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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,3 (1981)

REPRESENTING GRAPHS BY MEANS OF STRONG
AND WEAK PRODUCTS
S. POLJAK, A. PULTR

Abstract: Representability of graphs by means of pro-
duct-1ike constructions from simpler ones is studied, An esti-
mate of dimension of the strong product of two graphs is pre-
sented.

. Key words: Product, weak product, strong nroduct, dimen-
sion.

Classification: 05C99

The aim of this paper is to discuss some aspects of re-
presenting graphs as induced subgraphs of results of product-
like operations carried out with simpler graphs. There are
three such operations one usually encounters (for description
see 1.1): the (categorial) product, the weak product and the
strong product. (In fact, there are categorial reasons why ex-
actly these three kinds of products are of importance.) The
representation by means of the (categorial) product and the
resulting dimension characteristics have been studied recent-
ly in some intensity (e.g. [21,17),0(81,061,01], survey in [3]).
Here we shall be concerned mostly with the other two types of
products. In § 1 we will show that the weak product cannot be
used as a tool for generating graphs, not even the bipartite

graphs, from simpler ones. In §§ 2 and 3, the representation
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by ~eans of strong powers of the path of lergth two is inves-~
tigated ano v 1 i « close connection of this and the catego-
rial produrt repreaentation of bipartite graphs is shown. For
genaral grants ne~ sirilar cornections hold as follows from re-
marks in 3 9, the main nim of which, however, is to present an

n

estimate of dimengici ¢ strong produr',

Conventions aud notatiop: A graph is a finite undirected
granh without loop3 with the set of vertices V(G) and the set
of edges E(G)., Its cardinality, denoted by 1G|, is the cardi-
nalitv of Vi7!,

We say that G is (or cen be) embedded intec H if it is iso-
morphic to an induced subgraph of H. & particular isomorphism
of G with an induced subgraph of another graph is sometimes
referred to as a representation of G.

Vectors (x',...,xn) will be often written as words X Xgeee
eoeXyy the concatenation of words is denoted by juxtaposition.
A natural number n is viewed as the 3el of all smaller ones
(thus, e.g., 2 =10,1%), but n-dimensional vectors are, as a
rule, indexed from 1 to n rather than frcm O to n-t.,

The word obtained by repeating i n-times will be denoted

by

f(n) (or simply 1, if n is obvious).

The upber integral approximation of log, x is denoted by
log+ b 38

Special graphs: K, is the complete graph with n verti-
ces; K(G) is the complete graph with the same set of vertices
as G. D, is the n-point discrete graph. P, is the path
(n+1,{{4,i+1%| i = 0,...,n=1}), C, is the cycle (n,{{i,i+1}|

i =0,00.,n=2u{{0,n=13}), In case of complex indices we

- 450 -



write P(n) instead of Py.

t. Three products and representations using them
mn

~v
1.1, let G4, i =1,...,n, be graphs. Graphs %51 Gy, 1',1;:]4 Gy

and »'v;ﬁ't G; are defined as follows:
V(XG;) = v(OG;) = V(RG;) = X V(G;),
{(XyyeesXy) s (Fyseees¥py)he BIXG;) iff Vi {x;,y;}e B(G;)
Xy yeeeyXy), (Fryeeesyp)ie E(OG)) iff 3 ({xj,yj}sE(Gj)&
(i4§ = x5 = 3;))
{(x1,...,xn),(y?,...,yn)}e E(RG,) iff A ({xj,yj}eE(GJ-))&
Vi (x34y; =>4 x;,y51 €
€ E(G;))
2 2
We write G,< G,, (G,0G,, G,=G,, resp.) for{?{' G; (00,
4}?1 Gi' resp.) (one sees easily that <, O and R are associ-
ative - up to the "associativity" of cartesian product of sets -
and that X G; = G;xGyx...xG, etc.).
ig,] Gi is simply usually referred simply as product of the

