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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,4 (1980) 

REMARKS TO A MODIFICATЮN OF RAMSEY-TYPE THEOREMS 
Marłin GAVALEC, Peter VOJTÄŠ 

Abstract: A t y p i c a l r e s u l t in the paper: i f 9t i s a re
gular card inal, then in any graph G of power ? ae there i s a 
subgraph H of power 2 ê such that every vertex of G i s adja
cent to p r e c i s e l y , none, one or ?3e many of v e r t i c e s of H. 
Similar theorems are presented for ^e singular and for graphs 
describing comparability in posets and t r e e s . 
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1. The well-known Ramsey theorem [33 claims; "Every in

finite graph contains an infinite subgraph in which either e-

very two vertices are adjacent or no two vertices are adjacent"• 

Recently, I. Rival and B. Sands in [4] offered a new approach 

to the problem: "while Ramsey's result completely describes 

the adjacency structure of the distinguished subgraph, it pro

vides no information about those edges which join vertices in

side the subgraph to vertices external to it". The main results 

in C4] are the following theorems RS l t RS 2. 

(RS 1) Every infinite graph G contains an infinite sub

graph H such that every vertex of G is adjacent to precisely, 

none, one, or infinitely many of the vertices of H. Moreover, 
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every vertex of H is adjacent to none or infinitely many, of 

the vertices of H. 

In £4] an example is given which shows that, in general, 

the distinguished subgraph H cannot be chosen so that it is 

either complete or totally disconnected. However, for graphs 

describing the comparability in posets, Rival and Sands proved 

a stronger result which is closer to the Ramsey theorem. 

(RS 2) Every infinite poset P of finite width contains 

an infinite chain C such that every element of P is comparab

le with none, or infinitely many, of the elements of C Moreo

ver, if P is countable, then C can be so chosen that every ele

ment of P is comparable with none of the elements of C or eve

ry element of a cofinite subset of C 

In this paper we consider generalizations of the above 

theorems for all cardinalities. Ramsey theorem with the expres

sion Mof cardinality at least n, " instead of "infinite** holds 

for weakly compact cardinals ^t only. Such uncountable cardi

nals are rather large and their existence is not provable from 

the axioms of Zermelo-Fraenkel set theory. In contrast to this 

fact we show that the theorem RS 1 can be generalized, in fact, 

for all cardinals. 

For brevity, we call a ncn-empty subgraph H of a graph G 

a (0,1,ae)-subgraph if every vertex of G is adjacent to preci-

sejy, none, one, or at least $e many, of the vertices of H. 

Analogously -with comparability - for the notion of (0,ae )-

chnin in oosets. 

theorem 1. If G is a graph of power 2r gt , ̂  infinite 

regular cardinal, then there is a (0flfae)-subgraph H of G of 
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power 35 ̂ e • Moreover, every vertex of H is adjacent to none, 

or at least tt. many, of the vertices of H. 

If the cardinality of the graph G is a regular cardinal, 

then Theorem 1 gives the best possible result. For graphs of 

singular cardinality the situation is described by the follow

ing theorem. 

Theorem 2. If G is a graph of power ae f ae infinite sin

gular cardinal, then for every cC < ae there is a (0,1,o6 )-sub

graph H of G of power & . Moreover, every vertex of H is adja

cent to none, or at least ot many of the vertices of H. 

The result of Theorem 2 is the best possible. It is easy 

to find an example of a graph G of singular power ae which does 

not contain any (0,1, ae)-subgraph of power ae . 

In Theorems 1,2, as well as in RS 1, the distinguished sub

graph need not be complete nor totally disconnected. Even a we

aker condition with the almost-completeness and almost-discon

nectedness need not be satisfied (a graph H of cardinality & 

is almost-complete if any vertex of H is adjacent to all but 

< ^t vertices of H, an almost-disconnected graph is defined 

analogously). This follows by a "translation" of the correspon

ding example given in t43: Let ̂ e be an infinite cardinal num

ber and k * ia^i OG & ael ,'B-( b^j oc e ̂ e ? f C -~ {c^j oc « -aef 

be disjoint sets of power 9e . Ihe vertices of G we choose to 

be AuBuC. For edges of G we choose (a^, b« ), (b^fCO , (ĉ  fa$ ), 

where ct% fi c H and oo .< A . Each (0,1,ae)-subgraph of G of 

power ae is not almost-compile te nor almost-disconnected. 

