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COMMENTATIONES MATHFMATICAE UNIVERSITATIS CAROLINAE
22,2 (1981)

ON THE DIFFERENTIABILITY OF MULTIVALUED MAPPINGS, |
LE VAN HOT

. Abstract: The concept of H.T. Banks and M.Q. Jacobs [2]
of differentiale of multivalued mappings is extended from re-
flexive Banach spaces to locally convex spaces. Moreover, so-
ng properties of differentiable multivalued mappings are de-
rived.

Key words: Locally convex spaces, differentiable map-
pings, multivalued mappings.

Classification: Primary 47H99
Secondary 36A05

1. Preliminaries. In this paper, we shall consider only
real locally convex spaces. Let X be a locally convex space
(l.c.8.), whose topology T is induced by a family of continu-
ous seminorm P, We denote the family of all bounded (bounded
closed, bounded convex closed, respectively) non-empty subsets
of X by R(X) (€(X), c€0(X) resp.). For each pcP we define a
pseudometric dp on J3(X) by

inf{A>0 AcB + ASp and B£A + A Sp}

dp(A,B)
= max{sup inf p(x- sup inf p(x-
p5 ( y)’ B ﬁp( y)}’

where Sp = {x¢ X|p(x) £1%, We denote the closure of a set A+B
by A+*B. Put X = 4 (X) < €,(X)/rv , where the equivalence ~
is defined by: (A,B)~/(C,D) iff A+*D = B+¥C, Denote the class
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containing (A,B) by [A,B] ani define

[A,B] + [C,D) = [A+*C,%+*D] for [4,B],[C,D] € X,
ALA,B]l =[AA,AB]lif 3 > O and AL[A,B] = [|AIB, A}l A] if
A< 0.
We use the following

Embedding theorem [4].
1) X is a linear space.

2) The family P = {P|p € P} of seminorms on X defined
by P(L[A,B]) = dp (A,B) induces a locally convex topology 2
on X.

3) The map %e: ¢ (X) —> X defined by oe(A) = [4,{01] is
isometric in the following sense: P(2e(A) - 2¢(B)) = dp (A,B)

for all A,B € ¢ (X) and for continuous seminorms p on X.

Now we turn to the definition of differentiability of
multivalued mappings.

Let M be a set and let F be a map of M into ¢, (X); then
we define a map F of M into X by:

‘F(m) = %(F(m)) = [F(m),{0}] for all meM.

If F is a map of M into )A(, then it is clear that there
exist maps A, B of M into ¥, (X) such that F(m) = [A(m),B(m)]
for all me¢ M and we write F = [A,B].

Definition 1. Let X, Y be locally convex spaces. A map

P of X into c%(Y) is said to be positively homogeneous if
F(tx) = tF(x) for all xeX and t=0.

In the remainder of this section we always suppose that
X, Y are locally convex spaces, {1 is an open subset of X,

‘F is a map of Q into <_(Y).
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Definition 2. (H.T. Banks and Q.M. Jacobe [2].) The
mapping F is said to be directionally differentiable at
xg € .Q.. iff the mapping # has directional derivatives in
every direction h of X; i.e. for each h € X there exists

tn, F(x°+th1 - Fx,)

= p,F(x ) (h).

This means that there exist positively homogeneous maps
A(x )(+), B(x,)(+) of X into % (Y) such that for each con-
tinuous seminorm p on Y, for each heX and t >0 such that

x +th € O , the function wp(h,t) defined by

wp(h,t) = dp(F(x, +th) + B(x,)(th),F(x,) + Alx,)(th))

wa(h,t)
satisfies the condition lim —2—'—- = 0.
t— ot t

a A (h,t)
If D, F(x_) = [A(x,),B(x, )] e L(X, ) and lin —Ro'"" a0
(3 ° ° ’ + o> Ot t
uniformly with respect to h on each bounded subset of X for

each continuous seminorm p on Y, then F is said to be Fréchet
differentiable at x ; in this case we write Df‘(xo)(h) =
= p,F(x,) (m).