”y
graphs Gj, ;514 G; as’ their weak (or cartesian) product, and
mv

;’@1 Gi as their strong product.

m m m
If G; = G for all i,,X, Gi’;,Q, Gy andi;E,‘Gi are denoted

(in this order) by
c", 7, dn,

1.2, Information: Every graph G can be represented as an
induced subgraph of some Kﬁ, the minimum necessary n is called
dimension of G and denoted by

dim G (see e.g. [51,[21,[41)
Every bipartite graph G can be represented as an induced

subgraph of Pg (see e.g. [91), the minimum such n is called
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bipartite dimension of G and denoted by
bid G (see [8]).

Every graph G can be represented as an induced subgraph
of Pgn (this follows e.g. from [10; 4.6]; it will be obvious
from the proof of 2.1(a) below). The minimum necessary n will
be denoted by

Jla).
(This, in essence, coincides with one of the dimension charac-
teristics of tolerance spaces introduced in [11].)

In contrast with these facts, the weak product is a very
weak tool for representing graphs. In fact, as we will show be-
low in 1.3, a system of graphs Q/ such that it generates all
graphs by means of weak products and induced subgraphs does it
without the prcducts as well (i.e., for every G there is then
an He (G such that G is its induced subgraph). This follows
very easily from the behavior of triangles in weak products
(we are indebted to J. NeSetril for this observation; meanwhi-
le, we have been informed that this author has proved analogous
results for various classes of graphs using Ramsey theory). The
problem naturally arose whether after avoiding triangles the
representation abilities improve. They do not, as will be seen
in 1.5: the statement on (4 above holds even if we wish to ge-

nerate just the bipartite graphs.

1.3. Proposition: For every graph G there is a graph H
such that

(1) G is an induced subgraph of H,

(2) (HI =1G| + 2, and

(3) if H is embeddable into Léi1Gi’ it is embeddable in-

to some of the Gi’
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Proof. First, observe that if a triangle K4 is embed-
143

ded into ,UJ,G;, say as xy...Xy, ¥yeou¥p, Zy...2, 8nd if
is the coordinate such that, for i%j, X; =y,, then also z; =
= y; for i%j. (Really, if 2+ X for some k#j, we have
z; = X and hence zj=#yj and z, #+Y,, so that z is not joined
with y.)

Construct H as follows:
V(G)u {a,bl where a,b¢ V(G), asb,
E@G)u {ia,bitu i a,xilxev(e)Iuliv,x} I xeV(G)].

V(H)
E(G)

If H is embedded into DGi, consider the images of the tri-

u

angles {x,a,bj.

1.4. Lemma. Let D = (ia,b,c,x,y}, {a,xi,{a,y},{b,x¥,{b,y},
m
{c,x},{x,y3¢) (see Fig. ) be an induced subgraph of 0, G.

Then there is an r such tha; 8; = bi =c; =X Ty, for i<*r,

[

Y
Fig.

Proof. The points x and y may differ either in two coor-
dinates or in one. In the first case we have necessarily a; =

=by =cy =x; =y for i#r,s and for z any of a,b,c one has

either Zn T X, and 2g T Yg OT 2

are two possibilities and the vertices a,b,c are three. Thus,

= yp and 2z, = X But these

r ] s°

x and y differ in one coordinate X, #J¥,. Then x,, cannot be join-
ed with y, in G, (x with y is not in D). Consequently necessa-
rily z.% Xpy¥y for z = a,b,c which immediately yields 23 T Ty

for z = a,b,c, i%r,
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1.5. Proposition. For every bipartite graph G there is
a bipartite graph H such that

(1) G is an induced subgraph of H,

(2) 1H! =1G\ + 4, and

(3) If H is embeddable into ;54(31, it is embeddable into
some of the Gj.

