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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,3 (1980) 

O N MINIMAL POINTS 
G. GODINI 

Abstract: We extend the notion of minimal point with 
respect to a set in a normed linear space X studied by B. 
Beauzany and B. Maurey. Using this new notion we obtain a 
necessary and sufficient condition for the existence of a 
norm one linear projection of a smooth space X onto a clo­
sed subspace Y c X , as well as a characterization of a stri­
ctly convex space. 

Key words: Minimal point, strictly convex space, 
smooth space, norm one linear projection. 

Classification: Primary 46B99 

Secondary 41A65 

Let X be a real normed linear space and Y a linear sub-

space of X. We assign to each nonempty subset M of Y, a sub­

set My x of X in the following way: x e M y x **" x e X and the­

re exists no y e Y , y4-x such that 

II y-m li L. I. x-m U for all m 6 M 

When X is a normed linear space, for x * X and r > 0 , we de­

note 

Bx(xQ,r) = U e X : l l x - x 0 U r ? 

Then clearly xcM^ x i f a n d o n l y i f t n e s e t 

is either empty or the singa won x. 
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If X = Y, McX, then the set Mx x is nothing else than 

the set of minimal points with re3pect to M studied by B. 

Beauzawy and B. Maurey in [1J,£2], and denoted there by 

min M. 

In Remark 1 below we extend for My x some elementary 

properties of min M given in [2], the proofs being similar 

and simple. 

Remark 1. a) For each Mc Y and each real number A we 

have ( A M ) Y x = ASL „, 

b) For each M c Y and each y e Y we have (M+y)v x s 

=- MY>x+y. 

c) If M c L c Y then we have Mc *-y x
c .t-y- x- If M is a 

dense subset of L, then Uy x = L^ x» 

d) If M is a bounded subset of ¥> then My x is a boun­

ded subset of X. 

Some simple connections between My Y and M Y x, or Mx x 

and MY x are collected in the next remark, the proofs being 

s traightforward. 

Remark 2. We have for each McY: 

(1) M Y ) Y = M r > x A Y 

(2) M X,X
C MX,X 

The inclusion3 M Y y
c M y X and MX X C % X are strictly in ge­

neral as the following example shows. 

Example. Let X == JL°° , the Banach space of all real 

bounded sequences endowed with the usual norm and Y s c , 

the closed linear subspace of X, of all sequences converging 

to zero. For each n=l,2,..#, let yn = ( ̂ ln, T ^ ^ , ... 
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•••> ^ W ^ 6 Y> w h e r e ^ i n = ° f o r i + n a n d ^ n n = 2 # L e t 

M = - t y 2 n ' n = l , 2 , . . . J c Y . Then x = ( 0 , 1 , 0 , 1 , . . . ) e My x . Indeed, 

l e t y=( i ^ , . . . , ^ n , . . . ) £ Y and l e t nQ be such t h a t \ ^ n 1 < l 

fo r n > n Q . Then f o r n> j - nQ we have My-y2 n » - ' 2 - 1 2 2 n l > 1 = 

= ftx-y2 II , whence x e My x . Since x £ Y, My y
 i s s t r i c t l y i n ­

cluded in My x . Now, x ^ M x x s ince fo r x=( 1 , 1 , 1 , . . . ) £ X, we 

have ]| x -y 2 n l i =1= II x-y2 nll fo r each n = l , 2 , . . . . Therefore 

My x i s s t r i c t l y inc luded in MY y . 

C l ea r l y , when M =4 ml, meY, we always have My Y = 

= My y = My „ = M. When M = ^ m ^ n u i , m-piiue Y, m.,4-m2 t hese 

e q u a l i t i e s do not a l l hold g e n e r a l l y , as the next r e s u l t 

shows (see a l s o Remark 3 be low) . 

We r e c a l l (see e . g . , 131) t h a t a normed l i n e a r space X 

i s c a l l e d s t r i c t l y convex i f for each x - , , x 2 € X , x - , ^ x 2 , 
X +x 

\\ x-_tt = l x 2 » = l w e have | Xg 2 | < 1 . 

In Proposition 3 of [ 2] it was proved that the normed 

linear space X is strictly convex if and only if for each 

m1,m2^X, m-j+m,-.,, the points of the segment Cm1,m2l = 

= 4 X m, + (l-Jl )m2:0 4zX±.l\ are minimal with respect to M = 

= -tm-jjiiû . The following result gives also informations on 

min4.m1,m2l[ in arbitrary normed linear spaces. 

