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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22.3 (1981) 

REPRESENTING GRAPHS BY MEANS OF STRONG 
AND WEAK PRODUCTS 

S. POUAK, A. PULTR 

Abstract: Representability of graphs by means of pro-
due t-li¥e~construetions from simpler ones is studied. An esti­
mate of dimension of the strong product of two graphs is pre­
sented. 

Key words: Product, weak product, strong nroduct, dimen­
sion. 

Classification: 05C99 

The aim of this paper is to discuss some aspects of re­

presenting graphs as induced subgraphs of results of product­

like operations carried out with simpler graphs. There are 

three such operations one usually encounters (for description 

see 1.1): the (categorial) product, the weak product and the 

strong product. (In fact, there are categorial reasons why ex­

actly these three kinds of products are of importance.) The 

representation by means of the (categorial) product and the 

resulting dimension characteristics have been studied recent­

ly in some intensity (e.g. i2],17],£8],C6J,[13, survey in C3]). 

Here we shall be concerned mostly with the other two types of 

products. In § 1 we will show that the weak product cannot be 

used as a tool for generating graphs, not even the bipartite 

graphs, from simpler ones. In §§ 2 and 3, the representation 
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by *<*eans of strong powers of the path of length two is inves­

tigated a no ?n $ 4 * close connection of this and the catego-

riai product representation of bipartite graphs is shown. For 

general ,»rap**-̂  nr suril.*** cornections hold as follows from re­

marks in 5 b» the main a in of which, however, is to present an 

estimate of diiwisjfw of strong produn',. 

gony en t ions and no tatiop; A graph is a finite undirected 

granh without loops with the set of vertices VCG) and the set 

of edges E(G). Its cardinality, denoted by \G\$ is the cardi­

nality of \ T !. 

We say that G is (or can be) embedded intc H if it is iso­

morphic to an induced subgraph of II. A particular isomorphism 

of G with an induced subgraph of another graph is sometimes 

referred to as a representation of G. 

Vectors (x.,...fx ) will be often written as words XjX^... 

...x , th* concatenation of words is denoted by juxtapositior*. 

A natural number n is viewed as the 3et of all smaller ones 

(thus, e.g., 2 =«£0,1$), but n-dimensional vectors are, as a 

rule, indexed from 1 to n rather than from 0 to n-1. 

The word obtained by repeating i n-times will be denoted 

by 

i(n) (or simply i, if n is obvious). 

The upper integral approximation of log2 -c is denoted by 

log* x. 

Special graphs; K n is the complete graph with n verti­

ces; K(G) is the complete graph with the same set of vertices 

aa G. D n is the n-point discrete graph. P n is the path 

(n+1,«i,i*1ll i s 0,...fn-ti), Cn is the cycle (n,{€i,i+l}| 

i = 0,... ,n-2}u{{ 0,n-.}J )• In case of complex indices we 
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write P(n) instead of Pn. 

!. Three products and representations using them 

1.1. Let G•, i = 1,...,n, be graphs. Graphs , X G., . DL G. 

and .53 G. are defined as follows: 
•vs. >j i 

V(XGi) = V(DGi) == V(glGi) -XV(0.), 

{(x1,...7xn),(yT,...,yn)U E(XG.) iff Vi ix.,y.} e £(Gi) 

{(xT,...,xn),(yT,...,yn)}e E(DGi) iff Jj ({x^y^} € E(G .) & 

(i4j -» xt a yi)) 

-l(xT,...,xn),(yT,...,yn)}eE(!SlGi) iff 3 j (-tx̂ ŷ J € E(G^) )<& 

Vi (xi+yi=-»4 xi,yi}e 

eE^)) 
I 1 

We write GjX G2, (G.aGg, G^G^, resp.) for ̂  X Gi CD^G., 

.13 G., resp.) (one sees easily that x , a and JS are associ-

ative - up to the "associativity" of cartesian product of sets -
and that X 6 . = a.xG2x...xGn, etc.). 

m/ 
• X. Gj. is simply usually referred simply as product of the 

graphs Gj., -Vl^Q- as their weak (or cartesian) product, and 
rrx< 
,13. G. as their strong product. 
i, ~4 1 " r '" 

,7V />v **v 

If G. = G for all i,.X G. ,„Q G. and -I-3.G. are denoted 
X *V — n X - t ^ - s ^ X <• ... 1 X 

(in this order) by 

Gn, <Pn, cPn. 

