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COMMENTATIONES MATHFMATICAE UNIVERS1TATIS CAROLINAE 

22,2 (1981) 

ON THE DIFFERENTIABILITY OF MULTIVALUED MAPPINGS, I 
LE VAN HOT 

Abstract: The concept of H.T. Banks and M.Q. Jacobs L2j 
of d i f ferent ia l s of multivalued mappings i s extended from re 
f l ex ive Banach spaces to loca l ly convex spaces. Moreoverf so
me properties of differentiable multivalued mappings are de
rived. 

Key words: Locally convex spaces, d i f ferent iable map
pings, multivalued mappings. 

C lass i f i ca t ion: Primary 47H99 
Secondary 36A05 

1. Preliminaries. In th i s paper, we sha l l consider only 

rea l l o c a l l y convex spaces. Let X be a l o c a l l y convex space 

( l . c . s . ) , whose topology T/ i s induced by a family of continu

ous seminorm P . We denote the family of a l l bounded (bounded 

c losed, bounded convex c losed, respect ively) non-empty subsets 

of X by Jo(X) ( ^ (X) , <£0(X) r e s p . ) . For each p ^ P w e define a 

pseudometric dp on .$(X) by 

dp(A,B) = i n f { 3 t > 0 ASB + XSp and B9k + OiSpl 

* max{supA inf p (x-y) , sup inf p (x-y)?, 
ote A t>eE> <^e & «eA 

where Sp * { x € X |p (x) i r l3 . We denote the closure of a se t A+B 

by A+*B. Put X * ^ 0 ( X ) x <<f0(X)/rv , where the equivalence 'V 

i s defined by: (A,B)rx/(C,D) i f f A+*D » B+*C. Denote the c lass 
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containing (AfB) by CA,B] ani define 

[AfB] • ECfD] * [A**Cf^+*D] for [A,BJf [C,D] e X, 

aUfBJ « IX A, AB] if SiZ 0 and «A,B] =- 11 5V. i Bf U! AJ if 

% < 0. 

We use the following 

Embedding theorem 14]• 

1) X is a linear space. 

2) The famil.y P * {pjpePS of seminorms on X defined 

by p([A,BJ) = dp (A,B) induces a locally convex topology % 

on X. 

3) The map se: ^0(X)—-> X defined by -ae(A) « llAf{05] is 

isometric in the following sense: jKae(A) - ^e(B)) » dp (AfB) 

for all AfB e ̂ 0(X) and for continuous seminorms p on X. 

Now we turn to the definition of differentiability of 

multivalued mappings. 

Let M be a set and let F be a map of M into SP0(X)i then 

we define a map F of M into X by: 

F(m) » ae(F(m)) * tF(m)f{0l] for all meM. 

If F is a map of M into Xf then it is clear that there 

exist maps A, B of M into SrfQ(X) such that F(m) = rA(m)fB(m)J 

for all acU and we write F * [AfB]. 

Definition 1. Let X, Y be locally convex spaces. A map 

F of X into *€(Y) is said to be positively homogeneous if 

F(tx) « tF(x) for all xeX and t>0. 

In the remainder of this section we always suppose that 

Xf Y are locally convex spaces, SI is an open subset of X9 

F is a map of IX into <£JY). 
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Definition 2. (H.T. Banks and Q.M. Jacobs £2].) Tha 

mapping F is said to be directionally differentiable at 

x 0 6 Si iff the mapping F has directional derivatives in 

every direction h of X; i.e. for each h e X there exists 

F(x0+th) - #(x0) A 
U m + - ^ — ^»D +F(x 0)(h). 

This means that there exist positively homogeneous maps 

A(x )(•), B(xQ)(*) of X into ^(X) such that for each con

tinuous semi norm p on Y, for each h e X and t>0 such that 

xQ+th e SI f the function <-*> (h,t) defined by 

o)p(hft) * dp(F(x0+th) + B(x0)(th)fF(xQ) + A(x0)(th» 
<x>D(hft) 

satisfies the condition lim, —-~ » 0. 
i-»0+ t 

If B+F(x ) » CA<x0),B(x0)3 6L(XfX) and lim 'V*'** » 0 

uniformly with respect to h on each bounded suoset of X for 

each continuous seminoma p on Tf then F is said to be Frachat 

differentiable at xQ; in this case we write DF(xQ)(h) * 

= D^F(x0)(h). 

