Commentationes Mathematicae Universitatis Caroline

Svatopluk Poljak; Aleš Pultr

Representing graphs by means of strong and weak products

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 3, 449--466

Persistent URL: http://dml.cz/dmlcz/106089

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
 22,3 (1981)

REPRESENTING GRAPHS BY MEANS OF STRONG AND WEAK PRODUCTS
S. POLJAK, A. PULTR

```
Abstract: Representability of graphs by means of pro-duct-like constructions from simpler ones is studied. An estimate of dimension of the strong product of two graphs is presented.
Key words: Product, weak product, strong nroduct, dimension.
Classification: 05C99
```

The aim of this paper is to discuss some aspects of representing graphs as induced subgraphs of results of productlike operations carried out with simpler graphs. There are three such operations one usually encounters (for description see 1.1): the (categorial) product, the weak product and the strong product. (In fact, there are categorial reasons why exactly these three kinds of products are of importance.) The representation by means of the (categorial) product and the resulting dimension characteristics have been studied recently in some intensity (e.g. [2],[7],[8],[6],[1], survey in [3]). Here we shall be concerned mostly with the other two types of products. In § 1 we will show that the weak product cannot be used as a tool for generating graphs, not even the bipartite graphs, from simpler ones. In §§ 2 and 3, the representation
by :reans of strong powers of the path of lergth two is investipated anc ir.: $i=$ close connection of this and the categorial froduct remesentation of bipartite graphs is shown. For genoral grencen surifn cornections hold as follows from remarks in 5 , , the main aim of which, however, is to present an estimate of dimpnsjm s? 3trorg produr:..

Conventions and notrtion: A graph is a finite undirected granh without loops with the set of vertices $V(G)$ and the set of edges $\mathrm{E}(\mathrm{G})$. Its cardinality, denoted by $|G|$, is the cardin月lit. of $\mathrm{V}:$:

We say that G is (or can be) embedded intc H if it is isomorphic t.o an induced subgraph of Fi . A particular isomorphism of G with an induced subgraph of another graph is sometimes referred to as a representation of G.

Vectors (x_{1}, \ldots, x_{n}) will be often written as words $x_{1} x_{2} \ldots$... x_{n}, the concatenation of words is denoted by juxtaposition. A natural number n is viewed as the set of all smaller ones (thus, e.g., $2=\{0,1\}$), but n-dimensional vectors are, as a rule, indexed from 1 to n rather than from 0 to $n-1$.

The word obtained by repeating i n-times will be denoted by
$\tilde{i}(n)$ (or simply \tilde{i}, if n is obvious).
The upper integral approximation of $\log _{2} x$ is denoted by $108^{+} \times$.

Special graphs: K_{n} is the complete graph with n vertices; $K(G)$ is the complete graph with the same set of vertices as G. D_{n} is the n-point discrete graph. P_{n} is the path $(n+1,\{\{i, i+1\} \mid i=0, \ldots, n-1\}), C_{n}$ is the cycle $(n,\{\{i, i+1\} \mid$ $i=0, \ldots, n-2\} \cup\{\{0, n-1\}\}$). In case of complex indices we
write $P(n)$ instead of P_{n}.

1. Three products and representations using them

1.1. Let $G_{i}, i=1, \ldots, n$, be graphs. Graphs $\stackrel{n}{\gtrless}_{i=1}^{n} G_{i}, \stackrel{n}{\unrhd}_{=1} G_{i}$ and $i \mathbb{D}_{1}^{n} G_{i}$ are defined as follows:
$V\left(\nless G_{i}\right)=V\left(\square G_{i}\right)=V\left(\boxtimes G_{i}\right)=\not \subset V\left(G_{i}\right)$,

$$
\begin{aligned}
&\left\{\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\} \in E\left(X G_{i}\right) \text { iff } \forall i\left\{x_{i}, y_{i}\right\} \in E\left(G_{i}\right) \\
&\left\{\left(x_{i}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\} \in E\left(\square G_{i}\right) \text { iff } \exists j \quad\left(\left\{x_{j}, y_{j}\right\} \in E\left(G_{j}\right) \&\right. \\
&\left.\left(i \neq j \Rightarrow x_{i}=y_{i}\right)\right) \\
&\left\{\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right\} \in E\left(\boxtimes G_{i}\right) \text { iff } \exists j\left(\left\{x_{j}, y_{j}\right\} \in E\left(G_{j}\right)\right) \&
\end{aligned}
$$

$$
\forall i \quad\left(x_{i} \neq y_{i} \Rightarrow\left\{x_{i}, y_{i}\right\} \in\right.
$$

$$
\left.\in E\left(G_{i}\right)\right)
$$

We write $G_{1} \times G_{2},\left(G, \square G_{2}, G_{1} \otimes G_{2}\right.$, resp.) for ${ }_{i} \stackrel{2}{\stackrel{<}{=}} G_{i}\left({ }_{i=1}^{2} G_{i}\right.$, $i \stackrel{2}{\otimes_{1}} G_{i}$, resp.) (one sees easily that \times, \square and \otimes are associative - up to the "associativity" of cartesian product of sets and that $\times G_{i}=G_{1} \times G_{2} \times \ldots \times G_{n}$, etc.).
$i=\tilde{X}_{1} G_{i}$ is simply usually referred simply as product of the graphs $G_{i}, i \sim_{\sim}^{\sim} G_{i}$ as their weak (or cartesian) product, and $i{\underset{N}{N}}_{\sim}^{N} G_{i}$ as their strong product.
 (in this order) by

$$
G^{n}, G^{\ln }, G^{\ln } .
$$

1.2. Information: Every graph G can be represented as an induced subgraph of some K_{k}^{n}, the minimum necessary n is called dimension of G and denoted by

```
dim G (see e.g. [5],[2],[4])
```