1.2. Information: Every graph G can be represented as an 

induced subgraph of some K^, the minimum necessary n is called 

dimension of G and denoted by 

dim G (see e.g. 153 ,£2l ,L4]) 

Every bipartite graph G can be represented as an induced 

subgraph of P? (see e.g. {.91), the minimum such n is called 
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bipartite dimension of G and denoted by 

bid G (see [83). 

Every graph G can be represented as an induced subgraph 

of Ppn (this follows e.g. from [10; 4.6]; it will be obvious 

from the proof of 2.1(a) below). The minimum necessary n will 

be denoted by 

r/(G). 

(This, in essence, coincides with one of the dimension charac­

teristics of tolerance spaces introduced in [111.) 

In contrast with these facts, the weak product is a very 

weak tool for representing graphs. In fact, as we will show be­

low in 1.3, a system of graphs Q- such that it generates all 

graphs by means of weak products and induced subgraphs does it 

without the products as well (i.e., for every G there is then 

an He(^ such that G is its induced subgraph). This follows 

very easily from the behavior of triangles in weak products 

(we are indebted to J. Nesetril for this observation; meanwhi­

le, we have been informed that this author has proved analogous 

results for various classes of graphs using Ramsey theory). The 

problem naturally arose whether after avoiding triangles the 

representation abilities improve. They do not, as will be seen 

in 1.5: the statement on fy above holds even if we wish to ge­

nerate just the bipartite graphs. 

1.3. Proposition: For every graph G there is a graph H 

such that 

(1) G is an induced subgraph of H, 

(2) jHI = iGl + 2 , and 
rrv 

(3) if H is embeddable into . OL G^, it is embeddable in­

to some of the G.. 
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Proof. First, observe that if a triangle K-* is embed-
' ' "" /TV "-* 

ded into ^O^G^, say as Xj...xn, y f . y n »
 z p - « z

n and if 0 

is the coordinate such that, for i4=j, x^ = y • , then also z« = 
= xi = ^i f ,° r ^ ^ j * (Really, if zk4- x̂ . for some k + j, we have 

z j = xj and hence z-j+y^ and s^^y^t so that z is not joined 

with y.) 

Construct H as follows: 

V(H) = V(G )u-ia ,bl where a , b £ V ( G ) , a + b, 

E(G) = E ( G ) u { i a , b } i u { { a,xiix€ V(G )}u{{b,x} i x€V(G ) j . 

If H is embedded into Q Gj> consider the images of the tri­

angles 4x,a,bJ. 

1.4. Lemma. Let D = (ia,b,c,x,y}, {a,xj ,{a,y}, tb,x5 ,{b,y} , 

ic,x} ,-Cx,yji? ) (see Fig. ) be an induced subgraph of «L1G.. 

Then there is an r such that a^ = b . = c. = x. = y. for i-^r. 

Proof. The points x and y may differ either in two coor­

dinates or in one. In the first case we have necessarily a. = 

= bi = ci = xi = yi for i^r>3 and ->or z any °? a»b,c one has 

either z_ = x^ and z_ = y_ or z._ = y_ and za = x . But these x r 3 9 r x S 3 

are two possibilities and the vertices a,b,c are three. Thus, 

x and y differ in one coordinate xTfryr» Then xr cannot be join­

ed with y in G (x with y is not in D ) . Consequently necessa­

rily z r=M r,y r for z = a,b,c which immediately yields z± = x± = y 

for z = a,b,c, i4=r. 
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1.5. Proposition. For every bipartite graph G there is 

a bipartite graph H such that 

(1) G is an induced subgraph of H, 

(2) | Hi == \G\ + 4, and 
ifU 

(3) If H is embeddable into . Q.G.t it is embeddable into 

some of the G.. 