Proof., Consider a bipartition (P,Q) of G such that P con-
tains all the isolated points, Take four distinct points u,a,d,
ce PuQ and construct an H with bipartition (Pu{uy,Quia,b,c})
by putting

E(H) = E(G)uiiu,xilxeQuia,b,c}tviix,z}lxeP, z = a,b,ci.
Now observe that any point of V(H) lies in an induced subgraph
of H isomorphic to D from 1.4 and that the coordinate r in 1.4

is uniquely determined by any two vertices of D.

§ 2. Estimates and values of J for some graphs

2.1. Proposition. (a) J(G)=I1Gl,
(b) for each n there is a G with |G| = 2n and J(G) =z n.
Proof. (a) Order the vertices into a sequence XKyseseyXy

and represent Xx; a8 Xj XioeeeX;,, where

for j<i X5 = 1 if {xi,xjisr-;((}), X35 F 2 otherwise,
X34 = 0, and
for j>1i X35 ° 1.

(b) Take G = (nx 2,{{(11,12),(51,32” | i+ j‘} and denote
by v(i',iz) the vector representing (i?,iz) in P2, For ien
there has to be an s = s(i) such that |vg (i,0) - v (1,0)] = 2.
Since for j#i v(j,k) is connected with both v(i,0) and v(i,1),

. - >n.
we have to have vs(i)(.j,k) 1. Thus mZn
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2,2, Proposition. ILet AT""'AkC V(@) be discrete sub-
sets such that whenever ix,y! 4 BE(G), there is an i with x,ye
€ A;. Then

% +
J(G) = .=, log | A5l

Proof. Put n; = log+ Ai and consider a one-to-one map-
ping v, :A;— 4 0,23™. For x&A; put, moreover, v;(x) = T(ni).
Now, we can embed G into Pan, where n = = n;, representing x

by vy (x)vy®...vy(x).

2.3. Proposition. d(K,) = o(D,) = 1og” n.

Proof. Obviously o'(K,) = log'n < d(D,). Now, consider
a discrete subset D of P k. For v ¢ D define v’ by replacing
the 1-coordinates by zeros. Obviously, |{v’lve D}l = 1Dl so

that 1D]< 2K,

-

2.4. lemma. Denote X, the set of vectors from pgn having
at least one l-coordinate. Let Dc X1 be a discrete subset. Then
Ipl €2t

Proof, Obviously we can assume that each element of D
has exactly one 1-coordinate (replacing all the 1-coordinates
but one in each x€ D by zeros to get x', we obtain D" = fx’Ixe
€ D} which is discrete and equally large as D).

Put M = -{O,Zin-1 and consider the bipartite graph given
by the partition (D,M) and the relation R where

Ugeeoy Rvyooovy o iff for i£n-1 either uy = v; or u; =
= 1. Put D, = {ue Mlu, = 1%, D, = D\D,. Obviously,

ueDiza» deg u = 1i.
Let uRv, wRv and u#w. Then u,w¢D, and lu, - w,l = 2 (other-
wise lui - wil <1 contradicting the discreteness). Consequent-

ly, for ve M, deg v£2 and if (u,v)e R and ue D1 then deg v =
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Thus, for p the number of edges meeting D2 we have
p = 2(ID\ - ID1|)£ 2(I1Ml - ID’I)
and hence |Di<|M| = 2271,

2.5. Proposition. (a) J(P) = 10g'k,
+
(b)  J(Chy) = log 2k,
+ +
(e) log 2k éd‘(CZkH)élog 2k + 1.
Proof, If Pk is embedded into Pgn so that the vertices
O,1,...,k are represented by
WoaWeseooe,W,
we can embed PZk into P\gnﬂ as
(1) woo,w10,...,vrk__10,wk1,wk_IZ,...,w,Z,...,w'2,w°2,
cZk as
w°1,w,P,...,wk_10,wk1,wk_]2,...,w22,w12,
and, finally, CkH as
wol,w,0,000,w_10,w 1,7(n)2.
Consequently we see that

+ + +
(2) JI(Py) £ Tog k, J'(Cyy ) £1log k+1, o(Cyy ) < log 2k+1.