Every bipartite graph G can be represented as an induced subgraph of P_{3}^{n} (see e.g. [91), the minimum such n is called
bipartite dimension of G and denoted by
bid G (see [8]).
Every graph G can be represented as an induced subgraph of $P_{2}^{\boxed{ } n}$ (this follows e.g. from [10; 4.6]; it will be obvious from the proof of $2.1(a)$ below). The minimum necessary n will be denoted by

$$
\sigma(G)
$$

(This, in essence, coincides with one of the dimension characteristics of tolerance spaces introduced in [11].)

In contrast with these facts, the weak product is a very weak tool for representing graphs. In fact, as we will show below in 1.3 , a system of graphs G such that it generates all graphs by means of weak products and induced subgraphs does it without the products as well (i.e., for every G there is then an $H \in G$ such that G is its induced subgraph). This follows very easily from the behavior of triangles in weak products (we are indebted to J. Nešetril for this observation; meanwhile, we have been informed that this author has proved analogous results for various classes of graphs using Ramsey theory). The problem naturally arose whether after avoiding triangles the representation abilities improve. They do not, as will be seen in 1.5 : the statement on \mathcal{G} above holds even if we wish to generate just the bipartite graphs.
1.3. Proposition: For every graph G there is a graph H such that
(1) G is an induced subgraph of H,
(2) $|H|=|G|+2$, and
(3) if H is embeddable into $i \rrbracket_{1}^{n} G_{i}$, it is embeddable into some of the G_{i}.

Proof. First, observe that if a triangle K_{3} is embedded into $i=\bigcap_{1}^{n} G_{i}$, say as $x_{1} \ldots x_{n}, y_{1} \ldots y_{n}, z_{1} \ldots z_{n}$ and if j is the coordinate such that, for $i \neq j, x_{i}=y_{i}$, then also $z_{i}=$ $=x_{i}=y_{i}$ for $i \neq j$. (Really, if $z_{k} \neq x_{k}$ for some $k \neq j$, we have $z_{j}=x_{j}$ and hence $z_{j} \neq y_{j}$ and $z_{k} \neq y_{k}$, so that z is not joined with y.)

Construct H as follows:

$$
\begin{aligned}
& V(H)=V(G) \cup\{a, b\} \text { where } a, b \notin V(G), a \neq b, \\
& E(G)=E(G) \cup\{\{a, b\}\} \cup\{\{a, x\} \mid x \in V(G)\} \cup\{\{b, x\} \mid x \in V(G)\} .
\end{aligned}
$$ If H is embedded into $\square G_{i}$, consider the images of the triangles $\{x, a, b\}$.

1.4. Lemma. Let $D=(\{a, b, c, x, y\},\{a, x\},\{a, y\},\{b, x\},\{b, y\}$, $\{c, x\},\{x, y\}\}$) (see Fig.) be an induced subgraph of $i \xlongequal[1]{n} G_{i}$. Then there is an r such that $\boldsymbol{x}_{\mathbf{x}}=b_{i}=c_{i}=x_{i}=y_{i}$ for $i \neq r$.

Proof. The points x and y may differ either in two coordinates or in one. In the first case we have necessarily $a_{i}=$ $=b_{i}=c_{i}=x_{i}=y_{i}$ for $i \neq r, s$ and for z any of a, b, c one has either $z_{r}=x_{r}$ and $z_{s}=y_{s}$ or $z_{r}=y_{r}$ and $z_{s}=x_{s}$. But these are two possibilities and the vertices a, b, c are three. Thus, x and y differ in one coordinate $x_{r} \neq y_{r}$. Then x_{r} cannot be joined with y_{r} in G_{r} (x with y is not in D). Consequently necessarily $z_{r} \neq x_{r}, y_{r}$ for $z=a, b, c$ which immediately yields $z_{i}=x_{i}=y$ for $z=a, b, c, i \neq r$.
1.5. Proposition. For every bipartite graph G there is a bipartite graph H such that
(1) G is an induced subgraph of H,
(2) $|H|=|G|+4$, and
(3) If H is embeddable into $i \unrhd_{1}^{m} G_{i}$, it is embeddable into some of the G_{i}.

Proof. Consider a bipartition (P, Q) of G such that P contains all the isolated points. Take four distinct points u, a, d, $c \in P \cup Q$ and construct an H with bipartition ($P \cup\{u\}, Q \cup\{a, b, c\}$) by putting

$$
E(H)=E(G) \cup\{\{u, x\} \mid x \in Q \cup\{a, b, c\}\} \cup\{\{x, z\} \mid x \in P, z=a, b, c\} .
$$

Now observe that any point of $V(H)$ lies in an induced subgraph of H isomorphic to D from 1.4 and that the coordinate r in 1.4 is uniquely determined by any two vertices of D.
§ 2. Estimates and values of δ for some graphs
2.1. Proposition. (a) $\sigma^{\prime}(G) \leq|G|$,
(b) for each n there is a G with $|G|=2 n$ and $\delta(G) \geq n$.