We say that F is strictly conically differentiable at x0 

if F is directionally differentiable at xQ and B#F(xQ)(h) € 

£ '&>( ̂ (X)) for each hcX; i.e. there exists a positively 
A 

homogeneous map A(xQ) of X into *i?0(X) such that D^F(x0)(h) * 

« [A(x0)(h)f*03] for all h€X. In this case we write 

D4rF(xQ)(h) • A(x0)(h). 

2. Some properties of differentiable mappings, through

out this section X, Y, Z denote locally convex spaces, SI an 

open subset of X, F a map of Si into <£0(X). Let T eL(XfX> 
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and define maps Te* ?Q(X) — > <eo(I} and T*L(X,Y) by * CU) * 

* T(A) and T(i:A,BJ) • LTC(A),TC(B)3 for A e <£Q(X) and CAfB3 s 

e X (see L5D ). 

Lemma 1. Let T e L(Y,Z) be given and let F be directio-

nally differentiable at xQ. Then the map fc o F of XL into 
ceo(Z), defined by (TcoF)(x) * Tc(F(x)) for all x e SI , is 

directionally differentiable at xQ and D+(TC ° P)(xQ)(h) » 

» $(D+F(x0)(h)). 

If F is strictly conically differentiable at x0, then 

Tc© F is also strictly conically differentiable at xQ and 

D+(Tco F)(x0)(h) • Tc(D^F(xQ)(h)). 

Proof* The proof is obvious, since T « F * T© F. 

Theorem 1. Suppose that F is directionally differenti

ate at x0 and D^F(x0)(h) « rA(xQ)(h),B(x0)(h)3. Assume that 

F satisfies the following condition: 

(1) There exists a map C of H into <£0(Y) such that 

for each continuous seminoma p on Y and for each h 6 X, and 
<u0(h,t) 

each t>0 such that x • th e il we have lim — * —• * o, 
O fc-*0+ t 

where 
6Jp(h,t) « dp(F(x0+th),F(x0) + C(xQ+th)). 

Ulan F is strictly conically differentiable at xQ if one 

of the following two conditions is satisfied: 

a) I Is a semireflexive space or a space of the type LF, 

b) for each heX, one of the sets A(x0)(h),B(xQ)(h) is 

weakly compact. 

Moreover, if T is normable and each map F which is di

rectionally differentiable at xQ and satisfies the condition 

(1), is strictly conically differentiable at xQ, then Y is 
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complete. 

Proof. 1. The condition (1) can be written as follows: 

p(F(x0+th) - F(x0) - C(x0+th)) * <̂ >p(h,t) • <Xt) if t -* Q*. 

F(x+th) - F(xD) 6(x +th) 
Then DJF(xJ(h) = lia 2 L_ « n B 2 

+ 0 t-*o+ t t - * o + t 
6(x ^n""1!*.) 

* lim 2 _ e ̂  eg (Y))8 

where A8 denotes the sequential closure of the set A. Now the 

assertion of the first part of our Theorem follows from Corol

laries lf4 [53. 

2. Let Y be a normed space and let the assumption of the 

part 2 of Theorem be satisfied. We shall prove that the space 

Y coincides with the completion Y of Y. Let y e Y be given; 
00 

then there ex i s t y n e Y ( n » l f 2 f . . . ) such that y » -S y n and 

-2 \l y - II < co . Put . 
1 *-

1 - 3nl t l for t r l t t e ^ i -

| - ij> n i t I for t:gjj-£r ^ l^j f" 

- | + | n i t ! for u f j j - M t U i 

0 for t ; ltl.> | 

|3 n ( t ) • J o c C n ( ^ ) d r for n = 1 , 2 , . . . f f ( t ) * 1§ /3n ( t )yn£ /Y. 

Then i t i s easy to verify that f ' ( t ) » D f ( t ) ( l ) * -£o6 n ( t )y n . 

