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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
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FINITE GRAPHS AND DIGRAPHS WHICH ARE NOT
RECONSTRUCTIBLE FROM THEIR CARDINALITY RESTRICTED
SUBGRAPHS
Vaclav NYDL

Abstract: For every n>1 we construct two nom-isomorp-
hic graphs with 2n vertices having the same collection of n-
vertex subgraphs. The constructioms are given also for the
case of disconnected, of unicyclic graphs and for trees. Fi-
nally the construction is modified so as to give examples of
two non-isomorphic graphs with 3k+9 vertices having the same
collection of 2k-vertex subgraphs.

Key words: Finite directed graphs, finite undirected
graphs, Ulam conjecture. ’

Classification: 05C60

A digraph is a couple G =<V(G) , E(G)) where V(G) is a
set and E(G) an irreflexive binary‘rela;(.ion on V(G). If the
relation E(G) is symmetric (i.e., E(G) = E(G)™Y) then G is
called a graph. For every digraph G its symmetrizatiom sym G =
= (V(G), E(G)UE(G)™1) is defined. For every subset Y of V(G)
we denote G/Y = (Y,E(G) n¥2>. Now, for every natural k we de-
fine U (@) = {G/Y;Y< V(G),card Y = k}. We write 6, £ 0, ir
there is a one-to-one correspondence Q:Uk(Gl)——-) Uk(Ga) such
that for every EeUk(Gl) H = §(H) holds.

Proposition 1. For every n>1 there are two digraphs 01,
G, such that card V(3;) = card V(G,) = 2n, 0,¥0, and G, L.0,.
Proof: Ilet X ={x,ytviay; i=1,...,n-1}0{b;; i=1,...
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eeeyn=1% be a set having 2n elements. We define the binary
relation R = {<ay,a;,,7; i =1,...,n=2} u{<bi,bi+1>; i=l,...
eeeyn=2}.

Further let R, = Ruilx,a>, <& _,,y>%, R, = Ruilx,ap,

4 bn_l,y>} . We have two disconnected digraphe G, = <X,Rl7 ,
02 = ( X,R2>. The digraph Gl has two components with n+l and
n-1l vertices, the digraph G2 has two components both with n
vertices. Clearly G,, G, are non-isomorphic.

Now, for every i< n we define the set Q(i) = {aj; J=i,...
eee,n=l}u { bj5 j=i,ees,n=1?u{y} and the set Q(i) = X - Q(i).
For every i=l,...,n-1 we define the bijection f;:X—> X as
follows:

;) = x, £5(y) =y,

fi(a;j) = aj, £;(bs) = bs for every j<i,

J
fi(a.)') = bj' fi“’,j) = a. for every j=i.

The restrictions of f; give :.eomorphisms Gl/Q(i‘) > a,/Q(i),
Glﬁ(i) g(32/5(:1). Finally, we describe the mapping & :
Un(Gl)-——> Un(Gz)’ If Y is a subset of X having n elements then

(a) §(Gy/Y) = G,/f,(Y) for the case x¢Y,

(b) &(6,/Y) = G/Y for the case xcY, y¢¥,

(e) @(6y/Y) = G,/f, (Y) where k = min {i; a; ¢Y, by ¢ Y
for the case xeY, ye¥,

The existence of the number k<n-1 in (c) follows from the
conditions card ¥ = n, xe¥, yeY.

Further the mapping "I:Un(Gz)——> Un((}l) can be defined,
if we substitute the symbols V¥, G,, G, for the symbols &,
Gy, G, in (a),(b),(e). It follows immediately from the defini-
tions of ri ,d,¥ that for every Y having n elements it holds:

- 282 -



) (6,/Y)=G, /Y and ¥(G,/Y) -’—-‘-'02/!. Using the fact that for
every i=1,...,n-1 f;0f; = identity, we find & o¥ = iden-
tity, Yo & = identity. Thus & is a bijection.

The analogous results can be obtained for undirected
graphs applying the gperation sym to Gl, G2 from Proposition
1. The above described technique of the construction of ¢

can be used to prove some similar statements.

Proposition 2. For every nZ=2 there are two oriented
 trees (and also two trees) T,, T, such that card V(Ty) =
= card V(T,) = 2n, T,¥T,, 'r1~ T,.

Outline of proof: Let X ={a,; 1-1,...,2n-1}u{x§ be a
set having 2n elements, let R = {{a;,a;,97; i=1,...,2n-2}.
Further, R} = Ruiix,a, 2%, R, = Ruiix,a >} and we take T=
= (X,Rl>, T, = (X,R,>. For the case of trees we take sym T,
sym TZ'

Proposition 3. For every n>2 there are two unicyclic
digraphs (and also graphs) C;, C, such that card V(C)) =
= eard V(Cp) = 2n, ¢ ¥¢C,, C-2c,.

Outline of proof: Let X = daj; i=1,...,n-13udib,; i=
=l,...,n=13U {x,y? be a set having 2n elements, let R =
341°%4 75 i=1,...,n=2% U
U i<by,8.7, <a,_y,b,_y7F. Further, B; = Ruilx,a)?, a1,
¥y7% By = Rvidx,b>, {g 5,0 We take C; = (X,Rp?, ¢, =
={X,R,? and for the case of undirected graphs sym C,, sym C,.