Let us denote by ex By(0,1) the set of the extreme 

points of By(0,l) (i.e., y c ex BY(0,1), if y e Y, )i y il = 1 
y2+y2 

and the relations y = g , ylfy2 eBy(0,l) imply yi=y2=y)* 

Theorem 1. Let X be a normed linear space, Y a linear 

subspace of X and M =4m1,m2{, m-j^m^eY, m-ĵ -m.̂ . Then 

(3) My Y = My x = M or Lm-pnu.1 
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m.. — m.p 
Moreover, M^ x = t m^m23 i f and only i f .. — j - e 

€ ex .8^(0,1). 

Proof. Let M =-(m-,,m2J, nu,m 2£Y, m-,4-m2. We show f i r s t 

that My Y = MY X# L e t x 6 X x Y a n d f o r y € Y d e f i n e d by 

lix-m-J lix-m2H 
(4) y = Rx-n̂ ll +|lx-m2«

 m2 + lix-m-J + || x-m2fl
 ml 

it is easy to show that 

il y-m^l^ftx-m.Ji (i»l,2) 

and so x^-My x* By Remark 2, formula (1) we obtain the first 

equality in (3). 

We claim now that M^ x is either M or the segment 

[>m-L,m23. Since McJL x, assuming My X+M, there exists x € 

6 M„ X, x ^"-i* i=l,2. Let y be defined as in (4) replacing 

x by x . Then ily-m^H ̂ . ii x -m-H , i=l,2, and since x e M y x 

it follows x = y and so 

(5) x0 = Xj^ * (1 -A 0)m2 

ft x -m, 1! 
f o r XQ = Hx 0 - m i t . + H x 0 - m 2 h • *»* w e h a v e °<\<1- -bi" 

proves the inc lus ion M„ x c t m , , m 2 l . Let 

x s Jl»m, + (1 - A ) m 2 , 0 «*=. X ^&>Q 

and we show tfrat x e M y x . (The c a s e XQ«zX< 1 i s s i m i l a r . ) 

Let y e Y be such t h a t 

(6) » y-m-jjl ^ II x-n^H =- ( 1 - X) II m^^ il 

(7 ) )\ y -m 2 II £ II x-m2« = XH n^-nig H 

Then i n b o t h (6) and (7 ) we have e q u a l i t y , s i n c e o t h e r w i s e 

\iy-m.jii + H y - m 2 t t < ft m-,-m2l w h i c h i s i m p o s s i b l e . Therefore 
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(8) l iy-nuj = (1 - .X) 'iln^-nufi 

(9) Hy-n-a'1 = M -^-m-J 

Let 
1 - A 1- A 

(10) u = °- y +. ( i O) m 

1 - X 1 - Jt x 

1- & 
Note that by our assumptions on & we have 0 < — — < " 1 . 

1— *A* 

Hence using (10),(8),(9) and (5) we obtain: 

Hu-m-^ = Hx^m-Jl 

Hu-EuH^flx^mgH 

Since x c % x w e n a v e u = "̂ o' w n e n c e ky ^10^ a n d (5) we ob­

tain y = Jim-. + (1 -&)m2 = x, that is x€ M« x. This comple­

tes the proof of (3). 

We show now that VL x = Cm-, ,m23 if and only if 

m"l*"m2 

Urn - m W 6 e x By / 0 * 1 )* I n order to show the Mifw part , by Re­

mark 1 a) we can suppose itm-.-m2il = 1, and by the above claim, 
nu+nu 

i t i s enough to show that x = — eVL> y . Let y c Y be such 
that lly-m.jjl.-s: il x-mAI = j , i = l , 2 . Then as in the proof of the 

claim Uy-m.II = £ , i = l , 2 . Let y-̂  = 2(m1-y)C Y and y 2 = 2(y-m2)e 
y x +y 2 

e Y. We have Hy^i = 1, i = l , 2 , and m-,-m2 = —^— . Since m-j-
m-,+m2 

-m 2 e ex B y ( 0 , l ) , i t fo l lows y^=m1-m2, and so y = — g — = x, 

that i s x€My v. Conversely, suppose that for nu ,m2c Y with 
y l + y 2 Hnu-null = 1 we have My x

 s [m-, ,m23 and let m-,-m2 = ' -A * , 

y±lX, * y i l l = 1 , i = l , 2 . Let y = ^ + m2. We have lly-m^l = £ ~ 

H m^m, , m1+m2 

s j j — J _ * - . ^ i j ^ - r i ^ , B y hypothes i s , —^— 6 M Y X* w n e n c e 
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ml+m2 y S _i-— f which implies y.. = y2 = m-j-nu* and so -̂-.-nip e 

€ ex By(0,l). This completes the proof of the theorem. 