Let hQe X, h 0 +O f X1 « 4th 0 | t e H l . We define a map u of ^ 

into ^0(Y) by 

u(th 0 ) • iS /3 :Q(t)ynJ € <f0(Y) (as £ n ( o ) = o f or a l l n and 

for t + Of /3 n ( t ) + 0 only for a f i n i t e number of n ) . Let i be 
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the inclusion of Y into Y. Then the map ic ° u is Fr^chet 

differentiable on Xlf since ic^u(th0) « lit(t)} ,{QiJ and 

D(i^7u)(th0)(h0) *Ht'(t)}f{OJ3 for all teR. Furthermore, 

we know that the nap i is an isomorphism of Y onto X C see 

Remark 3 after Theorem 3 C5J). Hence the map u » (1)" (ic° VL) 

is Fr^chet differentiable on X^, By the Definition 2f it fol

lows that u is Fr^chet differentiable on X^. Let 3f be the 

projection of X onto X-• We define a map P of Si into ^ ( Y ) 

by P(x) * u(^r (x-xQ)) for all x e II . Then, of course, F 

satisfies the condition (1) with C(x) * F(x), and P is Fr£-

chet differentiable on XL (so at xQ) and DF(xQ)(h) -

= Du( o )(3r*h). By the assumption, P is strictly conically 

differentiable at x , so there exists an Ae(tfQ(Y) such that 

DP(x0)(h0) »fA,{On • Then 

LA fioJ] = i(D F(x 0 ) (h 0 ) ) « J(Df i (o) (h 0 ) ) * 

« D ( i ^ u ) ( o ) ( h 0 ) = liy}9ioilf 

where A denotes the closure of A in Y. Hence: y c l y i s A » AS Y. 

This means that YsY and this completes the proof* 

Theorem 2» (The mean value theorem.) Suppose that P 

i s direct ional ly dif ferent iable on H f D^P(x)(h) * r A ( x ) ( h ) , 

B(x)(h)3 for I 6 H f heX and l e t x0»-*i« -0- be given such 

that { tx + ( l - t ) x 1 | 0*t£ll Q £l . Put k » x i ~ x
0 « Then: 

1) I f D^P(x0+tk)(k) * CA(x 0*tk)(k)Hon eae( ^ 0 (Y) ) for 

a l l t €[0,1-1 and i f Y i s a space of the type LPf then there 

ex i s t s a se t Q(-cofx1) e ^0(Y) such that F(xx) = FUQ) +* 

^ Q ( x 0 , x x ) . 

2) If Y i s a regular inductive l imit of a sequence of 

aetr i iable loca l ly convex spaces and M = conv { A(x0+tk)Oc)l 0^ 
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.£ t -41? and N • coif? 4B(x0+tk)(k> | O^t^l? are ••parable 

and weakly compact, then there exist sets A(x 9x-j)9B(xo9x~)€ 

e €0(Y), A(xofx1)£Mf B(x0,x1)cN such that F(xx)+* B(X0,^)-B 

- F(xQ) +*A(xofXl). 

Proof. By the mean value theorem for singlevalued map

pings (see [11) it follows that: 

CF(x1),F(x0)3 - F(x1) - F(xQ) • F(x0+k) - $(x0) e 

6 ciiv {D 4 fF(x 0+tk)(k) |0 .4t .4lf . 

1) Let Y = lim Y be a spaca of th« type LF and let 

D+F(xo+tk)0e) « CA(xo+tk)(k)f{0l3 e a*( ro<X)) for all t£L0f13. 

If we put G(t) « F(x0+tk) for t ef09l + 2d] f where cf is a 

positive number such that x0
+tk e Jd for all t efOfl + 2oO f 

then we obtain a map G of 110,1 + 2d"} into *Tf0(Y) which is di-

rectionally differentiable on fOfl + 2<S )• It implies that Gf 

so as Gf is continuous on COfl + <f J • It is easy to verify 

that the set U-tG(t>|0=: t ̂ 1 +cT? » U€F(xQ+tk)| 0 *-1 ̂ 1 +cT} 

is bounded in Y. By Theorem 6.5 (I73f chapt. II) there exists 

nft, such that U { F(x +tk))0£t -̂ 1 + d*£jcYfl f i#e# F(xfi+tk) e 
,ù * * ô 

€ in (Yn ) where in is the inclusion of Yn into Y, for all 
0 0 O . 0 

t eCO,l +cf J . Then, of course, we have rA(x0+tk)(k)f<£OjJ« 

« D.F(x + t k ) ( k ) e t w (Yw ) for a l l t e £ 0 , 1 3 . We claim that + o n 0 n 0 