Proof. (a) Order the vertices into a sequence x_{1}, \ldots, x_{n} and represent x_{i} as $x_{i 1} x_{i 2} \ldots x_{i n}$, where

```
for \(j<i \quad x_{i j}=1\) if \(\left\{x_{i}, x_{j}\right\} \in E(G), x_{i j}=2\) otherwise,
        \(x_{i i}=0\), and
for \(j>i \quad x_{i j}=1\).
(b) Take \(G=\left(n \times 2,\left\{f\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)\right\} \mid i_{1} \neq j_{1}\right\}\) and denote
``` by \(v\left(i_{1}, i_{2}\right)\) the vector representing \(\left(i_{1}, i_{2}\right)\) in \(P^{\mathbb{A} m}\). For \(i \in n\) there has to be an \(s=s(i)\) such that \(\left|v_{s}(i, 0)-v_{s}(i, 0)\right|=2\). Since for \(j \neq i v(j, k)\) is connected with both \(v(i, 0)\) and \(\nabla(i, 1)\), we have to have \(\mathrm{v}_{\mathrm{s}(\mathrm{i})}(\mathrm{j}, \mathrm{k})=1\). Thus \(\mathrm{m} \geq \mathrm{n}\).
2.2. Proposition. Let \(A_{p}, \ldots, A_{k} \subset V(G)\) be discrete subsets such that whenever \(\{x, y\} \notin E(G)\), there is an \(i\) with \(x, y \in\) \(\in \mathbf{A}_{\mathbf{i}}\). Then
\[
\sigma(G) \leq \sum_{i=1}^{k} \log ^{+}\left|A_{i}\right|
\]

Proof. Put \(n_{i}=\log { }^{+} A_{i}\) and consider a one-to-one mapping \(v_{i}: A_{i} \rightarrow\{0,2\}^{r_{ \pm}}\). For \(x \notin A_{i}\) put, moreover, \(\nabla_{i}(x)=\tilde{1}\left(n_{i}\right)\). Now, we can embed \(G\) into \(P^{\mathbb{Q n}}\), where \(n=\sum n_{i}\), representing \(x\) by \(v_{j}(x) v_{2}(x) \ldots v_{k}(x)\).
2.3. Proposition. \(\delta^{\prime}\left(K_{n}\right)=\sigma^{\prime}\left(D_{n}\right)=\log ^{+} n\).

Proof. Obviously \(\sigma^{\prime}\left(K_{n}\right)=l o g^{+} n \leqslant \sigma^{\prime}\left(D_{n}\right)\). Now, consider a discrete subset \(D\) of \(P^{k}\). For \(v \in D\) define \(v^{\prime}\) by replacing the 1 -coordinates by zeros. Obviously, \(\left|\left\{v^{\prime} \mid v \in D\right\}\right|=|D|\) so that \(|D| \leq 2^{k}\).
2.4. Lemma. Denote \(X_{1}\) the set of vectors from \(P_{2}^{\otimes n}\) having at least one 1 -coordinate. Let \(D \subset X_{1}\) be a discrete subset. Then \(|D| \leqslant 2^{n-1}\).

Proof. Obviously we can assume that each element of \(D\) has exactly one 1 -coordinate (replacing all the 1 -coordinates but one in each \(x \in D\) by zeros to get \(x^{\prime}\), we obtain \(D^{\prime}=\left\{x^{\prime} \mid x \in\right.\) \(\in D\}\) which is discrete and equally large as \(D\)).

Put \(M=\{0,2\}^{n-1}\) and consider the bipartite graph given by the partition (\(D, M\)) and the relation \(R\) where
\[
u_{1} \ldots u_{n} R v_{1} \ldots v_{n-1} \text { iff for } i \leqslant n-1 \text { either } u_{i}=v_{i} \text { or } u_{i}=
\] \(=1\). Put \(D_{1}=\left\{u \in M \mid u_{n}=1\right\}, D_{2}=D \backslash D_{1}\). Obviously,
\[
u \in D_{i} \Rightarrow \operatorname{deg} u=i
\]

Let \(u R v, w R v\) and \(u \neq w\). Then \(u, w \in D_{2}\) and \(\left|u_{n}-w_{n}\right|=2\) (otherwise \(\left|u_{i}-w_{i}\right| \leqslant 1\) contradicting the discreteness). Consequently, for \(\nabla \in M, \operatorname{deg} v \leqslant 2\) and if \((u, v) \in R\) and \(u \in D_{1}\) then \(\operatorname{deg} v=\).

Thus, for \(p\) the number of edges meeting \(D_{2}\) we have
\[
p=2\left(|D|-\left|D_{1}\right|\right) \leqslant 2\left(|M|-\left|D_{1}\right|\right)
\]
and hence \(|D| \leq|M|=2^{n-1}\).
2.5. Proposition. (a) \(\quad \delta\left(P_{k}\right)=\log { }^{+} k\),
(b) \(\delta\left(C_{2 k}\right)=\log ^{+} 2 k\),
(c) \(\quad \log ^{+} 2 k \leq \sigma^{\sigma}\left(C_{2 k+1}\right) \leq \log ^{+} 2 k+1\).