Remark 3. When X is not strictly convex, there exists 

a closed linear subspace Yc X such that M x x^^Y X ̂
or some 

M = im-pnu^, m1,m2<£-Y, nu-^mg. Indeed, when X is not stri­

ctly convex, there exists meX, j) m II = 1, m<£ ex BX(0,1). Let 

Y = sp im\ and M = {0,mj. By Theorem 1 we have Mx x = {0,m^ 

and MY x = ro,mJ. 

By Theorem 1 we know that in general for a set M c Y we 

have not co McMy x, where co M denotes the closed convex 

hull of M. However, for some special subsets M c Y we have 

the above inclusion. This will be a consequence of Remark 4 

below and Remark 2. Note that if X is a Hilbert space, then 

this is always true as follows by Proposition 4 of £21 and 

Remark 2. 

Remark 4. Let X be a normed linear space and let M be 

the boundary of a bounded, closed, convex body of X. Then 

co M c M x x. Indeed, since M c M x x, let xc (co M)\M, and sup­

pose there exists ycX, y^x, such that tty-mH-sll x-m W for 

each m€.M. Since x e Int (co M), there exists A >• 1 such 

that m = X x+(l -A )y € M. Then lly-mll = X \\ x-y N £ll x-m II = 

= (X-l) \\ x-y \\ , which is impossible. Therefore x c M x x# In 

particular, for each normed linear space X, we have Bx(0,l)c 

c (bd BX(0,1))X x, where bd BX(0,1) = txeX: II x II * 1$. One 

can also show that if X is a normed linear space, then for 

each bounded convex body M C X we have X = (XN M ) x x# 

Let X* be the dual space of X. We recall (see e.g., 
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[ 41) that in a normed linear space X a point x€X, jl x II = 1 

is called a smooth point of BX(0,1), if there exists a uni­

que x*e X*, |\ x£|l = 1 such that x*(x) = II x II . We denote by 

sm BX(0,1) the set of all smooth points of BX(0,1). The nor­

med linear space X is called smooth if each x£ X, lixH= 1 is 

a smooth point of BX(0,1). 

In Proposition 5 of [21, B. Beauzamy and B. fldaurey pro­

ved the following result: Let X be a reflexive, strictly con­

vex and smooth Banach space and Y a closed linear subspace of 

X. If Yx x = Y then there exists a (unique) linear projection 

P:X—>Y, 11PH = 1. They also noted that the existence of a 

norm one linear projection P of X onto Y implies Yx x = Y. We 

shall also give a necessary and sufficient condition for the 

existence of a norm one projection of X onto Y, weakening the 

conditions on X (requiring only the smoothness of X) but 

strengthening the condition Yx x = Y. To prove our result we 

need Lemma 2 of C2J. Since the proof of this lemma does not 

use the completeness of the space X we state it in a normed 

linear space. 

Lemma (L"2J, Lemma 2). Let X be a normed linear space, Y 

a closed linear subspace of X and x1,x2eX, such that 

II x-j-y H-Mx2-yi\ for each y 6 Y. Then x̂ x-j-x.-,) = 0 for each 

y c Y M O i , jr̂ jp 6 sm BX(0,1). 

Theorem 2. Let X be a normed linear space and Y a clo­

sed linear subsoace of X. A necessary, and if bd By(0,1) c 

c sm BX(0,1) also sufficient condition for the existence of 

a norm one linear projection P of X onto Y, is that Yy x = Y. 

If bd By(0,l)c sm BX(0,1), then there exists at most one norm 
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one linear projection of X onto Y. 

Proof. Clearly, if there exists a linear projection 

P:X—> Y, i\Pi| = 1, then for each X6X\Y and each yeY we ha­

ve ||P(x)-yil = iiP(x-y)U£M x-y II , which shows that x$Y Y x. 

Therefore Yy v c Y an(- by Remark 1 c) it follows Yy x = Y. 

Suppose now that bd By(0,l)csm BX(0,1) and YY x = Y. 