For graphs describing the comparability in pdsets a com

plete subgraph corresponds to a chain. Here we get closer to 

Ramsey, in generalizations of Theorem RS 2 for higher cardina-
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lities. % the width w(P) of a poset P we mean the least cardi

nal number ac such that there is no antichain of cardinality oc 

in P. A poset P is called a tree if for any ae P, the set of 

all elements lesser than a is well-ordered. 

The well known Konig lemma £2J implies that any infinite 

tree of countable width contains an infinite chain. Konig's 

methods allow also to find a chain of regular cardinality in 

any poset of cardinality ^e and of countable width or in any 

tree of cardinality &, and of width A <-ae under the assumption 

that 2 -< ae holds for al v < % . These are not the best re

sults, e.g. the regularity of n, is not necessary for trees, it 

suffices 2*< cf(ae) for all V -< Si ). 

The following theorems are connected with the generaliza

tions of Konig lemma as well. 

Ifaeorem 3. If P is a poset of cardinality vc , ae infini

te regular cardinal, w(P) «<* co , then there is a (0,^)-chain 

in P. 

Ifoeorem 4. If $t is a singular cardinal, then there is a 

poset P of cardinality ^ , w(P) = 3 auch that there is no 

(0,at )-chain in P. 

Thus, Theorem BS 2 cannot be generalized to singular car

dinalities. The generalization to regular cardinalities invol

ves the condition w(P) -< o> which cannot be weakened even to 

w(P) & o> • However, for a tree T the condition w(T) .< ̂ e suf

fices. Further weakening to w(T) £ ae depends on Suslin's hypo

thesis (in fact, it is equivalent to it), which itself is an in

dependent statement of Zermelo Praenkel set theory (til ,£63 -£53), 

flieorem 5. If ae is an infinite regular cardinal, then 
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there is a poset P of cardinality «e , w(P) « co , such that 

there is no (0,->e)-chain in P. 

Theorem 6. If T is a tree of cardinality ae, , gt infinite 

regular cardinal, w(T)=^---rae s.t. 2 -« ae holds for any 

i> •< .A . Then there is a (0,9e)-chain in T. 

Theorem 7. If dt is an infinite regular cardinal, then the 

existence of a tree T of .cardinality ?e , w(T) * dt with no 

(0,ae)-chain in T is equivalent to the existence of a Suslin's 

jt -tree, i.e. a tree S of cardinality $& , w(S) « x with ho 

chain of cardinality it in S. 

The condition concerning regularity of ?c in Theorem 6 is 

substantial. A trivial construction gives an example of a tree 

T of singular cardinality ^t , w(T) -<. ?e with no (0,ae )-chain 

in T. % 

2. In this section we give proofs of Theorems 1 - 7. We 

want to stress here that, what Theorem 1 concerns, the substan

tial work has been done in C4D* Our proof of Theorem 1 is a mo

dification of the one in C4J. However, for the reader's conve

nience, we bring here the complete proof. 

Let us start with some definitions. The graphs are assumed 

to be ordered pairs 0 s (V,E) where edges form a binary, non-

reflexive, symmetric relation E on the set of vertices V. For 

He v we speak about a subgraph H of G meaning the structure 

(H,EnH2). 

The neighborhood of a vertex a€ V is the set N(a) =- {x e 

a V,-(x,a)c B}u i a{,for A c V we set N(A) * U 4,N(a).?a£ A$. Let 

(X be a set of cardinals, we amy that Hi V is an <1-subgraph 
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of G if for any vertex x 6 V either 

(1) l N ( x ) n H l & a or 

(2) l N ( x ) n H l > s u p a holds t rue . 