Proof. If \(P_{k}\) is embedded into \(P_{2}^{\otimes n}\) so that the vertices \(0,1, \ldots, k\) are represented by
\[
w_{0}, w_{1}, \ldots, w_{k},
\]
we can embed \(P_{2 k}\) into \(P_{2}^{\text {an }}\) +1 as
(1) \(w_{0} 0, w_{1} 0, \ldots, w_{k-1} 0, w_{k}^{1}, w_{k-1} 2, \ldots, w_{1} 2, \ldots, w_{1}{ }^{2}, w_{0}{ }^{2}\), \(C_{2 k}\) as
\[
w_{0} 1, w_{1} P, \ldots, w_{k-1} 0, w_{k} 1, w_{k-1} 2, \ldots, w_{2} 2, w_{1} 2,
\]
and, finally, \(C_{k+1}\) as
\[
w_{o} 1, w_{1} 0, \ldots, w_{k-1} 0, w_{k} 1, \tilde{1}(n) 2
\]

Consequently we see that
(2) \(\quad \sigma^{\prime}\left(P_{k}\right) \leqslant \log ^{+} k, \sigma^{\prime}\left(C_{2 k}\right) \leqslant \log { }^{+} k+1, \sigma^{\prime}\left(C_{2 k+1}\right) \leqslant \log ^{+} 2 k+1\). Since all the neighbours of points from \(P^{\otimes n} \backslash X_{1}\) (see 2.4) are joined with each other, all the points representing points of cycles of length \(>3\) and all the inner points of paths have to be in \(X_{1}\). Thus, considering the sets of points corresponding to \(1,3,5\), etc. from \(P_{k}\) resp. \(C_{k}\) we obtain by 2.4
\[
\log ^{+} k \leq o^{r}\left(C_{2 k}\right)-1, \log ^{+} k \leq o^{r}\left(C_{2 k+1}\right)-1
\]
which, together with (2), yields immediately (b) and (c). For the paths we obtain so far
(3) \(\log ^{+}[k / 2]+1 \leq \delta^{\prime}\left(P_{k}\right) \leq \log ^{+} k\).

The inequality \(\log ^{+}[k / 2]+1<\log ^{+} k\) holds only for \(k=2^{n}+1\),
so that for finishing the proof of (a) it suffices to show that we cannot embed \(P\left(2^{n}+i\right)\) into \(P_{2}^{\mathbb{N}}\).

If we could, however, the representation from (1) would yield an embedding of \(P\left(2^{n+1}+2\right)\) into \(P_{2}^{\otimes n}\), which already contradicts (3).

Remark: The formula for \(\delta\left(P_{k}\right)\) has been proved by another method (and in a slightly different context) in [11].
2.6. Proposition. Let \(G\) be a forest. Then
\[
\delta(G) \leq 4 \log ^{+}|G|
\]

Proof. Choose a vertex in each of the components, let
\[
x_{1}^{\circ}, x_{2}^{\circ}, \ldots, x_{k_{0}}^{\circ}
\]
be the chosen points. Order the points having the distance from some of the \(x_{j}^{0}\) exactiy \(i\) into a sequence
\[
x_{0}^{i}, x_{2}^{i}, \ldots, x_{k_{i}}^{i}
\]

Finally, denote by \(\varphi_{i}(j)\) the unique index \(k\) such that \(x_{j}{ }_{j}\) is joined with \(\mathrm{x}_{\mathrm{k}}^{\mathrm{i}-1}\).
Consider a sequence
\[
w_{0}, w_{1}, \ldots, w_{r}
\]
of points of \(P_{2}^{\mathbb{Q n}}\) representing the path \(P_{r}\) with \(r\) the maximum possible distance of an \(x \in G\) from some \(x_{i}^{0}\), and a system
\[
u_{0}, u_{1}, \ldots, u_{k} \quad\left(k=\max _{i} k_{i}\right)
\]
of distinct elements of \(\{0,2\}^{s}\) where \(s=\log { }^{+} k\).
Now, we can embed \(G\) into \(P^{\mathbb{Q r}+3 s}\) representing the vertices as follows
\[
\begin{aligned}
& x_{i}^{0} \longmapsto w_{0} u_{i} \tilde{\eta} u_{0} \\
& x_{i}^{1} \longmapsto w_{\uparrow} u_{\varphi(i)} u_{i} \tilde{f} \\
& x_{i}^{2} \longmapsto w_{2} \tilde{\imath} u_{\varphi(i)} u_{i}
\end{aligned}
\]
\[
\begin{aligned}
& x_{i}^{3} \mapsto w_{3} u_{i} \tilde{\tau} u_{\varphi(i)} \\
& x_{i}^{4} \mapsto w_{4} u_{\varphi(i)} u_{i} \tilde{i}
\end{aligned}
\]
etc.
2.7. Proposition. \(\quad \delta\left(K_{m} \times K_{n}\right) \leq m \cdot \log ^{+} n+n \cdot \log ^{+} m\).

Proof follows immediately from 2.2.
2.8. Notation. Let us denote by \(\lambda(n)\) the smallest even \(k\) such that
\[
(\underset{[k / 2]}{k}) \geq n .
\]

We have obviously
\[
\lambda(n) \leqslant 2 \log ^{+} n .
\]
(In fact \(\lambda(n)\) does not exceed the closest even number after \(\log ^{+} n+\log ^{+} \log ^{+} n_{\text {. }}\))
2.9. Proposition. \(\quad \sigma^{(}\left(K_{m} \square K_{n}\right) \leqslant \lambda(m) \cdot \log ^{+} n\). (Consequently, \(\delta^{\sigma}\left(K_{m} \circ K_{n}\right)<2 \log ^{+} m \cdot \log ^{+} n_{0}\))