Then for each x 6 X we have 

(11) yQv3?^'**'** > + 0 

We claim that the left hand side of (11) contains exactly 

one element. Indeed, let y-^^2 ^ ^ y ^ Y ^ ' ̂  x~y ̂  ) a n d SUP~ 

pose that yQ = y-^-y2+0. Then for i=l,2 we have 

H yJL-y It £ II x-y ii for all y 6 Y 

whence by the above Lemma we obtain 

x* (y.-x) =- 0 (i=l,2) 
yo 

Then HyJI = x* (yQ) = x* (y-j-^) = 0, a contradiction. The­

refore for each xeX, O L(y, jl x-y H ) is a singleton and 

we denote it by P(x). We show now that P:X—> Y defined as 
2 

above i s a norm one l inear pro j ec t ion. Clearly P = P . Let 

now ^ e R a n i x c X . Since for A = 0 we have P ( & x ) = A P ( x ) , 

suppose X + 0 . Then !iP(& x) -y J) £ B Ax-yl l for each y c Y and 
so | P<%*^ -yH=-U x-ytt for each y c Y . Therefore P(x) = 

P( % x) = > * l whence P( .Xx) = & P ( x ) . Let now x-pXgCX and suppose 

that yQ = P ( x 1 + x 2 ) - P ( x 1 ) - P ( x 2 ) ^ 0 . We have 

ft P (x x +x 2 ) -y ft k \\ x^Xg-y fl for a l l y e Y 

ftP(xi)-y \\4rW x±-yl\ for a l l y<sY, i = l , 2 . 
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By Lemma we obtain 

x* (x 1 +x^p(x 1 +x 2 )) = 0 

x* ( Ł - P C X , » = 0 (i-1,2) 
0 t o X Д. 

Hence liyii = x* (y
Q
) = 0, a contradiction. Finally, |jP(x)ii=-

y
o 

L ilxii for each X G X follows by the fact that P(x) belongs 

to the left hand side of (11). Therefore P is a norm one li­

near projection of X onto Y. 

To complete the proof of the theorem, let us suppose 

bd By(0,l)csm B
X
(0,1). If P is a norm one projection of X 

onto Y, then by the above, for each x6X, P(x) belongs to the 

left hand aide of (11) which is a singleton. Therefore there 

exists at most one linear projection P:X—> Y, HPii = 1. 

Let E be a normed linear space and E* E** , E*** , and 

E ^' the successive dual spaces. We shall consider E (respe­

ctively E**) as a subspace of E** (respectively of E^)) by 

the natural embedding of E into E** (respectively E** into 

E* ' ) . When X = E** and Y = E then for each nonempty subset 

MCE we shall denote MIN M = My
 x
(= Mg j,** ) and min M = M-,

 y 

<
= M
E,E>' 

F. Sullivan I 53 called a Banach space E very smooth if 

bd B
E
(0,l)C9m B-g^ (0,1). Examples of non-reflexive very 

smooth spaces as well as some properties of very smooth spa­

ces are given in £53. An immediate consequence of Theorem 2 

is: 

Corollary. Let E be a very smooth Banach space. There 

exists a linear projection P:E**—> E, ilPij = 1, if and only 

if MIN E = E. Moreover, this projection i3 unique. 
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We recall 123 that a set McE is called optimal if 

min M = M. 

Remark 5. If E is a Banach space such that MIN E = E, 

then E is an optimal subspace of E"** . Indeed, this follows 

by Remark 2, formula (2). 

Proposition 1. Let M be a nonempty subset of the nor-

med linear space E, such that MIN M is optimal in E:<<* . Then 

there exists a unique, maximal closed subset McE such that 

McM and MIN M = MIN M. 

Proof. Let JL be the collection of all subsets Ac E 

such that MIN A = MIN M. Then »At is nonempty since M e JL . 

Let M = U A. Since McM, by Remark 1 c) we have MIN M c 

c MIN M. On the other hand, for each A e M, we have Ac MIN A= 

= MIN M and so U A c M I N M. Hence, using Remark 1 c), it fol-
AeJk 

lows 

(12) MIN M = MIN U A = MIN A ^ Ac MIN (MIN M) 

Since E*1* is a dual space, there exists a linear projection 

P : E ^ — > E * * , lipli = 1. By Theorem 2, Remark 1 c), Remark 2 

formula (1), and the assumption on MIN M it follows 

MIN (MIN M) = min (MIN M) = MIN M, whence by (12) we have 

MIN McMIN M, which completes the proof. 

With a similar proof one can show: 

Proposition 2. If M is a nonempty subset of a normed 

linear space E such that min M is optimal, then there exists 

a unique, maximal, closed subset McE such that McM and 
rJ 

m m M = min M. 