Since all the neighbours of points from PP X, (see 2.4) are
Joined with each other, all the points representing points of
cycles of length > 3 and all the inner points of paths have
to be in X;. Thus, considering the sets of points correspond-

ing to 1,3,5, etc. from P, resp. Ck we obtain by 2.4

log'k £91C,, ) = 1, log'k 20(Cy,,) - 1
which, together with (2), yields immediately (b) and (c). For
the paths we obtain so far

(3) 1og'Tk/2] + 1 £ J(P,) < 1og'k.

The inequality log'[k/21 + 1<1log'k holds only for k = 2° + 1,
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so that for finishing the proof of (a) it suffices to show
that we cannot embed P(27+1) into Pgn.
If we could, however, the representation from (1) would

n+1 Bn

yield an embedding of P(2 + 2) into P,"", which already

contradicts (3).

Remark: The formula for quk) has been nroved by anot-

her method (and in a slightly different context) in [11],

2.6. Proposition. ILet G be a forest. Then
dJ(G) £ 410g" 1 G1.
Proof, Choose a vertex in each of the components, let
o _o o
xl,xz,...,xko

be the chosen points. Order the points having the distance from

some of the xg exactly i into a sequence

i i i
XosXpyeee Xy o
1 :
Finally, denote by @;(j) the unique index k such that xg is

joined with xi-'.
Consider a sequence

WoaWiyeoo,W,

of points of Pgn representing the path P, with r the maximum
possible distance of an x€ G from some xg, and a system

UgsUyyeee, (k = mgx ki)

of distinct elements of {0,2’:B where s = log+k.
Now, we can embed G into Par+3S representing the vertices
as follows
~
s —> wouituo

X: —> w,u

~
(i)Y}

— w21u

HeN) He— MO

x (i)Y
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3 ~
xi}——> "3“1'“9(:1)
4 (]
x{ > '4“9(1)“1
etc.
2.7. Proposition. J(Kmx Kn)é m.log"’n + n.log+m.

Proof follows immediately from 2.2.

2.8. Notation. Let us denote by A(n) the smallest even
k such that

k
(ix/2))Z 2
We have obviously

Aln)£ 210g+n.
(In fact A(n) does nbt exceed the closest even number after

log*n + log*10g'n.)

2.9. Proposition. d(KynK,)< A (m).log'n.
(Consequently, d"(Kmo Kn)< 210g+m.1og+n. )

Proof. Take a one-one mapping cf:m—>{o,1;"“”‘) such that
each @(i) has equally many 1- and O-coordinates. For j = 0,1
put u(i,j) = @(i) + J. Obviously
(1) ifdi=4i"or j=J", we have lu,(i,§) - u (i",§")I£1 for
all r. For je n'choose distinct words jyjpe..Jy in -iO,lik where
k = log+n. Now, for (i,j) € m>n put

vgi.j) = u(i,j,)u(i,jz)...u(i,jk).
Ifi=4"or j=j§° v(i,j) is joined with v(i’,j’) in PPUM).k
by (1). Let i% i’ and j3j°. Then (after possible exchange of
(1,§) and (i°,j°) there is an r with j, = O and j. = 1. By the
definition of ¢ there is an s such that ¢,(i) = O and

Fg(i) = 1. Thus, ug(i,j,) = 0 and us(i',j') =2,
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§ 3. J and operations with graphs

3.1. Notation: The symbols x , O and ® have been ex-
plained in 1.1. The symbols G + H and .61%1 Gi are used for u-
sual (weak) sum of G and H (resp. of G,,...,G ). The strong
(Zykov) sum of G and H will be denoted by G® H.

Finally, let V(G) = V(H). Then, we denote by GNH the
graph with the same set of vertices and with the set of edges
E(G)n E(H).

3.2, Obviously we have

Proposition: J(GR H)=J(G) + J(H).