Proof. Take a one-one mapping \(\varphi: m \rightarrow\{0,1\}^{\lambda(m)}\) such that each \(\varphi\) (i) has equally many 1 - and 0 -coordinates. For \(j=0,1\) put \(u(i, j)=\varphi(i)+\tilde{j}\). Obviously
(1) if \(i=i^{\prime}\) or \(j=j^{\prime}\), we have \(\left|u_{r}(i, j)-u_{r}\left(i^{\prime}, j^{\prime}\right)\right| \leq 1\) for all r. For \(j \in n\) choose distinct words \(j_{1} j_{2} \ldots j_{k}\) in \(\{0,1\}^{k}\) where \(k=\log ^{+} n\). Now, for \((i, j) \in m \times n\) put
\[
v(i, j)=u\left(i, j_{1}\right) u\left(i, j_{2}\right) \ldots u\left(i, j_{k}\right) .
\]

If \(i=i^{\circ}\) or \(j=j^{0}, v(i, j)\) is joined with \(v\left(i^{\circ}, j^{\prime}\right)\) in \(p^{\otimes \chi(m) \cdot k}\) by (1). Let \(i \neq i^{\prime}\) and \(j \neq j^{\prime}\). Then (after possible exchange of (\(i, j\)) and (\(i^{\prime}, j^{\prime}\)) there is an \(r\) with \(j_{r}=0\) and \(j_{r}^{\prime}=1\). By the definition of \(\varphi\) there is an such that \(\varphi_{s}(i)=0\) and \(\varphi_{s}\left(i^{\prime}\right)=1\). Thus, \(u_{s}\left(i, j_{r}\right)=0\) and \(u_{s}\left(i^{\prime}, j^{\prime}\right)=2\).

\section*{§ 3 . \(\delta\) and operations with graphs}
3.1. Notation: The symbols \(\times\), \(a\) and \(\otimes\) have been explained in 1.1. The symbols \(G+H\) and \(\sum_{i=1}^{h u} G_{i}\) are used for \(u-\) sual (weak) sum of \(G\) and \(H\) (resp. of \(G_{1}, \ldots, G_{k}\)). The strong (Zykov) sum of \(G\) and \(H\) will be denoted by \(G \oplus H\).

Finally, let \(V(G)=V(H)\). Then, we denote by \(G \cap H\) the graph with the same set of vertices and with the set of edges \(E(G) \cap E(H)\).
3.2. Obviously we have

Proposition: \(\quad \delta^{\prime}(G \otimes H) \leq \delta^{r}(G)+\sigma^{\Upsilon}(H)\).
3.3. Proposition: \(\quad \sigma^{\sim}(G \cap H) \leq \delta^{\sim}(G)+\delta^{\sigma}(H)\).

Proof: Let \(G\) (resp. H) be embedded representing the vertices \(x\) by words \(u(x)\) (resp. \(v(x)\)). We can represent the vertices of \(G \cap H\) by \(u(x) v(x)\).
3.4. Proposition: \(\quad \delta(G \oplus H) \leq \delta(G)+\delta(H)\).

Proof: Let \(G\) (resp. H) be embedded into \(\mathrm{F}_{2}^{\mathrm{mm}}\) (resp. \(\mathrm{P}_{2}^{\mathrm{Rnn}}\)) representing the vertices \(x\) by \(u(x)\) (resp. \(v(x)\)). We can embed \(G \oplus H\) into \(P_{2}^{m+n}\) representing the \(x \in V(G)\) by \(u(x) \tilde{f}(n)\) and \(y \in V(H)\) by \(\tilde{f}(m) v(x)\).
3.5. Propositiom. \(\quad \sigma^{\prime}(G+H) \leqslant \max (\delta(G), \delta(H))+1\). More generally, \(\quad \sigma^{\prime}\left(\sum_{i=1}^{n} a_{i}\right) \leq \max \delta\left(G_{i}\right)+\log ^{+} k\).

Proof. Represent the vertices \(x\) of \(G_{i}\) in \(P_{2}^{[n}\), where \(n=\) \(=\max _{i} \delta^{\prime}\left(G_{i}\right)\), by \(v_{i}(x)\). Choose \(k\) separated vectors \(u_{1}, \ldots, u_{k}\) in \(p_{2}^{\operatorname{mm}}\), where \(m=\log ^{+} k\) (see 2.3). Now, we can embed \(\Sigma G_{i}\) into \(P_{2}^{\min +m}\) representing \(x \in G_{i}\) by \(\nabla_{i}(x) u_{i}\).
3.6. Proposition.
\(\sigma^{\prime}(G \times H)=\delta(G)+\delta(H)+|a| \cdot \log ^{+}|A|+|H| \log ^{*}|Q|\).
Proof. Obviously, \(G \times H=(O M H) \cap(X(G) \times K(H))\). Thus,
the inequality follows from 3.2, 3.3 and 2.7.
3.7. Proposition. \(\delta(G \square H) \leq \sigma^{\prime}(G)+\sigma^{\prime}(H)+2 \log ^{+}|G|\). . \(\log ^{+}|\mathrm{H}|\).

Proof. Obviousiy \(G \square H=(G \otimes H) \cap(K(G) 口 K(H))\). Thus, the inequality follows from 3.3 and 2.9.

\section*{§ 4. \(\delta\) and bipartite dimension}
4.1. Recall the definition of bid \(G\) in 1.2. One sees easily that it is the minimum \(n\) such that the vertices \(x\) can be replaced by vectors \(x_{1} \ldots x_{n}\) in \(0,1,1,3\) such that \(x\) is joined with \(y\) iff \(\forall i\left|x_{i}-y_{i}\right|=1\).
4.2. Proposition. For a bipartite graph \(G\) we have \(\sigma^{\prime}(G) \leqslant 3\) bid \(G\).