Proof. Consider a bipartition (P,Q) of G such that P con­

tains all the isolated points. Take four distinct points u,a,d, 

C6 PuQ and construct an H with bipartition (Puiul,Qu-t a,b,cl) 

by putting 

E(H) = E(G)ui-iu,x}\x€ Qu*a,b,c }luilx,zh\ xe P, z = a,b,cj. 

Now observe that any point of V(H) lies in an induced subgraph 

of H isomorphic to D from 1.4 and that the coordinate r in T.4 

is uniquely determined by any two vertices of D. 

§ 2, Estimates and values of cf toy some graphs 

2-!* Proposition, (a) cT(G)^IG|, 

(b) for each n there is a G with 1 G I * 2n and c/(G) > n. 

Proof, (a) Order the vertices into a sequence x-,...,xn 

and represent x^ as x4ix4p* •#xin* wliere 

for j<i x. . = t if -ix. ,x .i«E(G), x. . = 2 otherwise, 
XJ X J -J 

xii = °» and 

for j>i x. . = 1. 
X J 

(b) Take G = (n^ 2,U(i, ,i2), (j- , J2)l 1 i ^ 0t? and denote 

by v(ij,i2) the vector representing (i^,i2) in ^m, por i€ n 

there has to be an s = s(i) such that tvfl(i,0) - v (i,0)l « 2. 

Since for ĵ -i v(j,k) is connected with both v(i,0) and v(i,l), 

we have to have v8/.x(j,lc) = 1. Thus m£ n. 
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2.2. Proposition. Let A^ ,... jA^c V(G) be discrete sub­

sets such that whenever 4x,y}^B(G), there is an i with x,ye 

e k±. Then 

cT(G) ̂  ^ log+ I Ail . 

Proof. Put n* = log A. and consider a one-to-one map­

ping V-j'A..—> i0,2ini. For x£A^ put, moreover, v^(x) =- Idi^). 

Now, we can embed G into r , where n = -S n., representing x 

by V|(x)v2W...vk(x). 

2.3. Proposition. cT(Kn) = o^(Dn) = log n. 

Proof. Obviously <3r(Kn) = log n £ cf(D ) . Now, consider 

a discrete subset D of P . For v £ D define v' by replacing 

the 1-coordinates by zeros. Obviously, Kv'lveDll = iDi so 

that lDi£2 k. 

2*4. Lemma. Denote X* the set of vectors from P?11 having 

at least one 1-coordinate. Let DcX. be a discrete subset. Then 

|Dl^2 n" T. 

Proof. Obviously we can assume that each element of D 

has exactly one 1-coordinate (replacing all the 1-coordinates 

but one in each x € D by zeros to get x', we obtain D' = -fx'lxs 

e Di which is discrete and equally large as D). 

Put M = {0,2$n and consider the bipartite graph given 

by the partition (D,M) and the relation R where 

u....u^ R v....v , iff for i-=-n-T either u* = v. or u- = 

= 1. Put Dj s-tueMiu^ = H , D 2 = D^D- . Obviously, 

u £ D. «-*>• deg u = i. 

Let uRv, wRv and u+w. Then u,w£Dp and I xx^ - w i = 2 (other­

wise Iu. - w.i^-t contradicting the discreteness). Consequent­

ly, for v€ M, deg v-= 2 and if (u,v)€ R and u e D . then deg v = ' 
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Thus, for p the number of edges meeting D2 we have 

p = 2(131 - ID, I )£ 2(11(1 - iD-i ) 

and hence \V\MU\ * 2 n ~ 1 . 