If (1) holds true for all xeV, we say that H is a strictly 

Q, -subgraph of G. 

Proof of Theorem 1. Let G -* (V,E) be a graph with IVI > 

2r n . Denote 

P -* {ze V;lN(x)l< Ttl 

T » UcV; iN(x)o ! ! < 9e? 

The proof sp l i t s into three cases. 

Case I . Let (PI -c 96 . Put H = V - N(P). By regulari ty of 

^t f H is a (0, ̂ )-aubgraph of G of cardinali ty 2r ^t * 

Case I I . Let iPI & -ae and for any x e P l e t N(x)cT, The 

aet H »-t x . ; f e ?c? we choose by induction in such a way that 

Xg* P -U-t »(N(xn)); <ti e. § J for any J € «e . Then H i s a 

s t r i c t l y (0,l)-subgraph of G. Note that in thia case i t is pos

sible to take H of the same power as P. 

Case I I I . Let IP I z ae and assume that there i s an e l e 

ment x e P with N(x)^ T. By trans f in i t e induction through <c e ae 

we'choose n increasing sequence of ordinals -[ v^ ; oC € at, i 

and a set of vert ices of P ix~i ? £ He J a 8 follows. 

Take x^s P such that N(xQ>4-T and put vQ « 1 . 

Por oC € &. assume that i?'f y e oc I and i Xg; £ < sup* Vy; 

^ 6 o c J J are already chosen. Put •*>£,= sup {*#,* T < <*>$ 

^ • { y e G - T , U | d ^ ) ( (y ,x f )£X)} 

B o c ' ^ ^ y J n P ; yg A^ ? . 

Take tf^* >>* + I B .̂1 and a numbering of B^, 

Por | such that *j£ 4k | -c ^ take x^ such that x * C and 
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U U { K N ^ l n D n l j 0 -* ifc < f ? . Then H - - C x ^ f 6 ^ c » 

oc G a e j i a a s t r i c t l y ( 0 f l f a e )-subgraph of G. (Hint: i f a Ver

tex e i s adjacent to x c > x^f ^ -< £-< ae , then • € ^ c for some 

at & it . Then N (e)n F c B ^ for co f ina l ly many cC € ae .) 

Proof of Theorem 2 . Assume c f C ae) **>! and l e t -fae*! 

€ c J l ? b e an increasing sequence of regular cardinals gmeater 

than cc such that ae * aup i*tc i § &AI *nd ( V | e A )( ae - > 

> sup idt* i ^i << £ J ) hold true. 

For | g Jl denote 

F? » { a e V f - l N ( a ) H se f J 

Tj » { a £ V ; ! N ( a ) n P f I < ae§ ? 

Case I . Assume I Fc I < se.. for some g e A, t then 

I V - N(Pc)l * ae and V - NCP.,) i s a. (0 foo)-subgraph of 0 . 

Case I I . Assume IF? I 2r aec for any f c -^ *»<* l e t 

N(P^)s T- hold for any £ belonging to a co f ina l subset Ls^ l . 

For any g c L there i s Hc£ Fc> IH^ I « aec such that He i s a 

s t r i c t l y (0,1)-subgraph of G and H £ H- holds true for ^ £ | 

(use the proof of Theorem l f case I I ) . Then H » U C H - j £ e Lj 

i s a s t r i c t l y (O fl)-subgraph of G with card (H) * ae . 

Case I I I . Assume lFc i 2" ae* for any £ € *& and l e t 

N(P^)^Tc hold for any $ belonging to a cof inal subset L * s A . 

For any f 6 L* there i s a H^ s Fc of cardinal i ty it- , which 

i a a (0 f l f 9e f ) - subgraph of G. Moreover, for any c ^T^ f N ( c > L 

i s of cardinal i ty 0 or aec (use the proof of Theorem 2 f case 

I I I ) . 