We say that F is strictly conically differentiable at x,
if F is directionally differentiable at x, and D*f(xo)(h) €
e 22( ‘EO(Y)) for each he X; i.e. there exists a positively
homogeneous map A(xo) of X into ¢,(Y) such that D*f(xo)(h) =
= [A(x,)(h),103] for all h €X. In this case we write
D,F(x,)(h) = A(x,)(h). ’ |

2. Some properties of differentiable mappings. Through-

out this section X, Y, Z denote locally convex spaces, (L an
open subset of X, F a map of £ into <€ (Y). Let T eL(X,Y)
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and define -a{)s To: €o(X) —> %o (Y) and "st(l'E,f) by T,(a) =
= T(A) and T([A,B]) = [T (A),T,(B)] for A € £ (X) and [A,Ble
e X (see [5]).

Lemma 1. Let Te L(Y,Z) be given and let F be directio-
nally differentiable at x . Then the map T, 6oF of (1 into
€ ,(2), defined by (T, eF)(x) = T (F(x)) for all x e &L , is
N
directionally differentiable at x, and D,(T, ° F) (xo)(h) =
A A
= T(D,F(x ) (h)).

If F is strictly conically differentiable at x,, then

T, F is also strictly conically differentiable at x, and
D, (T, e F)(x,)(h) = T (DF(x )(h)).
T ~ A
Proof. The proof is obvious, since T,o F = To F,

Theorem 1. Suppose that F is directionally differenti-
A
abtle at x, and D,F(x, )(h) = [A(x )(h),B(x,)(h)]. Assume that
F satisfies the following condition:
(1) There exists a map C of Q into <%, (Y) such that

for each continuous seminorm p on Y and for each heX, and

@y (h,t)
each t>0 such that x + th e O we have lim —B—"— = o,
° ~t—>ot t

where

wp (h,t) = dp(F(xo-O-th),F(xo) + C(x°+th)).

Then F is strictly conically differentiable at x, if one
of the following two conditions is satisfied:

a) Y is a semireflexive space or a space of the type LF,

b) for each he X, one of the sets A(x,) (h),B(x,)(h) ie
weakly compact.

Moreover, if Y is normable and each map F which is di-
rectionally differentiable at X, and satisfies the conditiom

(1), is strictly conically differentiable at x_ , then Y is
- 270 -



complete.
Proof. 1. The condition (1) can be written as follows:

B(F(x +th) - Fix,) - Elx oth)) = @p(n,t) = oft) if t — 0",

R F(x +th) - F(x,) Clxy+th)
Then D_.,F(xo)(h) = lim = lim  ~——
t—>ot t t—>0 t
C(x " 1n)

=”}inm -—1-— € m"
where A® denotes the sequential closure of the set A. Now the
assertion of the first part of our Theorem follows from Corol-
laries 1,4 [51.

2. Let Y be a normed space and let the assumption of the
part 2 of Theorem be satisfied. We shall prove that the gpace
Y coincides with the completion Y of Y. Let Ye 4 be given;
then there exist y e Y (n=1,2,...) such that y = Z ¥, and

llyn|t<oo . Put .

1 -3nitl for t:h.li-}%_

%- 3- nitl for t:Ix'lx_£ ltléﬁ-
-go-gnltl for t: g-ﬁ—.‘_— 1tl £

0 for t: ltl?.%-

o(t) =

Bp

t
Palt) = [ag(r)ar for n =1,2,..., 210) = 2 p )y e T

Then it is easy to verify that £°(t) = DE(t)(1) = et (t)y,.
Let hye X, h 40, X; = {th | t R}, We define a map u of X;
into €,(Y) by

ulthy) = {3 g (t)y i € €5(Y) (as B(e) = 0 for all n and
for t+0, B,(t)+0 only for a finite number of n). Let i be