2 ^ 5 . Propos i t ion, (a) ^(P^) = log + k, 

(b) cT(C2k) = log+2k, 

(c) log+2k £ cTCC2k+1) ^ l o g + 2 k + 1. 

Proof. I f Pk i s embedded into Fg so that the v e r t i c e s 

0 , 1 , . . . , k are represented by 

we can embed P 2 k in to K n + as 

(1) w o 0 , w t 0 , . . . , w k - 1 0 f w k 1 , w k - w 1 2 , . . . , w t 2 , . . . ,w t 2 ,w 0 2 , 

C 2 k a a 

wo , w 1 ' * *# , w k - 1 , w k , w k -1 • * * * i w 2^» w ^» 

and, finally, C k + 1 as 

wQ1 ̂ 0 , . . . ,wk-10,wk1 ,T(n)2. 

Consequently we see that 

(2) <«Pk) *k log+k, <f(C2k) £ log+k+1 , cAC 2 k + y) ̂  log+2k+1. 

Since all the neighbours of points from P ^ N X . , (see 2.4) are 

joined with each other, all the points representing points of 

cycles of length > 3 and all the inner points of paths have 

to be in X^. Thus, considering the sets of points correspond­

ing to 1,3,5, etc. from Pk resp. Cĵ  we obtain by 2.4 

log+k £or(c2k) - 1, log
+k -^(Cak*,) - 1 

which, together with (2), yields immediately (b) and (c). For 

the paths we obtain so far 

(3) log+[ k/23 + 1 <£ c/"vPk)£ log
+k. 

The inequality log+[k/2 3 + 1 < log+k holds only for k = 211 + 1, 
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so that for finishing the proof of (a) it suffices to show 

that we cannot embed P(2n+t) into P^n. 

If we could, however, the representation from (1) would 

yield an embedding of P(2 + 2) into P-?n, which already 

contradicts (3). 

Remark; The formula for (̂Ptr) has been proved by anot­

her method (and in a slightly different context) in fill. 

2.6. Proposition. Let G be a forest. Then 

cT(G)^41og^lGi. 

Proof. Choose a vertex in each of the components, let 

o o o 
xl,x2»•*•,xk 

be the chosen points. Order the points having the distance from 

some of the x- exactly i into a sequence 

x1 x1 xl 

0*2** * *' k-* 

Finally, denote by <p± (j) the unique index k such that x\ is 

joined with x^~ . 

Consider a sequence 

wo,wt > * *•»wr 

of points of Pp31 representing the path P with r the maximum 

possible distance of an x£G from some x^, and a system 

u0,u|,...,uk (k = max k±) 

of distinct elements of iO,2"i where s = log k. 

Now, we can embed G into P representing the vertices 

as follows 

x i *-* w o V u o 
x i >-* w t V i ) V 
x i *-* w2T u<*(i)u i 
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*.!*-* w3UiS(i) 

4^ »4Vi) t t l t 

e t c . 

2 » 7 . Propos i t ion. oT(Kfflx K^M m.log n + n . log m. 

Proof fo l lows immediately from 2 . 2 . 

2 * 8 # Notat ion. Let us denote by X(n) the smal lest even 

k such that 

( t k / 2 3 ) 2 n -

We have obviously 

Л ( n ) ^ 2 1 o g + n . 

(In fact A(n) does not exceed the closest even number after 

log n + log log n.) 

2
»9» Proposition. cfiJfi^QK^) £ A(m).log n. 

(Consequently, cfiK^Q *-n)< 21og4*m.log+n.) 

Proof. Take a one-one mapping cjp:m —-̂  <0,1it ' such that 

each <y(i) has equally many 1- and O-coordinates. For j = 0,1 

put u(i,j) s g>(i) + j. Obviously 

(t) if i = i' or j « j', we have lUyU-j) - ur(i',j')l-£ 1 for 

all r. For jen choose distinct words tJi«J2***̂ k *n *°t^ where 

k == log n. Now, for (i,j) e mxn put 

v(i,j) = u(i,j1)u(i,j2)...u(i,jfc). 