Put H. m H- - N(N (U{H^j %&%n L*f ) n l - }a*c , H » 

» UiHcJ | c L* J ; I f we denote by ft the closure ( in the ord i 

nal topology on ae ) of the s e t 4 0 f l f *e $ £ c L*j then H ia 

s t r i c t l y d-subgraph of G with jH I « u, • 
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Proof of Theorem 3 . Let P be a poset of regular cardina

l i t y at and of f ini te width n. % Konig-type argument i t i s 

possible to show that P contains a chain C of cardinality 'ae. 

In what follows we proceed by contradiction and assume that 

there are no (0, at)-chains in P. 

For x e P denote (x> *-f y c Pjy= x } 

<x) *«fyeP|Xi6y} and put 

C0 a{x£C .3lCn(x>l< wl 

C.J, » {xeC;!Cn<x)i <**} 

The assumption IC u C. I <: -ae implies that C - (C ^G..) is 

a (0,^e)-chain in P. Thus, without loss of generality, we may 

suppose that IC I * -ae and, moreover, that the ordinal type of 

C is ̂ e • Then a chain K in P and a regaHar cardinal X 9 Q< 

«c Si < ae can be found such that 

(i) the ordinal type of K is X x M 

(ii) there is no chain H in P of the ordinal type se such 

that (Vx6H)(Vy&K)(x>y) 

Claim. There exists a sequence (Kit;i & o> ) of chains ia 

P such that each Ki fulfils (i),(ii) with the same X and 

(iii) ( V i e u> )(Vxa i + 1)(K in<x) • 0) 

(iv) the function f defined for *£Ki-fl by f (x) * 

* ain (K^ -(x> ) is an order isomorphism of K i + 1 into Ki# (The

refore, ty (i), f(Ki+1) is cofinal in K ^ ) 

Prom the claia, Theorem 3 follows. We come to contradic

tion by constructing an antichain xQe KQ,
 x x £ Ki>###»xn-lc *n-l* 

The element x n - 1 we choose arbitrarily, xi-:i in a uch a way that 

*i-r^*i*##*»xn-l# By ***» (iv)f this choice is alwaya possible. 

By (ili) and by the cofinality mentioned in (iv) we have 

xi-l% ^ f ' t 3 ^ - ! * 
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It remains to prove the claim. We set KQ * K and show how 

to construct %+i from K^. .% induetional assumption the ordi

nal type of K^ is $l x ae . For f e & denote by K^* the sub-

chain of K,, that corresponds to -i^Sx -ae in fax a6. 

Further, denote Mi » {xe PjKin< x) « 0&Ki4- K ^ (x>4- 01 

and for x€M\ put f(x) » min (K^ - (x> ). The nonexistence of 

(0,se)-chains in P implies that Mi is non-empty and t(U^) ia co-

final in K^. Moreover, fCM^) must be cofinal in K**' for any 

f <= A . Thus, the ordinal type of f (M^) ia A x ft . The sa

me ordinal type has any subset of K^ which ia cofinal in K^' 

for all § belonging to a cofinal subset of A . Such subsets 

of K^ we shall call doubly cofinal in K^. 

By the axiom of choice it is easy to construct M£M^ such 

that flM is a bisection of M onto f(M) * f(Mi). Then flM ia s 

bisection order homomorphiam, but not an isomorphism, because 

M need not be a chain. Then we accomplish the laat step of the 

proof in 

Lemma. In any aubset U9U such that f(M) is doubly cofi

nal in K^, there ia a subchain K fcfi of ordinal type X x &* . 

Proof of the lemma goes by induction on w(M). For w(M) * 

= 2, M itself is a chain. Further we assume that the lemma 

holds for subsets of the width -< k • w(M>. 