Moreover, if \(G\) is connected,
\[
\sigma^{\prime}(G) \leqslant 2 \text { bid } G
\]

Proof. Denote by \(F_{n}\) the connected component of \(P_{3}^{n}\) containing 00... O. Since all the components are isomorphic, we have to prove that \(\sigma^{\prime}\left(P_{3}^{n}\right) \leq 3 n\) and \(\sigma^{\prime}\left(F_{n}\right) \leq 2 n\).

For \(x \in P_{3}^{n}\) consider \(\tilde{x} \in P_{2}^{\mathbb{*} 3 n}\) defined by
\(\tilde{x}_{i}=\max \left(x_{i}-1,0\right), \tilde{x}_{n+i}=\min \left(x_{i}, 2\right),(i=1, \ldots, n)\)
\(x_{2 n+i}=2 a_{i}(x)(i=1, \ldots, n-1)\)
where \(a(x) \in\{0,1\}^{n}\) satisfies \(a_{n}(x)=0\) and is situated in the same component as \(x\).

If \(\left|x_{i}-y_{i}\right|=1\) for all \(i\) then obviously \(\left|\tilde{x}_{j}-\tilde{\mathbf{y}}_{j}\right| \leq 1\) for all \(j\). Let, on the other hand, \(\left|\tilde{x}_{j}-\tilde{\mathbf{y}}_{j}\right| \leq 1\) for all \(j\). Then first, according to the last \(n-1\) coordinates \(x\) and \(y\) are in the same component. Consequently, as one easily sees,
(*) \(x_{i}-y_{i}\) are either all even or all odd.
We cannot have \(\left|x_{i}-y_{i}\right|=\) ? (if the numbers were 0 and 2 , \(\left|\tilde{x}_{n+i}-\tilde{y}_{n+i}\right|=2\), if they were 1 and \(\left.3,\left|\tilde{x}_{i}-\tilde{y}_{i}\right|=2\right)\). Thus, \(\left|x_{i}-y_{i}\right| \leqslant 1\) for all \(i\), which, according to \((*)\) yields for every \(x \neq y\) that \(\left|x_{i}-y_{i}\right|=1\) for all i.

Representing just the vertices of \(F_{n}\), the coordinates \(x_{2 n+i}\) can be left out.
4.3. Proposition. For a bipartite graph \(G\) we have bid \(G \leqslant 2 \sigma^{\prime}(G)\).
Proof. Consider a bipartition (\(V_{1}, V_{2}\)) of an induced subgraph \(G\) of \(P_{3}^{n}\). For \(x \in V_{1}\) define
\[
\bar{x}_{i}=<\begin{array}{ll}
0 & \text { if } x_{i}=0 \\
2 & \text { if } x_{i} \neq 0
\end{array}
\]
\[
\bar{x}_{n+i}= \begin{cases}0 & \text { if } x_{i}=2 \\ 2 & \text { if } x_{i} \neq 2\end{cases}
\]
\[
(i=1, \ldots, n)
\]
and for \(y \in V_{2}\) we define

\((i=1, \ldots, n)\).
Thus, if \(x\) and \(y\) are both in \(v_{i}\), we have never \(\left|\bar{x}_{i}-\bar{y}_{i}\right|=1\), and for \(x \in V_{1}\) and \(y \in V_{2}\) always \(\bar{x}_{i} \neq \bar{y}_{i}\). Let \(x \in V_{1}, y \in V_{2}\) and \(\left|\bar{x}_{i}-\bar{y}_{i}\right| \leq 1\) for all i. This excludes the possibility \(\left|\bar{x}_{i}-\bar{y}_{j}\right|=3\) and since the difference cannot be even, we are left with \(\left|\bar{x}_{j}-\bar{y}_{j}\right|=1\) for all \(j\).

On the other hand, for all \(j,\left|\bar{x}_{j}-\bar{y}_{j}\right|=1\). Thus, either \(\bar{x}_{j}=0\) and \(\overline{\mathbf{y}}_{j}=1\), or \(\bar{x}_{j}=2\) and \(\overline{\mathbf{y}}_{j}=3\), or finally \(\bar{x}_{j}=2\) and \(\overline{\mathbf{y}}_{j}=1\). Consider \(j \leqslant n\). In the first case \(x_{j}=0\) and \(y_{j}<2\), in the second one \(x_{j}>0\) and \(y_{j}=2\); in the third case \(w e\) get
\(x_{j}>0\) and \(y_{j}<2\) so far. But if \(x_{j}=2\) and \(y_{j}=0\), one has \(\bar{x}_{n+j}=0\) and \(\bar{y}_{n+j}=3\). Thus, in any case \(\left|x_{i}-y_{i}\right| \leqslant 1\), for all i.

Obviously \(\bar{x} \neq \bar{y}\) if \(x \neq y\).

