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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
21,3 (1980)

ON INJECTIVE HOLOMORPHIC FREDHOLM MAPPINGS
OF INDEX 0 IN COMPLEX BANACH SPACES
Dietmar ABTS')

Abstract: We prove that an injective holomorphic Fred-
holm mapping of index O defined on an open subset G of a
complex Banach space maps G biholomorphically onto the open
set £(G). This is the infinite-dimensional version of a deep

theorem in € due to Osgood. There are counter-examples
which show that the assertion does not hold for arbitrary
holomorphic functions in infinite-dimensional spaces. We al-
so establish a criterion for the injectivity of a holomorph-
ic map which can be approximated by injective holomorphic
maps. In the finite-dimensional case this theorem is due to
Carathéodory.

. Key words: Complex Banach space, holomorphic mapping,
linear Fredholm operator of index O, analytic set, measure
of non-compactness, strict set contraction.

Classification: 46G20

1. Introduction. ILet X and Y be complex Banach spaces
and let G be an open subset of X. A function £:G—> Y is
called holomorphic if f has a complex-linear Fréchet deri-
vative £ (x) at each point x of G (cf. Hille, Phillips [81).
The map f is called biholomorphic if f is injective, f(G) is
open amd the inverse f'l is holomorphic.

It is a known result that in C® an injective holomor-

1) This paper is based on part of the author ‘s dissertation
research at RWTH Aachen under the supervision of Prof.
Dr. J. Reinermann, cf.[1].
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phic map is biholomorphic. The corresponding result does
not seem to bte known in infinite dimensions even assuming
the range is an open set (cf. Suffridge [13]).
The following example shows that we cannot omit the assump-
tion that the range f£(G) is an open set.

Let o be the space of complex null sequences x = (xn)

with the norm lixl := suplxnl . Define fic —>c, by
2
t((xl,xz,...)):= (xl,xi,xg,xg,...).

Then f is an injective holomorphic map. But f ‘(o) = 0, hence
271 fails to be holomorphic.

Now we present a special class of holomorphic maps in
complex Banmach spaces for which the problem raised above has
a positive solution.

Definition: Let X and Y be comple x Banach spaces and
let G be an open subset of X. A map £:G—> Y is called holo-
morphic Fredholm mapping of index O if f is holomorphic and
£7(x) is a linear Fredholm operator of index O for each x€G,
i.e. dim £7(x) (o) = codim £’(x)(X) <00 (cf. Hirzebruch,
Scharlau [9]).

Obviously all holomorphic functions mapping an open set im
¢
If g:G—> X is holomorphic and a strict set contraction with

into € belong to this class of operators.

respect to the Kuratowski-measure of noncompactness, then
Id-g is a holomorphic Fredholm mapping of index O (cf., Nuss-
baum [12]); Risenack, Fenske [7]).

We note that g+h is a strict set contraction provided
that g:G—> X is compact and h:G —»X is a Lipschitz map with

constant k< 1.
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2. Main results. A function £:G—> Y is said to be lo-

cally injective if for each x € G there is a neighborhood U

of x in G such that f‘u is injective.

Theorem 1: Let X and Y be complex Banach spaces, let
G be an open subset of X and £:G —>Y a holomorphic Fredholm
mapping of index O.
Then f is locally injective if and only if £’(x) is a homeo-
morphism onto Y for each xe G.
The example in the introduction shows that the Fredholm pro-

perty of £ is essential.

Corollary: Let X and Y be complex Banach spaces, G an
open subset of X and let £:G—>Y be an injective holomorph-"
ic Fredholm mapping of index O.

Then f maps G biholomorphically onto the open set f£(G).
This is an easy consequence of theorem 1 and the implicit
function theorem for holomorphic ma;;s yielding the holomor-
phy of the inverse £ 1 (cf. Bieudonné [6]).

Theorem 2: Let 'ch be open and connected and let f:
G —Y be a holc.morphic Fredholm mapping of index O such
that there is some x,€ G with f'(xo) injective.
Then the set {x<G)f (x) is a homeomorphism onto Y} is open,
connected and dense in G.
Our next theorem gives a criterion for the injectivity of a
holomorphic map which can be approximated by injective holo-
morphic maps.

There is a well-known theorem in complex function theo-
ry which says that a complex-valued holomorphic function £

defined on a region G in € is constant or injective provi-
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ded that f can be approximated uniformly on compact subsets
of G by a sequence of injective holomorphic functions (cf.
Diederich, Remmert [5]).

The analogous statement does not hold in the higher-dimensi-
onal case. Let £: €2 —> €2 and £: ll‘z——><£2 be defined by
f£(x,y):=(x,0) amd fn(x,y):=(x,%) respectively. Then f is

neither constant nor injective.