A(x0+tk)(k) e < 0 (Xn )• Suppose that i t i s not true, then tbm* 

re ex i s t t o e r o , 1 3 and a point y c A(x0+tQk)(k) such that jr$ 

4 Yn . Since Yn i s a closed subspace of Yf there e x i s t s a 
o o . 

convex c irc led closed O-neighborhood N in Y such that 

(y + 2N)nYn « 0 i . e . A(x0+tQk)(k) ^Yft + 2N. Bien i t f o l -
o o 

lows that ([A(xQ+ tok)(k)f-E053 + % ) n in (Yn ) » 0 9 wh«r« 
o o 
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t^l m KA f E3€T|AcB + N and B£ A • Nj i s an tf'-neighborhood 

in Y (see [53 ) . This contradicts the fact that rA(x0+t0k)(k) f 

{0 5 J € £<? ) . This means that D^F(x +tk)(k) « U ( x +tk) (k) f 

{053e i n (ae( <tf0(Yn ) ) ) for a l l t e t 0 , 1 3 . By the mean value 
o o 

theorem for singlevalued mappings we have that [F(x^) fF(x 0 )3£ 

ein (9€( %l*n ) ) ) . But we know that ^ ( ^ ( Y ^ )) i s a comp-
0 9< ° * 

l e t e subset of XL (see £4J) f as Yn i s an F-space, and i n i s 
o o o 

an isomorphism of Y n into Y (see £53). Hence tF(x1)fF(x0)J e 
A o 

6 in (*e( ̂ 0
( Yn **** T h u 8» t h e r e exists a set QU^x-^ e 

O 0 

e ^ 0(Y n ) £ ^0(Y) such that TF(x1)fF(x0)J * CQ(x0>x1)t«COJJ . 

Then 
F(xx) * F(x0) ^ Q ( x o l x 1 ) . 

2. Put Vtt *iik,B]e Y|ASM fB£N? f then ®t is a convex 

subset of Y and by Proposition 2 C5J is ^(YfY')-compact. The

refore W i s 3(YfY')-closed and it implies that Til is closed 

in Y in topology £ , where X is the topology of Y. It is 

clear now that rF(x1)fF(x0)3 € M , since D^(x0«*tk)(k) Q M 

for all t eLOf13. Therefore there exist seta A(xo9x-^)£ .M, 

B(x0>x1)£N such that [ F(x1) ,F(xQ)3 « £A(x0>x1) fB(xofx13 fwhich 

means that F ^ ) * * B(x0>x1) • F(x0+^A(xQfx1). 

This completes the proof. 

Theorea 3. Suppose that F is strictly conically diffe-

rentiable on H (i.e. F is strictly conically differentiable 

at each point x 6 £1 ). Then 

1. I>+F(x)(h) is a singleton for all x e il and he X; 

2. if £L is connected and Y is quasi-complete, then for 

each x0 e XL there exists a unique singlevalued mapping f of 
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H into Y such that: 

P(x) « P(x0) + f(X) 

and 

D+F(x)(h) * iV+t(x)(h)l 

for all x e .0. ; h e X. 

Proof. We divide the proof in two steps. 

Step I. First of all we suppose that Y is the space of 

the type LF. For each x e il , we take a convex neighborhood 

U(x) of x contained in il .By the mean value Theorem 2 for 

each zeU(x) there exist sets A(x,z) and A(z,x) of 5?0(Y) such 

that F(z) * F(x) + *A(x,z) and P(x) = F(z) +*A(z fx). Then 

P(z) * F(z) +* A(xfz) + * A(z,x) or A(x,z) • * A(zfx) * -€05. 

The latter identity holds if and only if A(xfz]if A(zfx) are 

singletons and A(xfz) * - A(zfx). Let g(xfz) be a unique ele

ment of A(x,z). Then F(z) » F(x) + g(xfz) for all xeTJ(x). It 

is easy to verify that the map g(xlf * ) of U(x) into Y is di-

rectionally differentiable on U(x) and Da|F(x)(h) » {D.|lg(x,x)(h)jf 

for all heX. This shows that D^F(x)(h) is a singleton for all 

x e £l and h eX. 

If il is connected, put Q * *£x;x € il and there exists a 

point f (x)€ Y such that F(x) « F(x0) + f(x)l* One can verify 

that Q is open and closed in il . From connectedness of XL it 

follows that il = G and it is clear that f is unique. 