\section*{§ 5. Dimension of \(G \otimes \mathrm{H}\). Remarks}
5.1. Since \(\operatorname{dim} D_{n}=2\), \(\operatorname{dim} K_{2}=1\) and \(\operatorname{dim}\left(D_{n} \otimes K_{2}\right)=\) \(=\log ^{+} n-1\) (see e.g. [2]) we cannot have an upper estimate of \(\operatorname{dim}(G ⿴ H)\) in terms of \(\operatorname{dim} G\) and \(\operatorname{dim} H\) only. We are going to present an upper estimate involving also the chromatic numbers and cardinalities of independent sets.
5.2. \(\operatorname{dim} G\) (result 1.2) is the minimum \(n\) such that there exists a one-one \(u: V(G) \longrightarrow \mathbb{N}^{n}(\mathbb{N}\) is the set of natural numbers) such that \(\{x, y\} \in E(G)\) iff \(\forall i u_{i}(x) \neq u_{i}(y)\). Leaving out the requirement of one-one, we can under circumstances do with one coordinate less; such a minimum will be denoted by \(d_{0}\) G. As in 3.3 , realizing, moreover, that the vertices will be distinguished already by the first dim G coordinates, we immediately obtain

Lemma. \(\operatorname{dim}(G \cap H) \leqslant \operatorname{dim} G+d_{0} H\).
5.3. Lemma. \(\operatorname{dim}\left(K_{p} \otimes D_{n}\right) \leq p . \log ^{+}{ }^{+}\).

Proof. This is a fact known in another formulation (see [1]). \(K_{p} \otimes D_{n}\) is a sum of \(n\) copies of \(K_{p}\). It is easily seen by induction: We will show that \(\operatorname{dim}\left(K_{p} \otimes D_{2 n}\right)=\operatorname{dim}\left(K_{p} \otimes D_{n}\right)+\) \(\left.+\left(K_{p} \cap D_{n}\right)\right) \leqslant \operatorname{dim}\left(K_{p} D_{n}\right)+p\). Let us have \((x, i) \in K_{p} D_{n}\) represented as \(u(x, i)\). Represent the elements of the first summand in \(K_{p} D_{n}+K_{p} \in D_{n}\) as \(u(x, i) \tilde{x}(P)\), those of the second
summand as \(u(x, i) x(x+1) \ldots(x+p-1)\) (addition mod \(p)\).
5.4. Theorem. Denote by \(x\) the chromatic number and by \(\alpha\) the maximum cardinality of independent set. We have \(\operatorname{dim}(G \otimes H) \leq \operatorname{dim} G \cdot \operatorname{dim} H+\operatorname{dim} G . x H \cdot \log ^{+} \propto G+\operatorname{dim} H . x G \cdot \log ^{+} \propto H\).

Proof. Choose colorations \(\varphi: G \rightarrow K_{x G}, \varphi^{\prime}: H \rightarrow K_{x H}\). We see easily that \(G \otimes H=\mathcal{G}_{1} \cap \mathcal{G}_{2} \cap \mathcal{g}_{3}\) where \(\mathrm{V}\left(\mathcal{G}_{1}\right)=\mathrm{V}(\mathrm{G}) \times \mathrm{V}(\mathrm{H})\) and
\[
\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \in E\left(\mathcal{g}_{1}\right) \text { iff }\left\{x, x^{\prime}\right\} \in E(G) \text { or }\left\{y, y^{\prime}\right\} \in E(H),
\]
\[
\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \in E\left(g_{2}\right) \text { iff }\left\{x, x^{\prime}\right\} \in E(G) \text { or } x=x^{\prime} \text { and }
\]
\[
\varphi^{\prime}(y)=\varphi^{\prime}\left(y^{\prime}\right),
\]
\(\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \in E\left(g_{3}\right)\) iff \(\left\{y, y^{\prime}\right\} \in E(H)\) or \(y=y^{\prime}\) and
\[
\varphi(x)=\varphi\left(x^{\prime}\right) .
\]

Obviously \(\operatorname{dim} g_{1} \leq \operatorname{dim} G . \operatorname{dim} H\left(\operatorname{let} u(x)=\left(u_{i}(x)\right)_{i \leq \operatorname{dim} G}\right.\), \(V(x)=\left(v_{i}(x)\right)_{i \leqslant \operatorname{dim} H}\) be reprecentations of \(G\) resp. \(H\), let \(f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}\) be one-one; it suffices to put \(\boldsymbol{w}_{i j}(x, y)=\) \(=f\left(u_{i}(x), v_{j}(y)\right)\). Since the definitions of \(\mathcal{G}_{2}\) and \(\mathcal{G}_{3}\) are analogous, it suffices to prove (see 5.2) that \(d_{0} \mathscr{C}_{3} \leqslant \operatorname{dim} H \cdot x G\). . \(\alpha \mathrm{H}\). By 5.3 there is a \(u: K_{\lambda G} \mathrm{D}_{\alpha H} \rightarrow \mathbb{N}^{k}\) with \(k=x G . \log ^{+} \propto H\) such that
(1) if \(y \neq y^{\prime}\), there is, for any \(y, y^{\prime}\), an \(r\) such that
\[
u_{r}(x, y)=u_{r}\left(x^{\prime}, y^{\prime}\right),
\]
(2) if \(x+x^{\prime}\), then always \(u_{r}(x, y)=u_{r}\left(x^{\prime}, y\right)\).