- 271 -



the inclusion of Y into 'f,. Then the map g:l is Fréchet
differentiuble on X;, since I_ o u(th)) = [1£(t)3,{03] and
D({ o ) (thy)(hy) =[1£°(£)3,403) for all t cR. Furthermore,
-we know that the map { is an isomorphism of ¥ onto ?(see
Remark 3 after Theorem 3 [5]). Hence the map 4 = (/i\.)-l(io\u)
is Fréchet differentiable on X,. By the Definition 2, it fol-
lows that u is Fréchet differentiable on X,. Let o be the
projection of X onto X;. We define a map F of A into €,(Y)
by F(x) = u(ar (x-x,)) for all x € 1 . Then, of course, F
satisfies the condition (1) with C(x) = F(x), and F is Fré-
chet differentiable on {1 (so at x_) and Dﬁ(xo)(h) =

= Dd(a )(orh). By the assumption, F is strictly conically
differentiable at x_, 80 there exists an A« ¢, (Y) such that
DF(x ) (h ) = [4,£031 . Then

1(D Fx ) (h)) = 1(DE( ) (hy)) =
Diigow(o)(h) =iy}, (i1,

LE,{03]

where A denotes the closure of A in ’YV. Hence: yei{yd = A = AcY.

This means that Y<Y and this completes the proof.

Theorem 2. (The mean value theorem.) Suppose that F

is directionally differentiable on Q , D*f‘(x)(h) =[A(x)(h),
B(x)(h)] for x ¢ ) , heX and let x,,x; & {1 be given such
that {tx +(1-t)x; | 0<t£1}<c 0 , Put k = xy-x . Then:

1) If DF(x +tk)(k) = [A(x +tk)(x)) {031 € 2( £ (¥)) for
all t €l0,1] and if Y is a space of the type LF, then there
exists a set Q(x,,X;) € ¢ (Y) such that F(x;) = F(X)) +*
+¥ Q(xo,xl).

2) If Y is a regular inductive limit of a sequence of
metrisable locally convex spaces and M = conv {A(xo+tk)(k)l 0«

- 272 -



£t 41% and N = Tonv {B(x *tk)(k) | 04t £17 are separable
and weakly compact, then there exist sets A(xo,xl),B(xo,xl)e
e €,(Y), A(xo,xl)sll, B(x,,X,) S N such that F(xl)+* B(zo"‘l)'
= F(x,) +* Alx,,x;).

Proof. By the mean value theorem for singlevalued map-

pings (see [1]) it follows that:

[F(xp),F(x,)] = Flxy) - Fixy) = Flxgen) - Fixy) e
e Tonv {D,Flx +tk) (k)]0 £ t £15,

1) Let ¥ = _5!' be a space of the type LF and let
D F(x oHtkIK) = (A(x o*tk) (k),{031 e 2¢( € (X)) for all t<[0,1].
If we put G(t) = F(x +tk) for t €[0,1 + 297, where o is a
positive number such that x +tk ¢ 1 for all t /0,1 + 2071,
then we obtain a map G of [0,1 + 2J] into €o(Y) which is di-
rectionally differentiable on [0,1 + 2J ). It implies that 6,
so as @, is continuous on [0,1 +J'] . It is easy to verify
that the set U{G(t)[0£t<1 +di= ULF(x +tk)|0£t <] +07¢
is bounded in Y. By Theorem 6.5 ([7], chapt. II) there exists
ng such that U{P(xg+tk)|04t 41 +d3SY, , i.e. Flx +tk) &

(o]

("
i, (?n ) where ﬁn is the inclusion of Qn into 'Y\, for all
o "o () . (\

t ¢[0,1 +J'] . Then, of course, we have [A(x +tk)(k),{0}]= ‘

= D, F(x +tk)(k)e (I ) for all tc[0,1]. We claim that
B

A(x, +tk) (k) € € Yy ). Snppoae that it is not true, then thes
re exist t €[0,1] and a point y¢ Alx +t k) (k) such that 1§
¢! . Since Y, is a closed subspace of Y, there exists a
convex circled gloeed O-neighborhood N in Y such that '