Theorem 3: Let X end Y be complex Banach spaces, G an
open and connected subset of X and let f:G —> Y be a holomor-
phic Fredholm mapping of index O such that there is a sequen-
ce (fn)ne[N of injective holomorphic mappings fn:G —> Y which
converges locally uniformly in G to f.

Then f is injective if and only if there is some xe G such
that £ (x) is injective.

In the case X = Y = (€™ the theorem is due to Carathéo-

dory [4]). The proofs of the theorems are given in section 4.

3. Auxiliary lemmas. Throughout the following let X
and Y be complex Banach spaces. L(X,Y) denotes the space of
linear and continuous operators T:X —> Y equipped with the
corresponding operator norm. For xe€ X and r>o B(x,r) deno-
tes the open ball with radius r and center x, E(x,r) denotes

the closed ball.

lemma 1: Iet G<c X be open and connected, U an open and
nonempty subset of G amd let f:G—>Y be holomorphic such
that £y = o.
Then f = o.

Lemma 2: ILet GCX be open and £:G~—> Y holomorphic.
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Then the derivative f’:G —> L(X,Y) is holomorphic,

Lemma 3: ILet GCX be open and let (fy)pe|N be a sequens
ce of holomorphic functions fn:G —> Y which converges local-
ly uniformly in G to the function f:G — Y. ‘

Then f is holomorphic and the sequence (fr;) converges local-
ly uniformly to the derivative f  with respect to the opera-
tor norm.

Lemma 1, 2 and 3 can be easily deduced from the theory
given in Bochnak, Siciak [21,[3].

Lemma 4: ILet Gc X be open and connected, f£f:G — € ho-
lomorphic and let (fn)neIN be a sequence of holomorphic func-
tions fn:G —> ¢ which converges locally uniformly to f.
Suppose that £ has no zeroes in G for ne N .

Then either £ = o or £ has no zeroes in G.

Proof: Suppose f4o0 and let x & G. By lemma 1 there is
heX and r >0 such that g(z):= f(x°+zh) (zeC and lzl<r)
is nonconstant. Define gn(z):= f‘n(xo+zh) forn e N and |zl<r,
Then by assumption g, has no zeroes and (gn) converges local-
1y uniformly to g. Hence by a well-known result g has no ze-~
roes, too (cf. Diederich, Remmert [51). In particular g(o)<o,
ice. £(x ) +o.

lemma 5: ILet Gc t® ve open and f:G ——?Cn be holomor-
phic and injective.

Then det f (x)%o for all xe G.

For a proof see Narasimhan (111, chapt. 5, Th. 5.

lemma 6: ILet T:X—> Y be a linear Fredholm operator of
index O. Then there is a linear continuous operator F:X—>Y

such that F(X) is finite-dimensional and T+F is a homeomor-
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phism onto Y.

lemma 7: Let Gc X be open, £:G —> Y be a holomorphic
Fredholm mapping of index O and X, € G,

Then there is a linear continuous operator F:X—> Y such
that F(X) is finite-dimensional and S:= f'(x°)+F is a line-
ar homeomorphism onto Y, and there exists an open neighbor-
hood U of x in G such that the mappings defined by
R(x):=f(x)-f(x )-f "(x ) (x-x,) (xe V),

g(x):=-S"1o R(x) (xeU) and

k(x) :=::°-S-l(f(xo))+s":L ° F(x-x,) (x¢€X)

have the following properties:

k(X) is contained in a finite-dimensional subspace o'f X,

g is Lipschitz function with constant less than 1 and

f(x)=S(x-k(x)-g(x)) for all xeU.

Proof: By lemma 6 we may choose a linear continuous
operator F:X —> Y such that F(X) is finite-dimensional and
S:=f'(x°)+F is a linear homeomorphism onto Y. Let £ >0 with
e S—l“< 1. By the mean-value theorem there exists an open
neighborhood U of X, in G such that R‘U is Lipschitz func-

tion with constant & . For x e Uwe have
_ -1 -1 -1
f(x) = S(x-x =8 "o F(x-x,)+S ~o R(x)+S ~(f(x,))),

hence f£(x) = S(x-k(x)-g(x)).

Lemma 8: Let UcX be open, Ael0,1) and g:U—> X such
that g is holomorphic and lg(x)-g(y)ll £ A-fl x-yl for all
X,y € U, Then Id-g maps U biholomorphically onto the open set
(Ia-g)(U).

Proof: By an easy application of Banach’s fixed point

theorem Id-g is injective and (Id-g)(U) is open.
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Since lg’(x) f £« A for all xe U, (Id-g)’(x) is invertible
and the implicit function theorem (cf. Dieudonné [6]) yields

the holomorphy of (Id-g)_l.