If i -= i' or j = j*, v(i,j) is joined with v(i',j') in fP^m).* 

by (1). Let i+i' and j4=j'. Then (after possible exchange of 

(i,j) and (i',j') there is an r with :jr = 0 and j' * 1. By the 

definition of <$> there is an s such that 9s(i) s 0 and 

<ys(i') = 1. Thus, u9(i,jr) » 0 and usCi',j') - 2. 
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§ 3. cT and operations with graphs 

3«1« Notation; The symbols x f D and (S3 have been ex-
hi 

plained in 1.1. The symbols G + H and ,2v, G. are used for u-
••Cat n •*• 

sual (weak) sum of G and H (reap, of G|f...fGjc). The strong 

(Zykov) sum of G and H will be denoted by G ® H. 

Finally, let V(G) = V(H). Then, we denote by GnH the 

graph with the same set of vertices and with the set of edges 

E(G)nE(H). 

3.2. Obviously we have 

Proposition: of(G B H) ̂  <f(G) + oT(H). 

3.3. Proposition; d"(GnH) ̂  <f(Q) • <f(H). 

Proof: Let G (resp. H) be embedded representing the ver­

tices x by words u(x) (resp. v(x)). We can represent the ver­

tices of G A H by u(x)v(x). 

3.4. Proposition: oT(G © H) * oT(Q) + oT(H).. 

Proof; Let G (resp. H) be embedded into I^0 (resp. I?11) 

representing the vertices x by u(x) (reap. v(x)). le can embed 

GeH into &f**n representing the x* V*(G) by u(x)f(n) and yc V(H) 

by T(m)v(x). 

3.5. Proposition;. cf(Q • H)^max(crtG)f J(H)) + T. More 

generally, ^ ( ^ G^-* max cf^) + log*k. 

Proof. Hepresent the vertices x of G^ in rf^i where n « 

» max <f(Q±)t by vi(x). Choose k separated vectors u-,...,^ in 

P̂ 111, where m • log*k (see 2.3). Now, we can embed XQ^ into 

P**1** representing xcO^ by vi(x)ui. 

3.6. Proposition. 

/ ( O x H ) * S(Q) • d'tt) • !OUlog*lH| 4-tH!log*IOl. 

Proof. Obviously, GxH * (0 a H) A (K(O)X K(H)). Thusf 
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the inequality follows from 3.2, 3.3 and 2.7. 

3.7. Proposition. / ( G a H M cT(G) • or*(H) • 21©g*lGl. 

.log+lHI. 

Proof. Obviously GDH » (G B H)n(K(G) a K(H)). Thus, 

the inequality follows from 3.3 and 2.9. 

§ 4. oT and bipartite dimension 

4.1. Recall the definition of bid G in 1.2. One at%B ea­

sily that it is the minimum n such that the vertices x can be 

replaced by vectors x.j...xn in 0,1,1,3 such that x is joined 

with y iff Vilxi - ytl = 1. 

4.2. Proposition. For a bipartite graph G we have 

d*{Q)£ 3bid G. 

Moreover, if G is connected, 

d*(G)^ 2bid G. 

Proof. Denote by f the connected component of I? con­

taining 00...0. Since all the components are isomorphic, we 

have to prove that cT(p^)^3n and </(Fn)-^2n. 

For xcrf consider x'e P^3n defined by 

S£A = max (xi - 1,0), xn>|d « min (xif2), (i * 1,...,n) 

*2n+i * 2ai(x) (i * 1,...,n-1) 

where a(x)c40,l5n satisfies a^x) = 0 and is situated in the 

same component as x. 

If la^ ~ yil a t for all i then obviously I x. - y - U l 

for all j. Let, on the other hand, lx- -$*]£% for all j. 

