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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,1 (1981) 

A REMARK CONCERNING COMMUTATIVITY MODULO RADICAL 
IN BANACH ALGEBRAS 

P. VRBOVA 

Abstract: Let a be a fixed element of a Banach algebra A, 
n a natural number. The following conditions are equivalent 
1° for each strictly irreducible representation T of A, there 

exists a scalar JL^ such that T((a-^T)
n)=0 

2° (Lg x)ne Rad A for each xeA 

(D denotes the commutator operator on A, i.e. D x=ax - xa) 
3° \Jp x L =0 for each xeA. a o 

Key words: Banach algebra, radical, strictly irreducible 
representation. 

Classification: 16A15, 16A70, 16A64 

In a recent paper CI] V. Pt&k has shown that, for an ele

ment a of a Banach algebra A with a unit 1, the following con

ditions are equivalent: 

1° for each strictly irreducible representation T of A there 

exists a scalar &m such that 

T((a - ̂ T)
2) = 0 

2° CCx,a],al2e Rad A for each xeA 

3° I C Cx,aJ ,a]lg, = 0 for each xeA. 

Here Tx,y3 * xy - yx and Jxl^ denotes the spectral radius of x. 

These conditions are related to the treatment of a "weaker* 

commutativity in Banach algebras. We intended to show that they 
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have an appropriate analogue for higher powers as well. 

For an a&A, denote by D the commutator operator on A, 

i.e. D x » ax - xa. We shall use the formula for the n-th ite-
a 

ration: 

<«ч?o(ü) (-ł)k-k x « и
-

k 

Proposition. Let a be a fixed element of a Banach algeb

ra A, T a strictly irreducible representation of A, n a natu

ral number. Then the following conditions are equivalent: 

1° there exists a scalar A^ such that T((a - fl-p)
n
) * 0 

2° T(Dj x)
n
 = 0 for each xeA 

3° |T(l£ x)l^ « 0 for each xeA. 

Proof. Obviously D x » D^ * x for each scalar h . Than, ^ a a— A, * 
for each representation T of A and be A, we have 

T((lg x))n * (T(lg x))n •[ J kS 0(
B)(-l) kT(W k T(x) T(b)nTkJ n 

Apart from scalar coefficients, each summand of the last 

expression is of the type 

T(b) X T(x) T(b) X 2 T(x) T(b) d J ..... T(x) T(b) n 

with 0-6 j ^ n arbitrary. As it is impossible to have 

jx< n, - jx + j2^0,..., - j n - 1 + Jn<0| On>0, each summand 

contains T(b) with k£ n. 

Now, assume 1° and set b » a - A,-, so that TCb)n * 0, and con

sequently TCCP x) n • T(Dg x) n » 0 as well. 

The implication 2°—> 3° is trivial. To prove 3°—•*• 1° 

we shall apply the Jacobson density theorem. Assume 3° and con

sider a fixed strictly irreducible representation T of A into 

L(X), the algebra of all linear operators on a vector space X. 
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The strict irreducibility of T enables us to endow X by a norm 

in which X becomes a Banach space and all T(a) (acA ) are boun

ded (for example in 121). 

First we shall show that there exists a polynomial p of 

degree not exceeding n such that p(T(a)) » 0 and finally that 

it has only one root* Suppose not. It follows that 1. T ( a ) , . . . 

...,T(a)n are linearly independent so that there exists a ueX 

such that vectors u, T(a) u , . . . , T ( a ) n u are also linearly inde

pendent* According to the density theorem [23 there exists an 

xe A, for which 

T(x) u « 0 

T(x) T(a) u * 0 

T(x) T(a)11"1 u • 0 

T(x) T(a)n u • u. 

It follows that T(D£ X ) U =- u whence |T(Dn x) ̂  > 1 which is a 

contradiction to 3°. Let p be a polynomial of minimal degree 

for which pT(T(a)) = 0* Suppose ^ , X> a r e "two different roots 

of pT* There exist non-zero vectors u-L,u2eX such that T(a) u-̂
 a 

= ^1 ui> T(a^ u2 = ^2 u2* Agfiini there exists an xeA such 

that T(x) ux » u2f T(x) u2 * (-l)
n u-L. It follows that 

T(Dj X) (̂  + u2) * 

"jfc%(n) (-1)n""kIT(a>kT(x>T(«)n'"kui + T(a)kT(x)T(a)n"ku2] 

- j „ <-D-» (I) {»r* *l •* •*! *.-'<-»%} 

.£. <-»-' (i) *s* -s«. •,!„(;) « » - u r ^ .. 
- (A.x - ^ 2 )

n (ux + u 2), 
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whence ITCD^ x) )^ > I X^ - A^l which is again a contradiction 

to 3°. 

The proof is complete. 

The radical being the intersection of kernels of all stric

tly irreducible representations we obtain also the following 

Corollary. Under the same assumptions as in the Proposi

tion, the following conditions are equivalent: 

1° for each strictly irreducible representation T of A, there 

exists a scalar A T such that T( (a - Sl^) ) = 0 

2° (Dn x) ne Rad A for each xe A 

3 ° I -^ x 1̂  = 0 for each x e A. 
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