Step II. We denote the bidual space of Y by X" and let 

Y" be endowed with the & -topology x?M , where # is the fami

ly of all equicontinuous subsets of l'. Then the canonical em

bedding (evaluation map) J of Y into Y" is an isomorphism of 

Y into Y". Let y 'e Y *, then by Lemma 1 the mapping yc' o F is 

strictly conically differentiable on il and by step I, 
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D^(ycoF)(x)(h) « yc(l^F(x)(h)) is a singleton for all x e 

e SX , h€X, y'e X'f since R is an F-space. It follows that 

D^F(x)(h) is a singleton, since X' distinguishes points of 

X.. Denote the unique element of D^F(x)(h) by u(x)(h)f then 

for each x e XL f u(x)( • ) is a positively homogeneous map

ping of X into X. If H is connected, then for each y'e X* 

there exists a map f , of XL into R such that yc(F(x)) « 

* yc{F(xo}) + fy'(x) and V y /
( x ) ( h ) s y'(u(x)(h)). Now we 

define a mapping v(x) of X' into R by v(x)(y') • f ,(x) for 

each x 6 II . Then we claim that v(x) eX" and D^v(x)(h) =-

» J(u(x)(h)) for each x e Jl , heX. We prove that 

i) v(x) is a linear functional of X' into R. Let y'fz
#6 

e X' and dCf |3 e R be given, then 

Vfocy'+/3z' " <*
f
y' * /3V>(x)(h)

 = Vrfw/*/fr/
(x><h> ~ 

- <*D+fy/(x)(h) 1. /8D+f1#(x)(h) * (<*y'+ £z')(u(x)(h)) -

- e*>y'(u(x)(h)) - /3z'(u(x)(h)) « 0 

a n d (fo-y'+/3z' * ^ y ' * ̂ V * 1 ^ 1 " 0 ; 

It follows that -^y/^s/t*) * ocfy/(x) • /^fz/(x) for all xe 

e XL . Then v(x)(ocy'+ /Jz') • <*v(x)(y') • ^3v(x)(z')f i.e. 

v(x)( • ) is linear. 

ii) v(x)eX". For this purpose set 

T « (P(x)UF(x0))° »4y'e X'| < y',y>Ul for all yeF(x)U 

UF(x0)J. 

Then V is an €?-neighborhood in the strong topology /3(X'fX) 

oh X#. For each y'e V we have: 

lv(x)(y')l • \t (x)l» d«f y (x)i,{Oi) » d(yc'(F(xQ)) • 

* *y (x),yc'(P(x0))) - d(yc(F(x)),yc'(P(x0))^2. 

This shows that v(x) is a linear cemtinuous functional on 
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(Y#, (3(Y',Y)) and therefore v(x)eY". 

iii) D^v(xHh) « J(u(x)(h)) for all h e X. Let p" be a 

continuous seminorm on (Y"f t?n ), SpH « -ly" e Y":p"(y") £ 1}. 

Then there exists an equicontinuous subset E of l' such that 

Sp„ * E° ={y"eY": |<y"fy'>| ̂ 1 for all y#6 Ej. Let Sp » °E= 

= 4y e Y; | <y ',y > | £ 1 for all y'e E and let p be the gauge 

functional of the set S^, Then for each x <s H , h£X f t>0 f
 % 

x -f th e il and for each y 'e E we have: 

|<v(x) +th) - v(x) - J(u(x)(th)),y'>i * I f (x • th) -
y 

• fy (x) - y'(u(x)(th)) ) • d(yc(F(x0)) + fy (x + th), 

yc(F(xQ)) + fy (x) + yc(D+F(x)(th))) « d(yc(F(x + th))f 

yc(F(x) + D^F(x)(th)))^dp(F(x + th)fF(x) + D^F(xHth)) = 

- o)p(h,t) 
cOD(h, t ) 

and lim < ̂  « 0, since p is a continuous seminorm on Y 
A 

and F is directionally differentiable at x and D^.F(x)(h) * 

« x(D^F(x)(h)). Then p"(v(x + th) - v(x) - J(u(x)(th))) £ 

£ s u p - f | < v ( x + th) - v(x) - J (u (x ) ( th ) ) , y '> ) , y ' e B i -4 

£ ^ p ( h , t ) . 

This means that D+y(x)(h) « J(u(x)(h)). Put G(x) • Jc(F(x)) -

- v(x). Then 

G(x) * Jc~^F(x) - v(x), where v(x) = C-Ev(x)l f^0}3 

D+G(x)(h) * D ^ J ^ F H x H h ) - ll€j(u(x)(h))if-fOn - 0. 

