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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

A NOTE ON THE FINITE EXTENSIVITY PROPERTY 
Jarmila FAUKNEROVÁ 

Abstract: Let t, s be groupoid terms with £{t) + £{s)£ 
£ 4. Then the variety of groupoids satisfying t»s has the 
finite extensivity property. 
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Classification: 08A30, 08B05 

By [1], the variety Mod (t=s) is extensive for all grou­

poid terms s, t with Z{t) + £{s)£ 4. This result is improved 

in [211 for £{t) + £{s)£5. In the present note, similar ques­

tions are treated for the class of finite groupoids. 

1. A variety V of groupoids is said to have the finite 

exteraivity property if for any two finite groupoids G, He V 

there exists a finite groupoid K c V such that both G and H 

are isomorphic to subgroupoids of K. Clearly, V satisfies this 

property iff for every finite groupoid G e V there exists m 

finite groupoid H e V such that G is isomorphic to a subgrou-

poid of H and H contains at least one idempotent element. 

Let t, s be groupoid terms. We denote by £{t) the length 

of t, by var (t) the set of all variables occurring in t and 

by Mod (t*£-s) the variety of all groupoids satisfying the id en-
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tity t=-*-s. 

2. Throughout this section, let Ĵ = Mod (x^y*xy). One 

may check easily that {T= Mod (x = yx.y) and every groupoid 

from T is a quasigroup. 

2.1. Proposition. Let G e (f be a finite groupoid, 

card G=m. Suppose that G contains no idempotent element. Then: 

(i) m=3k for some k£ 1 

(ii) If G is a subgroupoid of a groupoid E e T such that H 

contains at least one idempotent then card H^ 2m+l. 

Proof, (i) Put f(a,b)= {(a,b),(b,ab),(ab,a)} for all 
2 

(a,b)eG =GxG. Since G contains no idempotent, f(a,b) is a 
2 2 

three-element subset of G . Moreover, if (a,b),(c,d)e G are 
such that f(afb)nf(c,d)+0, then, using the fact that Q e (T, 

2 
one may see easily that f(a,b)=f(c,d). Consequently, m is di­
visible by 3 and the rest is clear. 

(ii) We can assume that H is finite. Since G + H and H 

is a quasigroup, card H£2m. Suppose card H=2m and define a 

relation r on H by (a,b)e r iff either a,be G or a,b 6H\G. 

Then r is a congruence of H and the corresponding factorgrou-

poid H/r is a two-element idempotent quaaigroup, a contradic­

tion. 

2.2. Proposition. Let G e(T be finite groupoid, m=card G. 

Then there exists a finite groupoid H e f such that card H=2m+1, 

G is a subgroupoid of H and every element of H\ G is idempotent. 

Proof. We can as3ume that G ={l,2,... ,m}. Denote by o the 

binary operation of the groupoid G and put H={1,2,...,2m+lJ. We 

shall define a binary operation * on H in the following four 

steps: 
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( i ) Let a,be G. Then a* b=aob 

( i i ) Let a,be H\ G. Then a=m+i, b=m+j for some l ^ i , $£ m+1 

and we put a# b=j- i i f i < j , a* b=m+i (=a) i f i = j and a # b = 

=j-i+m+l i f j < i . Obviously, a* b e G for a=#b and a*b=a*a=a 

for a=b. 

(iii) Let aeH\G and beG. By (ii), there exists a uniquely 

determined ceH\G with c*a=b and we put a*b=c. 

(iv) Let ae G and beH\G. By (ii), there exists a uniquely 

determined ce H\ G with b* c=a and we put a* b=c. 

We have defined the operation % • Moreover, G(o) is a sub-

groupoid of HU) and every element of H\G= -£m+l,... ,2m+lJ is 

idempotent. It remains to show that H(*.) e T . For, let a,beHf 

a*b=c. The following cases can arise: . 

(v) a,be G. Then bx (a*b)=b o (a o b)=a. 

(vi) a,beH\G, a=b. Then b*(a*b)=ai(a*a)=a by (ii). 