Lemma 9: Iet x e X, r>o, f:B(xo,r)-—> Y bé holomor-
phic and f'(xo) a linear homeomorphism onto Y. Let (fn)neN
be a sequence of holomorphic maps fn:B(xo,r)——-> Y converg-
ing uniformly to f on B(xo,r).

Then there exists a neighborhood V of f(xo) in Y and n e N
such that V c:mg%fn(B(xo,r)).

Proof: Let f :=f and y :=f (x ). By lemma 3 £ (x )—>
— £ (x,) in L(X,Y). Since £ (x ) is a homeomorphism,there
is ny e IN  such that f!;(xo) is a homeomorphism for nn,.
Define Sn(x,y):=fr'1(x°)‘l(y-fn(x))+x for xe B(x,,r), ye¥ and
neiojuik| kzn,}. We have § (x,y) = o iff £ (x) =y, and
(), (x,3) = -£1(x,) " o £] (x)+Id.

IS e, i £ W2 )7HE £ G0 £ G T+ el (x) -2 (gl +

. ’ . 4 ‘l L4 -1

MEo(x)-£ (x )0 ). Since (£ (x)77) — £ (x) ",

Q] f;l(xo)—l\s Jnel is bounded. Lemma 2 and 3 imply that the-
reiso<d<r, Lel0,1) and nyzny such that I(S,) (x,y)ll £
A forlix-x Il £d , yeY and nefotu tk|kzny}.

A

i Sn(x,y)-Sn(g,y) = jo (Sn)x(x+t(?'c-x))(x-x)dt e alxxl,
Let 0 < € <(1-A)d" . There is @ > o, nyzn, such that

" . -1

i Sp(xg,y)=x W& b £ (x )TN (Mg, (x)=F (x N + N£ (x )=y | )<
< ¢ for nefodudk|kZny} and lly-y <.
Hence YS_(x,y)-x | £ Ad + & < Ad+(1-A)J =4 for

hx-x ed” ,Uy-y,l4p@ and netoiuik | kZnsi.

By Banach’s fixed point theorem there is exactly one function
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PniBly,, @) —>Blx,,d) such that Spleny)yy) = ¢, (y),
ice. £ (@ (y)) =y.

The estimation lg (y)- @ (F)li<h So( 9o ) ,¥)-
“So (PN + 1S (o (3,38 (¢ ), £ Ah ¢ (y)-
- P @+ “f;(xo)-ll\ ly-¥ )l shows that @, is continuous.
In rather the same way it is shown that (¢@y) —> ¢, uni-
formly on B(yo’So ).
Because of g, (y)-x Il £ Von(y)- g:o(y)li + | Pol¥)-
= @o(y,) Il there is 0 < 7<© and n,e N such that
¥ n(B(yyrm))eBlx,,r) for nZn,. Now let V:=B(y ,7), then

Ve g:;l(B(xo,r)‘)c fn(B(xo,r)) for n= n, and we are done.

Definition: Let Gc X be open. A subset Ac G is called
an ghalytic set if for each xe G there exists an open neigh-
borhood U of x in G and finitely many holomorphic functions

Fireeey£iU—> € such that

ANU ={zeUlf1(z) =...= f,(z) = ok,

Lemma 10: ILet GcX be open and connected and let A be
an analytic subset of G such that A#G.
Then G\A is open, connected and dense in G.

The proof may be carried out along the lines of the fi-
nite-dimensional version of lemma 10 given in Narasimhan

{11], chapt. 4, Prop. 1.

Lemma 11: Let x eX, r>o, f:B(xo,r) —> Y be a holomor-
phic Fredholm mapping of index O. Let Fe& L(X,Y) such that
F(X) is finite-dimensional and f’(x)-F is invertible for all
xeB(xo,r). Let P:Y—> F(X) be a linear continuous projection
onto F(X). Define S:B(x,,r) —> L(Y,¥) by S(z):=Fo (f'('z)—F)'l.
Then S is holomorphic and for all zeB(x ,r) ‘
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£°(z) is invertible if and only if det (Po (Ia+3))|p(x))+ °

Proof: By lemma 2 S is holomorphic. Let ze& B(x,,r)
and Q:=Id-P. It is easy to see that Id+Po S(z)o Q is inver-
tible. £'(z) = (Ia+S(z)) o (£ (2)-F) =

(Ia+P 0 S(z) ¢ Q) o (Id+P 0 S(z) o P) o (£ "(2)-F).