This means that G (and simultaneously G) f is constant on SI . 

This implies that Jc(F(x)) - v(x) • Jc(F(xQ))f 

v(x)c Jc(F(x)) - Jc(F(x0)). 

On the other hand, Jc(F(x)) = J(F(x)) = J(F(x))f since 

F(x) is a complete subset of Y and J is an isomorphism of Y 

into Y". Then v(x) eJ(F(x) - F(xQ))£J(Y). Put f(x) « 
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* J ^ M x ) ) , then F(x) » F(xQ) • f(x). Of course, D^F(x)(h)» 

= {u(x)(h)5 « A D^f(x)(h)i. This completes the proof. 

Remark 1. We can define the differentiation of the map

ping F: XI —^^B(Y) in the same way as De Blasi [33. 

Definition 3. The map F is said to be directionally 

differentiable at x e XI iff there exists a positively homo

geneous map D+F(x ) of X into ^(X) such that for each con

tinuous seminorm p on Y and for each h e X and t > 0 such that 
o>D(h,t) 

x„ + th e XI we have lim , -—-*-• = 0. where 
o i-*o+ t 

o (hft) » dp(F(xQ+ th),F(x0) • D+F(x0) (th)). 

It is easy to see that if F is directionally differenti

able at xQ, then the map co F of XI into ^ ( Y ) defined by 

(co F(x) -= conv F(x) is strictly conically differentiable at 

x0, and D+(co F)(x)(h) =- D^F(x)(h). 

Theorem 3*. Let F; Si —.> 3MY) be directionally diffe

rentiable on SI . Then: 1) D^.F(x)(h) is a singleton for a H 

x e SI and heXj 2) if SI is connected and Y is quasicomple-

te, x e XL , then there exists a unique map f of Si into Y 

such that 

F(x) * F(xQ) + f(x) 

D+F(x)(h) -» *D+f(x)(hH 

for all x e XI and h e X. 

Proof., 1. By Theorem 3, D^F(x)(h) • D+(co F)(x)(h) is a 

singleton for all x e Si , h e X. 

2. % Theorem 3 there exists a map f of SL into Y such 

that (co F)(x) « (co F)(xQ> + f(x); D^F(x)(h) * -f D^f (x)(hH. 

Set G(x) * F(x) - f(x). Let p be a continuous seminorm on Y. 
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Put g(x) « dp(G(x),G(xQ)). Using the same arguments as in the 

proof of Theorem 3.2 £ 3J, one can prove that D^g(x)(h) « 0 

for all x e II , heX. It follows then dp (G(x)fG(x0)) « 0 

for all x e H and for all continuous seminoras p on Y. This 

means that G(x) = G(xQ) » F(xQ) and hence F(x) « F(xQ) + f(x). 

Remark 2. If Y is not quasicomplete, then the second 

part of Theorem 3 is not true. For instance, we take a noraed 

space which is not complete. Let Y be the completion of Y, ye 

e Y, y$Y* For each n, choose zn^l such that ily - *n I! -

-=(4n2)"1. 2~n""2. Put ŷ ^ « zlt yn « zn - 8 ^ for n « 1,2,... . 

Then 

S y n
 s y, 2 4n2 It y n II < • oo . 

Set 

- 1 + i + t f o r l - | » t * l - f e 

oCn(t) « J 1 - t for t : 1 - | j j £ t * l 

I 0 for t: t ^ l - | or t > l 

l^nft) « J0 oCn(r)d'V for n « 1,2,... 

Then £n(t) » 0 for % £1 - i$ / 3
n

( t ) s "TF f o r t~lm 

4n 
Define 

f(t) « S 4n2/3n(t)yn 

F(t) = (f(t) + S1)n Y e ^ 0 ( Y ) , 

where S-̂  * "tye Y: II y II h 1\. Then it is easy to verify that F 

is strictly conically differentiable on R and 

D+F(t)(l) « <2c6 a(t) 4n
2yn3; D^F(t)(- 1) » - D^F(t)(~ 1) « 

•{ - X ocrn 4n
2yn? . 

We suppose that there exists a map g of R into Y such that 
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F(t) * HO) + g(t). Then F(t) * F(0) + g(t) « S 1 • f(t). 

Hence y s f(l) * g(l)cY and this contradicts the assumption 
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