Then first, according to the last n-t coordinates x and y are 

in the same component. Consequently, aa one easily sees, 
%•. *••»".. 
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*
 x

i - ̂ i a^e either all even or all odd. 

We cannot have I x^ * y
i
l * 2 (if the numbers were 0 and 2

f 

' V f
 y
n+i*

 s 2> i f t h e
y
 w e r e

 t and 3
 f
 la^ - 3^1 = 2). Thus, 

'
x
i * yi'-= 1 for all i

f
 which, according to (*) yields for 

every x % y that lx
i
 - j ± \ = 1 for all i. 

Representing just the vertices of P
n
, the coordinates 

x
2n+i

 c a n D e
 l

6
**

 o u t
» 

4«3. Proposition. For a bipartite graph G we have 

bid 0^2c/(0). 

Proof. Consider a bipartition (V
t
,V

2
) of an induced sub­

graph 0 of P3. For x e V. define 

0 if x
4
 = 0 .0 if x. = 2 

XІ
 s -r . /

 X 

i
 s
 v. Xn+i v 

2 if x
i
4= 0

 x
 2 if x ^ 2 

(i * 1,...
f
n), 

and for y e V
2
 we define 

1 ifyi+2 .1 ify^O 
y i ~ v y n + i = v 

\ 3 if yi = 2 N 3 ify^O 

(i = 1 f... fn). 

Thus, if x and y are both in V., we have never Ix". - y.,1 = 1
 f 

and for xe Vj and yeVg always x.^y*. Let xeV.*, yeVp a**d 
^

x
i ~

 y
i '

6
 *

 f
'
or a 1 1 i # T h i a e x c l u < 3 e a t h e

 possibility 

lx. - y.l = 3 and since the difference cannot be even
f
 we are 

left with lx. - y .\ = 1 for all j. 
j j 

On the other hand, for all j
f
 \x.j - fA = 1. Thus, either 

x. = 0 and y . = t, or x. « 2 and y.s * 3
f
 or finally x. « 2 

«J J v v J 

and y
4
 = U Consider j.4n. In the first case x

4
 = 0 and y.s<-2

f 

in the second one x->0 and y • s 2f in the third case we get 
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x.>0 and 7i<2 so far. But if x. = 2 and y. = 0, one has 
J J 0 0 

5c n +.
 s 0 and yn+4

 s 3. Thus, in any case I x^ - y^l^-t, for 

all i. 

Obviously x+y if x+y. 

§ 5. Dimension of O s H , Remarks 

15.1. Since dim Dn = 2, dim Kg = 1 and dim(Dn « Kg) « 
s log n - 1 (see e.g. 121) we cannot have an upper estimate 

of dim(G £1 H) in terms of dim G and dim H only. We are going 

to present an upper estimate involving also the chromatic num­

bers and cardinalities of independent sets. 

5.2. dim G (result 1.2) is the minimum n such that the­

re exists a one-one u:V(G) —> U n ( W is the set of natural 

numbers) such that *tx,y} e E(G) iff Vi u.£(x)4-u .£(y). Leaving 

out the requirement of one-one, we can under circumstances do 

with one coordinate lessj such a minimum will be denoted by 

dQG. As in 3.3, realizing, moreover, that the vertices will 

be distinguished already by the first dim G coordinates, we 

immediately obtain 

Lemma* dim (QnH) . i dim G + dQH. 

5*3. Lemma, dim (K « Dn)^p.log n. 

Proof. . This is a fact known in another formulation (see 

ill). K a D is a sum of n copies of K . It is easily seen by 

induction: We will show that dimCK^ a D2n) =- dim(K a D^) • 

• ( K a Dn))*aim (Kp» 1^) • p. Let us have (x>i)eKpa 1^ 

represented as u(x,i). Represent the elements of the first sum-

mand in K_B .C^ + K p
a D

n •• u(x,i)x(P), those of the second 
"T* 
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summand as u(xfi)x (x+1)...(x+p-1) (addition mod p). 