By assumption, f(M) is doubly cofinal in K^, so there is 

a cofinal subset L £ X such that f(M) is cofinal in xS*' fdi* 

any f c L. Thus, for f c L, the set M (^ « f ^ K ^ h n l is 

of cardinality at and, l$r a Bamsey-type reasoning, M*f' con* 

tains a chain of cardinality at • Without loss of generality 

we may assume that M*f * itself is a chain for f c L and M*f * 

* 0 for f f L. 
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For X finite, i.e. for X s 1, the lemma is proved. Assu*-

me that A is infinite. Then the cofinality of X x vc is equal 

to .A . One can find a chain K in M and a regular cardinal X , 

0 •< X < 3e such that 

(i) the ordinal type of lis A x at 

(ii) there is no chain H in M of the ordinal type ae such 

that (VxeH)(VyeK)(x*y). 

If X -* X , the lemma is proved. Assume X <-- X , then f (K) 

is not doubly cofinal in K^. Denote by h the set of all upper 

bounds in L of the set if e L; f(K) is cofinal in K(£'? , then, 

by (i) we have f (K)n K (^ = 0 for any f e L. 

Further denote P « U { M ( ^ f e L ? . For xeK, zeP we ha

ve either xll z or x<z, but by (ii), no zeP can fulfil x< at 

for all xeK. Thus, denoting Px -KzePjxJI zi we get P =U«[ Px.j 

xeKj|. For x,ycK, x£y we have P e p # 
* y 

If there is xeK such that f(Px) is doubly cofinal in K^, 

then, in view of w(Px) < lc, the inductional hypothesis gives a 

chain of type l̂ x ê in Px, 

If f(Px) is not doubly cofinal in K^, denote by f x the 

least ordinal such that f(Px) is not cofinal in K
(f' for any 

£ > f x. For x,yeK, x^y we have % ^ f y. 

Case I. If X is infinite, then the cofinality of K is 

% ^ X .So there exists £ e L such that f(Px) is not cofinal 

in K(^} for any xeK, £ e L, J 2 J . Then f(P) =-Utf(Px)f- xe 

e K} is not cofinal in K ( ^ for f e L, £ > |" as well. This 

leads to a contradiction with double cofinality of f(P) in K^. 

Case II. If A s 1$ then the cofinality of K is ae > X . 

Again there exists |" e L such that f (Px) is not cofinal in 

K(r} for any xeK, { * h9 £ £ £ . Wy the repeated Konig-
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type reasoning we can find elements xQ^x^«? ... in Kf infi

nite subsets *Q2 I^-?.., of L A < f ) and chains •{ Z elP«Pj 

$ e R^*, m € CJ such that x ^ JB xm+1 I) Z m f for any m e o f 

C 6 IT. Then for f 0< f1<«.. <• £ , € R . the elements 

z« i c t z« 9 c {•••# z/> c t -?orm an antichain contradict-

ing w(P) = n. The proof of the lemma is complete. 

Proof of Theorem 4. Assume se is a singular cardinal of 

cofinality X , let i^c i f * A 1 be a sequence of lesser 

cardinals converging to &. . Define a partial order on P = 

» i(% ,«o), S e A & oc € aef 1 as follows: ( £ fao)--< (£'fct') if 

either £ « £'& ot -? <*/ or f < f '&(oc*0 v cc'.=. 0). There is 

ro (Of^e)-chain in (Pf-0 and w(P) * 3. 

.Proof of Theorem 5. For (Pf^) we take the cartesian pro

duct ae x o> with coordinate-wise orderding. It is evident that 

w(P) « <-o and that there is no (0,ae)-chain in P, if ae is re

gular. 

Proof of Tneorem 6. Assume T is an infinite tree of re

gular cardinality ae and of width X <. ae such that 2 -< ae holds 

for any v <~ X . Then any chain in T contains < Ol splitting 

points. By the Ko*nig-type argument we can prove that there is 

a chain C of cardinality ae in T. !33ie splitting points are not 

cofinal in C, so leaving out an initial interval from C we get 

a chain of cardinality ae which is the (0,ae)-chain in T. 

Proof of Theorem 7 is essentially the same as the previ

ous proof. 
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