 3. When X is not strictly convex, there exists
a closed linear subspace Yc X such that MX,X* MY,X for some
M = 4im,my%, m,,m, €Y, my*m,. Indeed, when X is not stri-
ctly convex, there exists meX, jimll= 1, m¢ex By(0,1). Let
Y= spi{im} and M = {O,m}. By Theorem 1 we have My x = {0,m}
amd MY,X =[(o,ml.

By Theorem 1 we know that in general for a set McY we
have not ¢o Mc MY,X’ where co M denotes the closed convex
hull of M. However, for some special subsets McY we have
the above inclusion. This will be a consequence of Remark 4
below and Remark 2. Note that if X is a Hilbert space, then
this is always true as follows by Proposition 4 of [2] and

Remark 2.

Remark 4. Let X be a normed linear space and let M be
the boundary of a bounded, closed, convex body of X. Then
¢o MCMX,X’ Indeed, since McC MX,X’ let xe (Co M)\NM, and sup-
pose there exists ye X, y+x, such that liy-m i 4}l x-m i for
each me M. Since xe¢ Int (€6 M), there exists A > 1 such
that m = A x+(1 -A)ye M., Then liy-mll = Allx-y il £} x-mll =
= (A =-1) i x-y |, which is impossible. Therefore Xe MX,X’ In
particular, for each normed linear space X, we have BX(O,l)c
c (va Bx(O,l))x’x, where bd By(0,1) = {xeX: Ixll= 1§, One
can also show that if X is a normed linear space, then for

each bounded convex body M CX we have X = (XM M)y ,.
]

Let X* be the dual space of X. We recall (see e.g.,
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[ 4]) that in a normed linear space X a point xe€X,lix/i=1
is called a smooth point of By(0,1), if there exists a uni-
que x;‘(‘e X*, 0 xxll = 1 such that x;(x) =lixli. We denote by
sm By(0,1) the set of all smooth points of By(0,1). The nor-
med linear space X is called smooth if each xe X, lx#=1 is
a smooth point of By(0,1).

In Proposition 5 of [2], B. Beauzamy and B. Maurey pro-
ved the following result: Let X be a reflexive, strictly con-
vex and smooth Banath space and Y a closed linear subspace of
X, If YX,X = Y then there exists a (unique) linear projection
P:X—> Y, Pl = 1. They also noted that the existence of a
norm one linear projection P of X onto Y implies YX,X =Y. We
shall also give a necessary and sufficient condition for the
existence of a norm one projection of X onto Y, weakening the
conditions on X (requiring only the smoothness of X) but
strengthening the condition YX,X = Y., To prove our result we
need Lemma 2 of [ 2], Since the proof of this lemma does not
use the completeness of the space X we state it in a normed

linear space.

Lemma ([2], Lemma 2). Let X be a normed linear space, Y
a closed linear subspace of X and x;,X;€ X, such that
L3 =
I x;-y W &It x,=y\ for each y € Y. Then xy(xl-xz) = 0 for each

y e Y\A0%, é sm By(0,1).

yii
Theorem 2. Let X be a normed linear space and Y a clo-
sed linear subspace of X. A necessary, and if bd By(0,1) c
c sm BX(O,l) also sufficient condition for the existence of
a norm one linear projection P of X onto Y, is that Yy y =Y.
?

If bd By(0,1)c sm By(0,1), then there exists at most one norm

- 413 -



one linear projection of X onto Y.
Proof. Clearly, if there exists a linear projection
P:X —> Y, P}l = 1, then for each x& X\Y and each y €Y we ha-
ve IP(x)-y Il = iP(x=y) i £ W x=y | , which shows that x¢YY,X’
Therefore Y cY and by Remark 1 c¢) it follows Y = Y.
Y,X Y,X

Suppose now that bd BY(O,l)csm By(0,1) and Yy x = Y.
’

Then for each x € X we have

(11) %sty(y,ll x-y W )+0

We claim that the left hand side of (11) contains exactly
one element. Indeed, let y,,y, ¢ *f;y By(y, W x-y Il) and sup-
pose that y, = y;-¥, #0. Then for i=1,2 we have

ly;-y Mell x=y 0 for all yeY

whence by the above Lemma we obtain

n

* (y5-x)

' 0 (i=1,2)

Then “yoﬂ = x;'o(yo) x;o(yl-yz) = 0, a contradiction. The-
refore for each xe€X, %QYBY(y’ l x<y ) is a singleton and
we denote it by P(x). We show now that P:X —> Y defined as
above is a norm one linear projection. Clearly P'2 = P, Let
now X e Ramd x<X. Since for A = 0 we have P(Ax) =AP(x),

suppose A #% O, Then IP(Ax)-yll £ | A x-yll for each y¢ Y and
so | &(—%—H -yJ £ x-y| for each y €Y. Therefore P(x) =

= ES%L}). whence P(Lx) = AP(x). Let row x,,x, € X and suppose
that y = P(x1+x2)—P(x1)-—P(x2)$O. We have

WPy +xy) -y | £ W x +x,-y B for all ye ¥
WP(xy)-y Vel xi-y“ for all ye Y, i=1,2.
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By Lemma we obtain
* =
xyo(x1+x2..P(xl+x2)) =0
&
Yo

Hence lly il = x; (y,) = 0, a contradiction. Finally, IiP(x)ll &

(x;-P(x;)) =0 (i=1,2)

£ ) xli for each x€X follows by the fact that P(x) belongs
to the left hand side of (11). Therefore P is a norm one 1li-
near projection of X onto Y.

To complete the proof of the theorem, let us suppose
bd By(0,1)c sm By(0,1). If P is a norm one projection of X
onto Y, then by the above, for each x¢ X, P(x) belongs to the
left hand side of (11) which is a singleton. Therefore there

exists at most one linear projection P:X—> Y, iiPll = 1.