(vii) a,beH\G, a4=b. Then ceG by (ii) and b*(a>Kb)=b^c=a 

by (iii). 

(viii) aeG, beHNG. Then b * (a* b)=b* c=a by (iv). 

(ix) aeH\G, beG. Then c* a=b by (iii) and b*(a*b) = 

= (aa)^c=a by (iv). 

2-3• Corollary. The variety (f has the finite extensivi-

ty property. 

2»4. Example. Let G(+)= 10,1,...,3k-l? be the cyclic group 

of integers modulo 3k, k£l. Put a o b=-a-b+l for all a,beG. 

Then G(o ) e CT , G( o ) contains no idempotent element, G(o ) 

is commutative and card G=3k. 

3. In this section, let 31= Mod (x==yy-xy). We have 
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% « Mod (x^y(x.yy))=Mod (x* (yy*x)y) = Mod (x^yx.yy) and 

every groupoid from M is a quaaigroup. 

3.1. Proposition. Let Q g ^ be a finite groupoid 

card Q=-m« Suppose that G contains no idempotent element, Then: 

(i) m is an even number, 

(ii) If Q is a subgroupoid of a groupoid H e ̂  such that H 

contains at least one idempotent then card H2.2m*l. 

Proof, (i) Let aeG and bsaa. Then a4=b and bb=aa*aa=a. 

The rest is clear. 

(ii) We can proceed similarly as in the proof of 2.1 (ii). 

3«2« Proposition. Let Q 6 0t- be a finite groupoid 

m«card G. Then there exists a finite groupoid H e $U such that 

card H*£a+lf G is a subgroupoid of H and H contains at least 

one idempotent element belonging to H\Q. 

Proof. We can assume that G« llf2f...fml. Denote by © the 

binary operation of Q and put H« 4l,2,...f2m+ll. We shall defi­

ne an operation %• in H in the following four steps; 

(i) Let afbeG. Then a*b=a®b. 

(ii) Let a,b€H\G. Then a*a+i, b=m+j for some 1* if j^m+1 and 

we put a*b=m*(io i) if i«j^m, a*b-*2m+l if isj-sm+1, a*b=io j 

if i4* j and iffj^mf a*b=ioi if i&m and j=m+l. a* b-j » j if 

i-m*l and j4 nu 

(iii) Let aeH\Q f bdG. Then a=m+i for some 14 ±4 m+i and we 

put a.*b«2m*l if i*b, a*b=m+(bob) if i=m*l, a*b=m+(io b) if 

i#b and 14 m. 

(iv) Let a«Gf b«H\G. Then b=BH-j for some l^j^m+l and we 

put a*cb« m+1 if jsaf a* b=m+(a© a) if j«ntf\Lf a* b=m+(a© j) if 

j=M and j£m« 

Clearly, G( o ) is a subgroupoid of H(#)f card H-2m***l and 
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the element 2m+l6 H\ G is idempotent in H(*). It remains to 

show that H(*) e SO . For, let a,beH. Kie following cases c«n 

arise: 

(v) a,beG. Then (b* b) * (a*b) = (bob)o(a«b)=a. 

(vi) a=beH\G, a=m+i, 1-^i-^m. Then (b*b) * (a* b) = 

=(m+(io i ) ) . * (m+(io i))=m+((io i) o (i o i))=m+i=a by (ii). 

(vii) a=b=2m+l. Then (b* b) * (a*b)=a* a=a by (ii). 

(viii) a,beH\G, a4-b, a=m+i, b=m+j, l^i, j^m. Then 

(b*b)* (a*b) = (m+(j o j))* (i o :j)=m+((j o :j) o (i o j))=m+i=a by 

(ii) and (iii). 

(ix) a,beH\G, a=m+i, l*-ti-£m, b=2m+l. Then (b*b)* (a*b) = 

= (2m+l)* (i<>i)=m+((io i) o (i o i))=m+i=a by (ii) and (iii). 