3.3. Proposition: o(GnH) £d(G) + J(H).
Proof: Let G (resp. H) be embedded representing the ver-
tices x by words u(x) (resp. v(x)). We can represent the ver-

tices of GNH by u(x)v(x).

3.4. Proposition: o (G @& H) < Jo(G) + J(H).,

Proof: Let G (resp. H) be embedded into F" (resp. F3")
representing the vertices x by u(x) (resp. v(x)). Xe can embed
G® H into Pgm'n representing the xc V(G) by u(x)7(n) and ye V(H)
by T(m)v(x).

3.5. Propositiom. oG + H) £ max(dlG),dJ(H)) + 1. More
generally, (.5, 0;)< max o10;) + log™k.

Proof. Represent the vertices x of G; in Pgn’ where n =
= m?x dg(a;), by vi(x). hoose k separated: vectors u,,...,Y in
Pgm, where m = 10g'k (see 2.3). Now, we can embed =0 into
Pgn"" representing x€G; by v, (x)u;.

3.6. Propositiom.
F(GxH) % 4(G) + S(H) + 1Gl.20g*|H| +!H120g™ | GI.

Proof. Obviously, GxH = (G @ H) n (K(G)x K(H)). Thus,
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the inequality follows from 3.2, 3.3 and 2.7.

3.7. Propesition. J(GaRH)= o(G) + o' (H) + 21eg'lal,
.log+IH\.

Proof. Obviously GOH = (G ® H)~ (K(G) o K(H)). Thus,
the inequality follows from 3.3 and 2.9.

§ 4. J and bipartite dimension

4.1. Recall the definition of bid G in 1,2, One sees ea-
sily that it is the minimum n such that the vertices x can be
replaced by vectors X;...X, in 0,1,1,3 such that x iz joined

with y iff Vilx; - y;l= 1.

4.2, Proposition. For a bipartite graph G we have
d'(G)< 3bia G.
Moreover, if G is connected,
J'(@)< 2bid G.

Proof. Denote by F, the connected component of Pg con-
taining 00..,0. Since all the components are isomorphic, we
have to prove that ‘d‘(%‘)é 3n and J(F,)% 2n.

For x¢ Pg‘ consider Xe Pan defined by

%; = max (x3 = 1,0), ’in+i

x2n+i = 2‘1(!) (1=1,...,n=1)

= min (x;,2), (i = 1,...,n)

where a(x)e {0,133 satisfies a,(x) = 0 and is situated in the
same component as x.

If Ix; ~ y4! =1 for all i then obviously l'i'j -’ijl-f--l
for all j. Let, on the other hand, \’i'j - ’ijlé.l for all j.
Then first, according to the last n-1 coordinates x and y are

in the same component. Consequently, as one easily sees,

S em-,
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k) Xj ~ yj are either all even or all odd.

We cannot have Ix; -~ y;1 = 2 (if the numbers were O and 2,
|'i'n+i- ?/’mi\ = 2, if they were 1 and 3 , |i’i - §;! = 2). Thus,
Ix; « y31£1 for all i, which, according to (%) yields for
every x+y that Ix; - y;1 =1 for all i.

Representing just the vertices of Fn, the coordinates

szi can be left out.

4.3, Proposition. For a bipartite graph G we have
bid G<£2G).
Proof. Consider a bipartition (V,,Vz) of an induced sub-
graph G of Pg. For xe V1 defin§

_ /0 if x; =0 Oifxi=2
=

- .=/
x5 n+i \2

2 if x;%0 if xi=\=2
(i =1,...,n),
and for ye V, we define
~ /1 ifyi*2 _ /t ifyiJ;O
i = \u Ynsi = .
3 ity =2 3 ity =0
(1 =1,...,n).
Thus, if x and y are both in V., we have never \'x_i; - 'y'i\ =1,
and for xe V, and ye V, alwsye"ii*ii. Let xeV,, ye V, and
li.l - iilz—. ! for all i, This excludes the possibility
\ii -3y jl = 3 and since the difference cannot be even, we are
left with \?EJ. - ij\ =t for all j.
On the other hand, for all j, \'x'j - 'ij\ = 1, Thus, either
xj=Oandyj= 1, orxj=2emdyj=3, orfinallyxj=2
J
in the second one xj>0 and yj = 25 in the third case we get