^•4. Theorem. Denote by ̂  the chromatic number and by 

oC the maximum cardinality of independent set. We have 

dim(GHH)*6dim G.dim H + dim G. 5(H.log+ocG + dim H. ̂ G.log+ocH. 

Proof. Choose colorations gp:G—> K Q, g/:H —> K „. We 

see easily that GSH « fy ^ 9-2
 A ^3 where V( £ . .) =- V(G)xV(H) 

and 

{(x,y),(x',y')}6 E(^ t) iff f x,x'{ e E(G) or *y,y'/ e E(H), 

t(x,y),(x',y#)}e E(C^2) iff -fx,x't e E(G) or x - x' and 

y'(y> * »'<y'>, 

4(x,y),(x',y')}e JBC9.3) if!f <y»y?€ B(H) or y * y' and 

<y(x) = 9>(x'). 

Obviously dim (̂ t̂  dim G. dim H (let u(x) = (ui*x^:Uaim G> 

v(x) -* (v^Cx))^^^ H be representations of G resp. H, let 

f: IN x IN — > U be one-one; it suffices to put w. .(x,y) = 

= f(ui(x),v..(y)). Since the definitions of Cy2
 and ^3 are ana~ 

logous, it suffices to prove (see 5.2) that dQ(^-j^dim H - \ G. 

.oCH. $y 5.3 there is a u:I^QB l̂ H) —* W k with k = ocG.log^ocH 

such that 

(1) if y=£y'f there is, for any y, y', an r such that 

ur(x,y) » ur(x
#,y#), 

(2) if x+x', then always up(xfy) • ur(x',y). 

According to a well-known fact on dimension (see e.g. £53,1 .4}) 

there is a system itfp..., £ d i m H of disjoint decompositions 

of V(H), ^ « * Aif-> Aia ^ such that Aij are ind*P«»d«-t 

and whenever iyty'H-3(H)f there is an A ^ with *yfy'}c k±y 

Put (W.|(y) s j for yeA-y **& choose mappings ^iVCH)—> <cU 

such that all ^i^ij are one-one. Choose a number it larger 
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than a l l the numbers occurring among the UpCXjy). Now, for 

(x fy)eV(Q*3) f i^dimH and r£ k put 

* ir(*»y> s ur(y (x)f ^(y))* a e . ^ y ) . 

Let •C(xfy)f(x'fy')l6 E((^3). If iy,y'} e E(H) we have always 

^ ( y ) * . ft^Cy') so that wir(x,y)+wir(x'fy') according to 

the choice of at . If y * y' and g>(x) = 9>(x'), *ir(xfy) « 

= wir(x'fy') by (2). Let i{x,y) f (x',y')l * E(C>3). Then either 

y = y' and 9 (x) * y(x') and then trivially wir(
x>y) a 

- wir(x'fy')f or y+y' and iyfy'} eE(H). Then we have an i 

such that y,y'e Ai . for some jf and hence there is an r such 

that wir(xfy) *
 wir^

x'iy) *>y (!)• 

Remark. The product dim G, dim H in the upper estimate 

of dim (G H) is essential: Consider the example of O 3 L • 

+ L , H s L + L , Here we have dim G = m, dim H * n and 

dim GaHzm.n. 

5.5. For connected bipartite graphs one has dim G^bid G+ 

+ 1. Thus, by 4.3 we have in this case dim G^2cf(G) • 1. For 

general Gf however, no very satisfactory upper estimate of 

dim G in terms of c/(G) can be expected. We have by £2, Prop. 

3.43 dim (P?n)2:2n - t, so that such estimate would have to be 

exponential in cf(G) and hence not substantially better than 

the trivial 

obtained from dim Q £\Q\ and log3 \ G . -= oT(G). 

5.6. A lower estimate of dim G in terms of of (G) only is 

obviously impossible according to the inequality of log-* I 0 I ̂  

& cf(G). 
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