(x) a,beH\G, a=2m+l, b=m+:j, l^j^m. Then (b*b) * (a#b)* 

=(m+(joj))* (j oj)=2m+l=a by (ii) and (iii). 

(xi) aeH\G, beG, a=m+i, l^i^m, b=i. Then (b*b)*(a*b)= 

= (io i)* (2m+l)=m+((io i) o (io i))=m+i=a by (i),(iii) and (iv). 

(xii) aeH\G, beG, a=2m+l. Then (b*b)*(a#b) = 

=(bo b)* (m+(bo b))=2m+l=a by (i),(iii) and (iv). 

(xiii) aeH\G, beG, a=m+i, l^i-^m, i4-b. Then 

(b*b)* (a*b) = (bo b) * (m+(io b))=m+((b o b) o (i o b))=m+i=a by 

(i),(iii) and (iv). 

(xiv) aeG, beHvG, b=m+j, l^j-^m, a=j. Then (b*"b) * (a*b)* 

= (m+(:j o j))* (2m+l) = (:j oj)o(jo j)=:j=a by (ii) and (iv). 

(xv) aeG, beH\G, b=2m+l. Then (b* b) * (a* b) = (2m+D* (*+ 

+(ao a))=(aoa) o (ao a)=a by (ii) and (iv). 

(xvi) aeG, beH\G, b=m+:j, 1-̂ j-̂ m, a 4 : j . Then (b*b)*(a*b) = 
=:(in+(:j o j)) + (m+(a o j))=m+((:j o j) o (a o :j))=a by (ii) and (iv). 

•^•3. Corollary. The variety -ft has the finite extensivi-
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ty property. 

3»4. Example. Let F be a four-element field and 

0,1+a cF. Put x©y«ax+a y+1 for all x,yeF. it is es 

check that F(o) G ZB, and F(©) contains no idempotent. 

4.1« Lemma. Let t be a groupoid term such that x^^arCt). 

Then Mod (x^t)=Mod CxAy). 

Proof. Obvious. 

4«2. I*nnna» The varieties Mod (x~x),' Mod (x^-xx), 

Mod (x»xy) and Mod (x-syx) have the finite extensivity proper­

ty. 

Proof. Obvious. 

4«3# Lemma* Let tf s be two groupoid terms such that 

ver (t)=var (s). Then the variety Mod (t = s) has the finite ex­

tensivity property. 

Proof. Easy. 

4«4. Lemma. The varieties Mod Cx<-*x«xy), Mod (x^x.yx), 

Mod (x^sx^yy), Mod (x^y«yx) have the finite extensivity pro­

perty. 

Proof. Let GeMod (x=x*xy)f e+G, H=Gu€e}f ae=a and ea= 

=e for every acH. Obviously, He Mod (x = x-xy). The remaining 

cases are similar. 

4*5. Lemma. The varieties Mod (x=x*yz)f Mod (x«y«xz) 

and Mod (x=-y«zx)=Mod (x=y«xx) have the finite extensivity 

property. 

Proof, (i) Let GeMod (x=*x*yz) and aeG. 1:hen aa=aa aa. 

(ii) Let Gc Mod (x^-yxz) and a.beG. Then a=a(a(bb«a)) = 

=a*bb=b. 
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( i i i ) Let Gc Mod ( x ^ y x x ) and a , b € G . Then aa=b(aa-aa)=ba 

and we see that Mod (x=yxx)=Mod ( x i y i i ) . Now, l e t e4&t 

H=Gu-£e$, ae=e and ea=aa for every a e H . Obviously, 

He Mod (x-5-yxx) . 

^•6* Lemma. The varieties Mod (xx^xy)=Mod (xy»xz) and 

Mod (xy-5=zx)=Mod (xŷ = zu) have the finite extensivity property. 

Proof. Easy. 

4*7. Theorem. Let t, s be groupoid terms such that 

£ (t)+£(a)£ 4. Then the variety Mod(t^-s) has the finite ex­

tensivity property. 

Proof. Apply 2.3, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 (and their 

duals). 
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