.

and SV'J- = 1, Consider j4n. In the first case x: = 0 and ¥yj< 2,
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x.>0 and y.<2 so far. But if x. = 2 and Y; = 0, one has

J J J
;n+j = 0 and —in-r:j = 3. Thus, in any case |x; - y;1<1, for
all i.

Obviously X4y if x+y.

§ 5, Dimension of G® H. Remarks

5.1. Since dim D, = 2, dim K, = | and dim(D, ® K,) =
= log+n - 1 (see e.g. L2]) we cannot have an upper estimate
of dim(G @ H) im terms of dim G and dim H only. We are going
to present an upper estimate involving also the chromatic num-

bers and cardinalities of independent sets.

5.2, dim G (result 1,2) is the minimum n such that the-
re exists a one-one u:V(G) —> N® ( W is the set of natural
numbers) such that ix,y}e E(G) iff Vi u;(x)+u;(y). Leaving
out the requirement of one-one, we can under circumstances do
with one coordinate less; such a minimum will be denoted by
dOG. As in 3.3, realizing, moreover, that the vertices will
be distinguished already by the first dim G coordinates, we

immediately obtain

Lemma. dim (GNH)< dim G + 4 H.

5.3. Lemma. dim (Kpﬂ Dn)ép.log+n.

Proof. . This is a fact known in another formulation (see
£11). Kps D, is a sum of n copies of Kp. It is easily seen by
induction: We will show that dim(Kp ® Dy ) = din(l(p ® D)+
+ (xpn D,)) &£4dinm (Kpn D)) + p. Let us have (x,i)el(ps n,
represented as u(x,i). Represent the elements of the first sum-

mand in KPI o, + l(pﬂ D, as u(x,i) % (P), those of the second
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summand as u(x,i)x (x+1)...(x+p-1) (addition mod p).

5.4. Theorem. Denote by x the chromatic number and by
o¢ the maximum cardinality of independent set. We have
dim(GEH) £ dim G.dim H + dim G. gH.log G + dim H. 5G.1log ecH.
Proof. Choose colorations ¢:G —> K g ¢ :H— K g We
see easily that GBH = G, N Gy, NGy where V(G,) = V(G)= V(H)
and *
{x,y),(x’,y e E(G,) iff ix,x’}e E(G) or {y,y ?e E(H),
{Ux,y),(x ",y )te E(G,) iff ix,xt € BE(G) or x = x” and
¢ (y) = ¢’(y"),
{(x,y), (x",3 e B(G4) iff {y,y}e EH) or y =y’ and
. glx) = ¢(x°).

Obviously dim G, < dim G. dim H (let u(x) = (uy(x)) 4.0 )

vix) = (vi(x)) g be reprecentations of G resp. H, let

i£dim
f: N=xN —> N be one-one; it suffices to put wij(x,y) =
= f(ui(x),va-(y)). Since the definitions of G, and Q«B are ana-
logous, it suffices to prove (see 5.2) that doq3 <dim H- x G.
-ocH. By 5.3 there is a wiK,q8 D p —> NE with k = xG.log+ocH
such that

(1) if y+y’, there is, for any y, y , an r such that

u,(x,y) = un(x’yy "),

(2) if x+x’, then always u.(x,y) = u.(x",y).
According to a well-known fact on dimension (see e.g. [5],[4])
there is a system ¥,,..., €3, g of disjoint decompositions

of V(A), ¥ = {Ai,...,Aiai} such that Aij are independent

and whenever iy,y’? ¢ E(H), there is an Ag; with 1y, ¥y 3c A je
Put (u.i(y) = j for ye Ai;j and choose mappings Vi:V(H)-—> o< H

such that all ¥;lA; j are one-one. Choose a number 3¢ larger
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than all the numbers occurring among the ur(x.y). Now, for
(x,y)ev(93), 1i<dim H and r< k put
win(x,y) = u, (g (x), ViyN+ ee. G