Let E be a normed linear space and E¥, E** | E¥*¥ apg
E(“ the successive dual spaces. We shall consider E (respe-
ctively E*¥*) as a subspace of E** (respectively of E(4)) by
the natural embedding of E into E¥*¥ (respectively E** into
E(4)). When X = E¥* and Y = E then for each nonempty subset
MCE we shall denote MIN M = MY,X(= ME,E*"‘ ) and min M = MY,Y
(= ME,E)’

F. Sullivan [ 5] called a Banach space E very smooth if
bd Bg(0,1)C sm Bpyy (0,1). Examples of non-reflexive very
smooth spaces as well as some properties of very smooth spa-
ces are given in [5]. An immediate consequence of Theorem 2
is:

Corollary. Let E be a very smooth Banach space. There
exists a linear projection P:E**—> E, | P} = 1, if and only

if MIN E = E, Moreover, this projection is unique.
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We recall [ 2] that a set MCE is called optimal if

min M = M,

Remark 5. If E is a Banach space such that MIN E = E,
then E is an optimal subspace of E*¥, Indeed, this follows

by Remark 2, formula (2).

Proposition 1. Let M be a nonempty subset of the nor-
med linear space E, such that MIN M is optimal in E¥* , Then
there exists a unique, maximal closed subset Mc E such that
Mc W and MIN M = MIN H.

Proof. Let M be the collection of all subsets Ac E
such that MIN A = MIN M. Then M is nonempty since M e M .
Let M =A‘9;K. Since Mc ﬁ, by Remark 1 c) we have MIN M c
c MIN M. On the other hand, for each A € M we have Ac MIN A=
= MIN M and so Ake)M,Ac MIN M. Hence, using Remark 1 c), it fol-

lows

()
Aev“-AC MIN (MIN M)

(12) MIN M = MINA_\;J;:A = MIN
Since E#*¥ is a dual space, there exists a linear projection
p:E() > g** liPl = 1, By Theorem 2, Remark 1 c), Remark 2
formula (1), and the assumption on MIN M it follows

MIN (MIN M) = min (MIN M) = MIN M, whence by (12) we have

MIN ﬁc MIN M, which completes the proof.
With a similar proof one can show:

Proposition 2. If M is a nonempty subset of a normed
linear space E such that min M is optimal, then there exists
~ ~
a unique, maximal, closed subset MCE such that Mc M and

. . FJ
min M = min M.
Remark 6. Let E be a normed linear space and o) ,m, € E,
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m) 4 m,y. Then M = [ml,mz] is optimal., Indeed, let x4¢M and
I x-my I )
let y =2 my+(1~ A o)mq, where L, = Temy T+ Txm, (since

0<a,<1, we have y€M and so y#*x). Then for mé M, m =
= A my+{1- A)my, 04 A £ 1, we have

fix-my W = &i x-mq ! - Al x-mzll "
i x=my T+ T x=m, !

-

I y-ml ={& =4 lim-mpll =
- myll £0(2=2) Hix-my i - Al x-m, J < (1-4) (x-my) -
- 2my=x)ll = N x=(Amy+ Q=2 )my ) = fx-m |

and so x*min M. As a consequence of this result and Theor-

em 1, it follows that for M = {ml,mzl we have always that

min M (respectively MIN M) is optimal in E (respectively in

E**), Note that this is obviously true if m = m.

We conclude this paper with a characterization of a
strictly convex space using the notion "MIN". The proof of
the "only if" part is essentially the same with the proof of
Proposition 2 of [2],

Theorem 3. The normed linear space E is strictly con-
vex if and only if for each nonempty subset Mc E and each

z** € E** we have

(13) (.,,QMBE**(“" il z%¥ -m W ))A MIN Mg

Proof. Suppose E strictly convex and let M be a non-

empty subset of E. For each z** e E¥™we define a function

on M by
foan(m) =llz** —m |l (me M)

As in the proof of [21, Proposition 2 one can show that the

set {fz:“iz**eE‘* is inductive (for the usual ordering), and
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if z*~¢ E*»ig given, by Zorn’s Lemma, there exists x™**¢

e E* such that Tona is minimal (for the ordering), and

fx“é fz““ . Therefore
(14) N x#% —cm i £)f 2** -m I for each m &M

If x**c MIN M then by (14) it follows (13). If x**¢ MIN M,
there exists x€ E, x #x** such that lix-mjj £ ji x** -mfi for

each mé M, Since fx** is minimal we must have
(15) B x-mil = hx¥** -m} for each meM.

We show that xe min M. If not, there exists ye E, y#4x such
that lly-m l £l x-m ) , for each meM, whence by (15) and the

fact that f_,, is minimal, it follows
(16) Ny-mW =i x-m | for each meM.

Since E is strictly convex, by (16) and (15) we have for me M
I35 - ml< 30 | 3R aeal =1

which contradicts the minimality of f 44 . Therefore xé min M
and by Remark 2, formula (1) we have x¢ MIN M, whence by (15)
and (14) we get (13).

Conversely, suppose that for each Mc E and each z**¢ B**
(13) holds and E is not strictly convex. Then, by Theorem 1
there exist my,m,€E, m)#+m, such that MIN {m,,m,3 =4m),n3.
et z*® = (m;+m,)/2. By hypothesis there exists x**e¢ MINim,m}
such that kx** -m; f € 2** -m; i , i=1,2. Suppose x** = m.
Then \lml-mzl\ & z** -mz\'l =1 (my-m,)/2) which is impossible
since m1+m2. Therefore E is strictly convex, which completes

the proof of the theorem.
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