= {{ay,85,y75 i71,...,n=-2}v {<p,

Proposition 4. For every k22 there are two graphs G 118

2
tuch that card V(G,)=card V(G,) = 3k+9& 0,406, % a

2.
Proof. Let kZ2 be given. Let M = {a,b,c,1,2,3,11,12,13}
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be a set haying 9 elements and let N be the set of all na-
tural numbers. We define R = {{a,2%{,42,b},1b,3},{3,c},{c,1},
{1,a},1{a,12¢,{12,2%,4b,133 ,413,3%, {c,11§,411,13% . We denote
a, =a, by =b, ¢, =c and for every iecN a; =<a,i>, by =
={b,i>, ¢; =<e,i).

Now, for every mc N we define A, ={a;10<i4af, B, =
={b;l0£i4m}, ¢ ={c;l0£i4m}, B =ifa;,a;,,fl0%i<ms,
RS =4by,b,, 8 102i<m}, B =ile;,c;,1}104i<mi. The graphs
Gy, G, are defined as follows (see Fig. 1 for the case k=5):

C
G = MUA,UB UG, RUR URUERY,),
= C
Gp = (UM, UB UGy, RURL VERUR ).
Clearly, card V(G,)=card V(G,)=9+(k-1) +k +(k+1l)= 3k + 9.

First, we prove that Gl’ Gz are non-isomorphic.
Let us suppose cy:Gl——-> G2 is an isomorphism. Since ¢ pre-

serves degreees of vertices, it holds ¢({a,b,c}) = {a,b,c?,
@ (41,2,3%) =11,2,3%, @(fay_;,by,cp q¥) = 4ak+1’tk'°k-l}'
‘Thus, ¢(b;) = b; for every i£k, ¢(a;) = ¢; for every i£k-1,
@ (ey) = a; for every i£k+l. Further, we have ¢(2) =3,
which yields 1¢(12),3} and {9 (12),c} are edges in G,. No
such a ¢(12) exists :'m.Gz. 4

Secondlj, we prove 0135 Gz. .
Let us denote Sy = {G,/2I1Z|= 2k}, S, = {G,/TI!T|=2ki. We
are going to describe the bijection ¢ :S; —> S, such that
for every GeS, d(c)=a.

We define the set D = A,V B _,UC _, and isomorphisms
q’l) ?2: ?3’ 3" .
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9 = idbuibk} 16, /D uin i — G/Duind,
$p:Gy/Dutey,ey b —> Gp/Doiay,a ..}, where P(1) = 2,
9p(2) =3, 9,(3) =1, ¢,(11) =12, $,(12) =13,

?2(13) = 11, 92(81) = bi, 9’2(bi) = ci’ ?2(01) = ai.

g)3:("11/D—+ GZ/D’ where 8>3(x) = C_?;l(x) for every xe D.

YiGy /A gV B U C —>Gp/AL VB UG, where y(a;) = ¢y,
et G = GI/Z 681.

I, If Zﬁtbk’ck’ck-*l} =@ then &(C) = GZ/‘;P]_(Z) = G2/Z.

II, If Z“{bk’ck’“lﬁl}* @ then we discuss 4 conditioms:

() (3i)(Znd{ay,by,e5d = 0)

(p) (3i)(Znda,bj,e5t = 1a3)
() (31)(Zndag,by,e53 = 4bsi)
() (31)(Zn{ay,bs,e51 = dej3)e

1) Z satisfies (). We define i, = min ti)Zniai,bi,ciE =
= @ and 2, = Zn (dagli>dijoinliri foleli>i}), 2, =2 -

- Zl.
Then § () = G,/ 94 (2,) v y(Z).

2) Z does not satisfy (o) and Z satisfies (). We de-
fine i = min tilZnday,b;,c 8 = {a3s and 2, = Zn ({byli >
>ituleslizi3), 2, =2 - 2,

Then & (G) = Gp/ ¢ 4(2,) vy (Zy).

3) Z does not satisfy (o« ),(B ) and Z satisfies (3-). We
define i = min iilZﬁiai,bi,ci§ = {b;3% and 2, = Z‘ﬂ({aiii >
>i3v {ci[i>io§), 2, =2 -2,

Then ¢ (G) = G,/ ¢,(Z5) v ¥ (Zy).
4) Z does not satisfy (oc),(3),(7) and Z satisfies CBR
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We define i = min {ilzn {aj,b;,c5% =4c;33 ana 2, =2 n
negli>iJole;li>iy), 2, =2 - 2.
Then $(G) = G/ g ,(2,) U y(Z;).

5) Let us suppose Z does not satisfy («),(B),(y"),
(d). Then for every i, 0£iék-1, |Zn{ay,b;,c;%|Z 2. Thus,
|Z1Z 2k+1. G,/Z¢S,.

It can be easily shown (using the method of discussion
again) that for every G,/T€ S, there exists G/Z¢ S, such that
G,/T = & (6,/2). So, $ is fully determined and has all the

needed properties.,

Fig. 1
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