(y +2N)nY, =4 i.e. Alx +t k) (k) $!n + 2N, Then it fol-
° °

lows that ([A(x + t k)(k),{03] + ﬁh)nino('fno) = , where
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A P —_—
Uy = {[A,Ble fILSB + N and BEA + N§ is an ( -neighborhood
in ’!\ (see [5]). This contradicts the fact that [A(xo+tok)(k),

{031 € (X, ). ™is means that D,F(x +tk)(k) = [Alx +tk)(k),
]

{03)e T (2e( € (X, ))) for all t €[0,1]. By the mean value
[+] -]

theorem for singlevalued mappings we have that [F(xl),F(xo)JG
A .
€ ino(ee( €o(Y, ))). But we know that oe( ‘t’o(!no)) is a comp-

lete subset of (see [4]), as ¥, is an F-space, and 'fn is
(4 (3 °
an isomorphism of ?n into ¥ (see [51). Hence [F(xl),F(xo)J €

N ()
€ ino('ae( ?o(xno))). Thus, there exists a set Q(x,,x;) €

e ‘Eo(Yno) € €,(Y) such that [F(xy),F(x, )] = [Q(xo,xl),{0§l .
Then
F(x,) = Flxy) +* QUxyyxy).

2, Put W ={[A,Ble¥|ASM,BEN?, then %t is a convex
subset of ¥ and by Proposition 2 [5) is .3(Y,Y’)-compact. The-
refore % is 3(Y,Y )-closed and it implies that 9! is closed
in ¥ iﬁ topology 2 , where T is the topology of Y. It is
clear now that [F(x,),F(x )] e %l , since D*f(xo-rtk)(k) c L
for all t el0,11. Therefore there exist sets A(xo,xl).@.l,
B(x,,X;)= N such that [F(x,),F(x,)] = [A(xo,xl),B(xo,le ,which
means that F(x;)+* B(x ,x;) = F(x +¥A(x,,x;).

This completes the proof.

Theorea 3. Suppose that F is strictly conically diffe-
rentiable on L. (i.e. F is strictly conically differentiable
at each point x € £ ), Then

1. D,F(x)(h) is a singleton for all x € 1 and heX;

2, if O is connected and Y is quasi-complete, then for

each x, € Q "chere exists a unique singlevalued mapping f of
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N into Y such that: ‘

F(x) = F(x,) + £(x)
and

D,F(x)(h) = {Df(x)(h)}
for all x €« {1 ; heX.,

Proof. We divide the proof in two steps.

Step I. First of all we suppose that Y is the space of
the type LF. For each x ¢ £ , we take a convex neighborhood
U(x) of x contained in Q. , By the mean value Theorem 2 for
each z € U(x) there exist sets A(x,z) and A(z,x) of ¢, (Y) such
that F(z) = F(x) +* A(x,z) and F(x) = F(z) +* A(z,x). Then
F(z) = F(z) +* A(x,z) +*A(z,x) or A(x,z) +X¥ A(z,x) = {0},
The latter identity holds if and only if A(x,z), A(z,x) are
singletons and A(x,z) = - A(z,x). Let g(x,z) be a unique ele-
ment of A(x,z). Then F(z) = F(x) + g(x,z) for all zec U(x). It
is easy to verify that the map g(xy,* ) of U(x) into Y is di-
rectionally differentiable on U(x) and D, F(x)(h) = {Dg(x,x)(h)}
for all heX. This shows that D, F(x)(h) is a singleton for all
x e and heX.

If O is connected, put G = {x;x € L. and there exists a
point f(x)e Y such that F(x) = F(x,) + £(x){. One can verify
that G is open and closed in { . From_connectedneea of {1 it
follows that Q. = G and it is clear that f is unique.