Let {(x,y),(x",y" N e B(G3). If {y,y"} € E(H) we have always
5 )+ “31") so that wy (x,y)+ wir(x',y') according to

the choice of & . If y =y’ and @(x) = @(x"), w; (x,y) =

= wir(x',y') by (2). Let {(x,y),(x ",y )34 E(G3). Then either

y =y and g(x) = ¢(x") and then trivially wy,.(x,y) =

= wir(x',y'), or y4y’ and {y,y’} € E(H). Then we have an i

such that y,y’e Aij for some j, and hence there is an r such

that w. (x,y) = wir(x',y') by (1).

Remark. The product dim G, dim H in the upper estimate
of dim (G H) is essential: Consider the example of G = K, *
+ K,, H =K +K,, Here we have dim G = m, dim H = n and
dim Ga Hz m.n.

5.5. For connected bipartite graphs one has dim G<bid G+
4+ 1, Thus, by 4.3 we have in this case dim G<£2 J(G) + |, For
general G, however, no very satisfactory upper estimate of
dim G in terms of J(G) can be expected. We have by [2, Prep.
3.4]) dim (Pgn)z 2" - 1, so that such estimate would have to be
exponential in J(G) and hence not substantially better than
the trivial

‘ din G2 39(®)

obtained from dim G <) G| and log, gl £0(a).

5.6, A lower estimate of dim G in terms of J°(G) only is

obviously impossible according to the inequality of 1033 la\ €
< d(G). \

- 464 -



{11

[2]

[3]

[ 4]

{53

L6}

[n

[8]

19l

[10]

111

L'

J.

References

KRIVKA: On the dimension of odd cycles and cartesian
cubes, in: Proc. Conf. Alg. Methods in Graph The-
ory, Szeged 1978

LovASZ, J. NESETRIL, A. PULTR: On a product dimensiom
of graphs, J, Comb. Theory Vol. 29,No.1(1980),
47-67

NESETRIL, A. PULTR: Produgt and other representations

of graphs and related characteristies, in: Proc.
Conf. Alg. Methods in Graph Theory, Szeged 1978

NESETRIL, A. PULTR: A Dushnik-Miller type dimension of
graphs and its complexity, L.N. in Comp. Sci. 56,
Springer 1977 ‘

NESETRIL, V. RODL: A simple proof of the Galvin-Ramsey
property of the class of all finite graphs and a
dimension of graphs, Discrete Math. 23(1978),49-
55

POLJAK, A. PULTR: On the dimension of trees, to appear
in: Discrete Math.

POLJAK, A. PULTR, V. RODL: On the dimension of the Kne-
ser graphs,in: Proc, Conf. Alg. Methods in Graph
Theory, Szeged 1978

POLJAK, A. PULTR, V. RODL: On a product dimension of
bipartite graphs, submitted to J. of Graph Theory

PULTR: On productive classes of graphs determined by
prohibiting given subgraphs, Colloquia Mathemati-
ca Sci. Jénos Bolyai, 18. Combinatorics, Keszthe-
ly 1976, 805-820

PULTR, J. VINAREK: Productive classes and subdirect ir-
reducibility, in particular for graphs, Discrete
Math. 20(1977), 159-176

813KA: Tolerance spaces and their dimension (Czech),
Thesis (Charles University. Prague 1977)

. - 465 -



8vur, Stavebn{ fakulta, kat. ekonomiky, Thékurova 7, Praha 6
Fakulta mat.-fyz. UK, Sokolovskéd 83, Praha 8

Ceskoslovensko

(Oblatum 1.8. 1980)

- 466 -



		webmaster@dml.cz
	2012-04-28T07:09:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