According to a well-known fact on dimension (see e.g. [5],[4]) there is a system \(\mathcal{E}_{1}, \ldots, \mathcal{E}_{\text {dim } H}\) of disjoint decompositions of \(\nabla(H), \mathcal{E}_{i}=\left\{A_{i}, \ldots, A_{i s}\right\}\) such that \(A_{i j}\) are independent and whenever \(\left\{y, y^{\prime}\right\} \notin E(H)\), there is an \(A_{i j}\) with \(\left\{y, y^{\prime}\right\} \subset A_{i j}\). Put \(\mu_{i}(y)=j\) for \(y \in A_{i j}\) and choose mappings \(\Psi_{i}: V(H) \longrightarrow \propto H\) such that all \(\psi_{i} \mid A_{i j}\) are one-one. Choose number \(x\) larger
than all the numbers occurring among the \(u_{r}(x, y)\). Now, for \((x, y) \in V\left(g_{3}\right), i \leqslant \operatorname{dim} H\) and \(r \leqslant k\) put
\(w_{i r}(x, y)=u_{r}\left(\varphi(x), \psi_{i}(y)\right)+x \cdot \mu_{i}(y)\).
Let \(\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \in E\left(g_{3}\right)\). If \(\left\{y, y^{\prime}\right\} \in E(H)\) we have always \(\mu_{i}(y) \neq \mu_{i}\left(y^{\prime}\right)\) so that \(w_{i r}(x, y) \neq w_{i r}\left(x^{\prime}, y^{\prime}\right)\) according to the choice of \(x\). If \(y=y^{\prime}\) and \(\varphi(x)=\varphi\left(x^{\prime}\right), w_{\text {ir }}(x, y)=\) \(=w_{\text {ir }}\left(x^{\prime}, y^{\prime}\right)\) by (2). Let \(\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\} \notin E\left(g_{3}\right)\). Then either \(y=y^{\prime}\) and \(\varphi(x)=\varphi\left(x^{\prime}\right)\) and then trivially \(w_{i r}(x, y)=\) \(=w_{i r}\left(x^{\prime}, y^{\prime}\right)\), or \(y \neq y^{\prime}\) and \(\left\{y, y^{\prime}\right\} \in E(H)\). Then we have an \(i\) such that \(y, y^{\prime} \in A_{i j}\) for some \(j\), and hence there is an \(r\) such that \(w_{i r}(x, y)=w_{i r}\left(x^{\prime}, y^{\prime}\right)\) by (1).

Remark. The product \(\operatorname{dim} G, \operatorname{dim} H\) in the upper estimate of \(\operatorname{dim}(G H)\) is essential: Consider the example of \(G=K_{m}+\) \(+K_{1}, H=K_{n}+K_{1}\). Here we have \(\operatorname{dim} G=m, \operatorname{dim} H=n\) and \(\operatorname{dim} G \mathrm{G} \boldsymbol{\mathrm { H }} \mathrm{m} . \mathrm{n}\).
5.5. For connected bipartite graphs one has dim \(G \leqslant\) bid \(G+\) +1 . Thus, by 4.3 we have in this case \(\operatorname{dim} G \leq 2 \delta(G)+1\). For general \(G\), however, no very satisfactory upper estimate of \(\operatorname{dim} G\) in terms of \(\delta(G)\) can be expected. We have by [2, Prop. \(3.41 \mathrm{dim}\left(P_{3}^{8 n}\right) \geq 2^{n}-1\), so that such estimate would have to be exponential in \(\delta^{\prime}(G)\) and hence not substantially better than the trivial
\[
\operatorname{dim} a \leq 3^{\delta(G)}
\]
obtained from \(\operatorname{dim} G \leqslant|G|\) and \(\log _{3}|G| \leqslant \sigma^{\prime}(G)\).
5.6. A lower estimate of \(\operatorname{dim} G\) in terms of \(\sigma^{\prime}(G)\) only is obviously impossible according to the inequality of \(\log _{3}|a| \leqslant\) \(\leq \delta^{\prime}(G)\).

\section*{References}
[1] J. KKIVKA: On the dimension of odd cycles and cartesian cubes, in: Proc. Conf. Alg. Methods in Craph Theory, Szeged 1978
[2] L. LOVASZ, J. NESETǨIL, A. PULTR: On a product dimension of graphs, J. Comb. Theory Vol. 29,No.1(1980), 47-67
[3] J. NESETǨIL, A. PULTR: Product and other representations of graphs and related characteristics, in: Proc. Conf. Alg. Methods in Graph Theory, Szeged 1978
[4] J. NESKETRIL, A. PULTR: A Dushnik-Miller type dimension of graphs and its complexity, L.N. in Comp. Sci. 56, Springer 1977
[5] J. NESETǨIL, V. ROBDL: A simple proof of the Galvin-Ramsey property of the class of all finite graphs and dimension of graphs, Discrete Math. 23(1978),4955
[6] S. POLJAK, A. PULTR: On the dimension of trees, to appear in: Discrete Math.
[7] S. POIJAK, A. PULTR, V. RÖDL: On the dimension of the Kneser graphs,in: Proc. Conf. Alg. Methods in Graph Theory, Szeged 1978
[8] S. POLJAK, A. PULTR, V. RÖDL: On a product dimension of bipartite graphs, submitted to J. of Graph Theory
[9] A. PULTR: On productive classes of graphs determined by prohibiting given subgraphs, Colloquia Mathematica Sci. János Bolyai, 18. Combinatorics, Keszthe1y 1976, 805-820
[10] A. PULTR, J. VINAPEK: Productive classes and subdirect irreducibility, in particular for graphs, Discrete Math. 20(1977), 159-176
[11] J. ŠIŠKA: Tolerance spaces and their dimension (Czech), Thesis (Charles University. Prague 1977)

CVUT, Stavebni fakulta, kat. ekonomiky, Thákurova 7, Praha 6 Fakulta mat.-fyz. UK, Sokolovská 83, Praha 8

Českos lovensko
(Oblatum 1.8. 1980)```