Step II. We denote the bidpal space of Y by Y" and let
Y" be endowed with the 6&-topology ©" , where & is the fami-
1y of all equicontinucus subsets of Y’. Then the canonical em-
bedding (evaluation map) J of Y into Y" is an isomorphism of
Y into Y". Let y'c Y’, then by Lemma 1 the mapping y. o F is
strictly conically differentiable on f{L and by step I,
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D,(yéo F)(x)(h) = yé(n’r(x)(h)) is a singleton for all x &
€Nl ,heX, y'c Y°, since R is an F-space. It follows that
D,,!(!) (h) is a singleton, since Y distinguishes points of
‘ !.‘De-note the unique element of D F(x)(h) by u(x)(h), then
for each x ¢ . , u(x)(+) is a positively homogeneous map-
ping of X into Y. If O is connected, then for each y e Y’
there exists a map £y of O into R such that y_(F(x)) =
= yo(F(x)) + £y ,(x) and D’ry, (x)(h) = y (u(x)(h)). Now we
define a mappmg v(x) of ¥’ into R by v(x)(y°) = fy,(x) for
each x ¢ (L . Then we claim that v(x) € Y" and D,v(x)(h) =
= J(u(x) (h)) for each x € I , h eX., We prove that
i) wv(x) is a linear functional of Y’ into R. Let y’,z’c

€Y’ and Ly 3 € R be given, then
Di(fd /+pzl - OCf , - ﬂfz[)(x)(h) /+pz/(x)(h) -

- ocD+fy, (x)(h) = BDL,, (x)(h) = (xy’+ {Az’)(u(x)(h)) -
- oy (u(x)(h)) - Bs (u(x)(h)) =
and (£ wy ! +pn’ " ocfy, - Bf,,)x,) = 04
It follows that £ ./, .., (x) = ocfy,(x) + pf,,(x) for all x¢
€ 2 . Then v(x)(xy’™+ f2°) = axv(x)(y") + pfvix)(z), i.e.
v(x)( e+ ) is linear.
ii) v(;)e Y". For this purpose set

V= (F(x)UF(xo))° 2{y‘e Y| <y’yy>| £1 for all ye F(x)U
UF(x,)3.
Then V is an & -neighborhood in the strong topology R(XY’,Y)
on Y’, For each y“c V we have:
lv(x)(y)| = lr (x)= d({f (x)3,103) = a(y (F(xy)) +
+ f (x),yc(F(x ))) = d(ye(F(x)),yc(F(x ) €2,
Thia shows that v(x) is a linear continuous functional on
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(¥°, A(¥’,Y)) and therefore v(x)€ Y".

iii) Dyv(x)(h) = J(u(x)(h)) for all heX. Let p" be a
continuous seminorm on (Y, ~"), Spu ={y"e Y":p"(y") £1¢.
Then there exists an equicontinuous subset E of Y’ such that
o = E ={y"ey": J{y",y>] £1 for all y’'c B}. Let Sp = %=
={ye¥:|<y ,y>| £1 for all y’¢ B and let p be the gauge

S

functional of the set SP' Then for each x ¢ L , heX, vt>0,‘
x + the Q and for each y'c E we have:

[{v(x) +th) = v(x) - J(u(x)(th)),y >l = Ii’y (x + th) -

- £, (x) - ¥y (u(x)(th)) | = a(yo(F(x,)) + £y (x + th),

Yo (F(x)) + £ (x) + y (D,F(x)(th))) = d(y (F(x + th)),

y
Yo (F(x) + D F(x)(th))) £dp(F(x + th),F(x) + D ,F(x)(th)) =
= wp(h,t) :
@, (h,t)
andtl:_iyno,r—-L—’— = 0, since p is a continuous seminorm on Y
t

and F is directionally differentiable at x and D.,ﬁ(x)(h) =
%(D,F(x)(h)). Then p"(v(x + th) - v(x) = J(u(x)(th))) £
sup { |<{v(x + th) - v(x) - J(u(x)(th)),y>] ,y'e B} £

[N

[N

@, (h,t).
This means that D v(x)(h) = J(u(x)(h)), Put G(x) = J (F(x)) -
- v(x). Then

N T ~ A

G(x) = Jd, e F(x) - v(x), where ¥(x) =[{v(x)},70%]

D,8(x)(R) = D (J o ¥F)(x)(n) - [{JI(u(x)(h))3,{03] = O,
This means that G (and simultaneously G), is constant on 00,
This implies that J (F(x)) - v(x) = J (F(x,)),

v(x)e J,(F(x)) - J,(F(x,)).