Hence £ (z) is invertible iff Id+Pe S(z)e P is invertible. ®
Since Id+P o S(z) e P = Q+P o (Id+S(z)) o P, Id+Po S(z) o P is
invertible iff Po (Ia+5(z))|p(x) € L(F(X),F(X)) is inverti-
ble. Hence £°(z) is invertible iff det (Pe (Ia+S(z))|p(yx))+o0-

4. Proof of tke theorems

Proof of theorem 1: If f’(x) is a homeomorphism onto

Y, then by the implicit function theorem (cf. Dieudonné [6])
there exists a neighborhood U of x in G such that f'U is in-
Jjective. Now we suppose that £ is locally injective. Let
x,€ G. We choose F, S, U, R, g and k according to lemma 7
and such that f'U is injective, By lemma 8 Id-k o (Id-g)—lz
(Ia-g)(U) —> X is holomorphic. The identity f(x) =

= S(x-k(x)-g(x)) for xe U implies that Id-k o(Id-g)-l is in-
Jective.

We assume that f'(xo) is not invertible. Then there is

heX\{o} such that £'(x,)(h) = 0. We have R'(x,) = o,

g'(x,) =-SF e R"(x,) = 0, (Id-g)"(x,) = Ia-g’(x,) = Ia,
k“(x ) = s7le F, therefore (Ia-k o(Ia-g)‘l)‘((Id-g)(xo)) =
= 1a-s"to F.

Let E be a finite-dimensional subspace of X such that k(X)c
C E, (Id-g)(x,) € E and heE, Then the function

Id-k o (Id-g)_l\ (Id-g)(U)nE:(Id'g)(U)n E —E is holomorphic
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and injective.
Now by lemma 5
Ta-s" o F|p = (Ta-ko(1d-g) Y| (1q_g) (u)ng’ ((18-8)(x,)) is
invertible in L(E,E).
But F(h) = £'(x,)(h)+F(h) = S(h), and S™ o F(h) = h, ho,

a contradiction. Hence f'(xo) is invertible.

Proof of theorem 2: Let A:={xeGlf’(x) is not injec-

tivel. By assumption A %G. We show that A is an analytic
subset of G. Then lemma 10 yields the assertion.

Iet % €G. By lemma 6 there is a finite-dimensional linear
operator Fe L(X,Y) such that £ (X)-F is invertible. Since

x +—> £ (x) is continuous, we find r >0 with B(X,r)c G such
that f’(x)-F is invertible for all x eB(X,r).

Define ¢:B(X,r) — € by o(z):det(Po (Ia+5(2)) | p(x)) accor-
ding to lemma 11. Then & is holomorphic and An B(f,r) =

={xeB(X,r) | @ (x) = ol.

Proof of theorem 3: If f is inJjective, then by theorem

1 f’(x) is injective for all xe¢ G.

Now suppose that there is %X € G such that £’(¥) is injective.
We first show that f’(x) is injective for all x eG. Let x € G,
By lemma 6 there exists a finite-dimensional linear operator
F eL(X,Y) such that f'(xo)—F is invertible. By lemma 2 and 3
there is r>o and nje N such that B(x ,r)c G, £ (x)-F and
£’(x)-F are invertible and fr;(x) is a Fredholm operator of
index O for nzn,, xe3(x,,r).

Define S(z):=F o (f'(z)-F)—l, Sy(z):=F o (fr;(z)-F)-:L for
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z € B(xy,r) and n2 n,. Let P be a linear continuous projec-
»

tion from Y onto F(X). Define @ :B(x,,r) —> C by ¢(z):=

1= det (P o(Id+S(z))‘F(x)) and g’n:B(xo,r) —> € for nzn by
@, (2):= det(Po (Id+Sn(z))|F(X)). We verify the assumptions
of lemma 4,
By lemma 11 ¢ and P, are holomorphic. By theorem 1 fI:(x)
is invertible for xeB(x,,r) and ne N . @ (z)%o0 for z€
€B(x,,r), nZ n, by lemma 11. Since (fz;(x))———> £7(x) locally
uniformly in G, (S, (z))—> S(z) locally uniformly in B(x,,r)
la-Bh-ia™tp 2
1 - la-Bi-1a™1h

(note that Na™1-™1H « provided that

A,BeL(X,Y) and nA—BM_L_"—i_T'—' , cf. Kato [10], chapt. I, § 4).

Hence (¢, ) —> ¢ locally uniformly in B(xo,r).

By theorem 2 there is xeB(xo,r) such that £°(x) is in-
vertible, hence @(x)3%o0 by lemma 11. Now lemma 4 shows that
¢ has no zeroes in B(x,,r), therefore £°(z) is invertible
for all zeB(x,,r) by lemma 11.

We claim that £ is injective.

Let x4,%,€G, x1$x2. By lemma 9 there exists a neighborhood
U of x; in G such that x,¢U and a neighborhood V of f(x,)
and nje N such that V cmg\mafn(u).

Hence f, (x,)& V for nzn, by the injectivity of f,. Since

(£,(x5)) — £(x,), we obtain £(x;) +f(x,).
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