Remark 6 . Let E be a normed l i n e a r space and m-pm^e E, 
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m 4-m0. Then M = Cm1,m2l i s optimal. Indeed, l e t x$M and 
1 2 lix-m if 

l e t y =^ om 2
+ ( l -A 0 )m 1 , where XQ = |jx.mi |l + \ ^ ^ \ (aince 

0 < X < 1 , we have y€ M and so y4-x). Then for meM, m » 

= X m2+ /tl-^)m1, 0 4 ^ 6 1, we have 

t ilx-m-. I) - X\\ x-nu |l - X |l x-nu II i 
II y-ml -U 0 -A | lim^^l =1 || x^\ +^2*^ Hl,nil -

- m2H ^ | \ ( 1 - ^ ) lix-m-jjl -aiix-m2ii | £ \\ (1-JUCX-H^) -

-^(m2-x) | | » llx-Camg+d-^Dm-j,)!! =|ix-mil 

and so x4min M. As a consequence of this result and Theor­

em 1, it follows that for M » ̂ m-^nu^ we have always that 

min M (respectively MIN M) is optimal in E (respectively in 

E***). Note that this is obviously true if m«, = nu. 

We conclude this paper with a characterization of a 

strictly convex space using the notion WMINM. The proof of 

the "only if" part is essentially the same with the proof of 

Proposition 2 of £ 2.1. 

Theorem 3. The normed linear space E is strictly con­

vex if and only if for each nonempty subset McE and each 

z* * c E** we have 

( 1 3 ) ( Q ^ B j ^ U , Hz** -mU ))nMIN Mt0 

Proof. Suppose E strictly convex and let M be a non­

empty subset of E. For each z** e E**we define a function 

on M by 

f
2**

(m) =ttz** -mil d a ) 

As in the proof of £21, Proposition 2 one can show that the 

set ̂ fjj^-jj^jji^is inductive (for the usual ordering), and 
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if z** e E** is given, by Zorn's Lemma, there exists x**£ 

£ E**such that fx** is minimal (for the ordering), and 

fx**^ fz** • T h e r e f o r e 

(14) II x** -m Ji k \\ z** -m II for each m eU 

If x**cMIN M then by (14) it follows (13). If x**^MIN M, 

there exists xeE, x+x**such that II x-mjj 4s li x** -m II for 

each msM. Since f ̂  is minimal we must have 

(15) li x-m II = \\ x** -m It for each m e M. 

We show that xemin M. If not, there exists yeE, y+x such 

that ll y-m il £ il x-m li , for each meM, whence by (15) and the 

fact that fx>.* is minimal, it follows 

(16) ft y-mtl = il x-m If for each meM. 

Since E is strictly convex, by (16) and (15) we have for mc M 

| 2+2. m || < || S-S|+ I -^S| = J1x-a« = lix**-mll 

which contradicts the minimality of f̂ .** - Therefore xe min M 

and by Remark 2, formula (1) we have x£MIN M, whence by (15) 

and (14) we get (13). 

Conversely, suppose that for each MeE and each z**c E 

(13) holds and E is not strictly convex. Then, by Theorem 1 

there exist nutnu,eE, m«, i» nu such that MIN^nufmpJ =4nu,nu3. 

Let z** = (m.j+nu)/2. By hypothesis there exists x**€MINtm, $m£ 

such that Rx** -m^ li ±>\\ z** -nxjji , i=l,2. Suppose x** = m-̂ . 

Then .Im-j-nuH ̂ W z** -null = II (m-,Hm2)/2 II which is impossible 

since m-^nu. Therefore E is strictly convex, which completes 

the proof of the theorem. 

418 -



R e f e r e n c e s 

C l ] B. BEAUZAMY: Note aux C.R.A.S. P a r i s , t 280, 17 mars 
1975, pp. 717-720 

L2l B. BEAUZAMY e t B. MAUREY: P o i n t s Minimaux e t Ensembles 
Optimaux đans l e s Espaces de Banach, J . Fiшc-

t i o n a l Analys is 24(1977), 107-139 

[ 3 ] M.M. DAY: Normed Linear Spaces, Spr inger Verlag, Ber-
l i n - G ö t t i n g e n - H e i d e l b e r g , 1958 

C 4) G. KOTHE: Topologische l i n e a r e Räume, I , Spr inger Ver-
l ag Ber l in-GjЗtt ingen-Heidelberg, 1960 

C53 F. SUŁLIVAN: Geometr ical p r o p e r t i e s determined by the 
h i g h e r d u a l s of a Banach space, I l l i n o i s J . of 
Math. 21(1977), 315-331 

Department of Mathematics 

INCREST 

Bdul Pacii 220, 77538 Bucharest 

Romania 

(Oblatum 5.11. 1979) 

- 419 


		webmaster@dml.cz
	2012-04-28T05:57:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