On the other hand, J,(F(x)) = J(F(x)) = J(F(x)), since
F(x) is a complete subset of Y and J is an isomorphism of Y
into Y". Then v(x) e J(F(x) - F(x,)) €J(Y). Put £(x) =
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J'l(v(x)), then F(x) = F(x,) + £(x). Of course, D F(x)(h)=

fu(x)(h)§ =1D,f(x)(h)}. This completes the proof.

Remark 1. We can define the differentiation of the map-

ping F: 0 —> B (Y) in the same way as De Blasi [3].

Definition 3. The map F is said to be directionally
differentiable at x € () iff there exists a positively homo-
geneous map D+F(x°) of X into ¥ (X) such that for each con-
tinuous seminorm p on Y and for each he X and t >0 such that
x, + th e QA we hatve)cl_éno+ -220)—::—)- = 0, where

cop(h,t) = dp(F(x,+ th),F(x,) + D F(x )(th)).

It is easy to see that if F is directionally differenti-
able at x_, then the map co F of {1 into ¥, (Y) defined by
(co F(x) =conv F(x) is strictly conically differentiable at

and D _(co F)(x)(h) = D F(x)(h).

\

Xo,

Theorem 3°. Let F: O —> B(Y) be directionally diffe-
rentiable on 2 . Then: 1) D/F(x)(h) is a singleton for all
x e 2 and he X; 2) if Q is connected and Y is quasicomple-
te, x, ¢ 2 , then there exists a unique map £ of £ into Y
such that

F(x) = F—‘(;;) + £(x)

D,F(x)(h) = 4D £(x)(h)}
for all x ¢ 0 and he X.

Proof. 1. By Theorenm 3, D*F(x)(h) = D*(co F)(x)(h) is &
singleton for all x e L , heX.

2, By Theorem 3 there exists a map f of XL into Y such
that (co F)(x) = (co F)(x,)} + f£(x); D,F(x)(h) = {D,£(x)(h)}.

Set G(x) = F(x) - £(x). Let p be a continuous seminorm on Y.
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Put g(x) = dp(G(x),G(x,)). Using the same arguments as in the
proof of Theorem 3.2 [31, one can prove that D,g(x)(h) =0
for all x € Q& , he X. It follows then dp (G(x),G(x,)) =0
for all x € 1 and for all continuous seminorms p on Y. This

means that G(x) = G(xo) = F(x,) and hence F(x) = F(xo) + £(x).

Remark 2, If Y is not quasicomplete, then the second
part of Theorem 3 is not true. For instance, we take a norned‘
space which is not complete. Let T be the completion of ¥, ye
e?’, y¢ Y. For each n, choose z €Y such that lly - z, I«

< (4n®)"L. 272, pyy ¥y = %19 Yp = 2y - Zpq forn = 1,2,... .

n
Then
Z Y=Y Z4n2Ilyn|[<+oo.
Set
1 1 1
-1+a+tfor1-aétél--§a
- .7 - 1
ocn(t)- l -t fort:l Eétél

0 for t: t£1 - & or t21

t
Balt) = [ ctp(z)ar for n =1,2,...

Then (3,(t) =0 for t£1 - %; Balt) = ;—:‘-:2- for tZ1.

Define
£(t) = =4n® B (t)y,
F(t) = (£(t) + §))n Y e € (Y),

where S; ={ye¥: Iyl £1}. Then it is easy to verify that F
is strictly conically differentiable on R and
DF(1)(1) = { S ev (1) 4Py 3; DF(t)(- 1) = = DF(t)(- 1) =
z{= =t &n 4n2yn3 .
We suppose that there exists a map g of R into Y such that
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F(t) = F(O' + g(t). Then F(t) = F(0) + g(t) =8, + £(t).
Hence y = £(1) = g(1)e Y and this contradicts the assumption
y¢Y0
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