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A TERNARY VARIETY GENERATED BY LATTICES
William H. CORNISH

Abstrgct: The class of all subreducts of lattices,
with respect to the ternary lattice-polynomial six,y,z) =
= xAlyvz), is a 4~based variety. Within its lattice of
subvarieties, the subvariety of distributive supremum algeb-
ras is atomic and needs 4 variables in any equational des-—
crip‘tion.
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0. Introduction. Consider the variety of algebras (A;s)
of type (3) that satisfy the following identities

(s1) sfx,x,y) =x,

(s2) six,y,y) = s(y,x,x),

(s3; s(x,y,z) = s(x,z,y),

(S4) was(x,y,z) = s(wax,y,z),

(s5) slx,s(y,v,w), stz,v,w)) £slx,v,w),
where A is the derived operation given by

(D1) xAy = six,y,y),
and £ 3s the derived relation defined by

(D2) x<y if and only if x = xAYy.
Then, we show that an algebra is in this variety if and only
if it is a subalgebra of a reduct (L;s), where (L;A,v ) is
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a lattice and s(x,y,z) = xA{yyvz). The variety generated a
single such lattice-reduct (L;s) has already been studied
by Baker [1]; he showed that the variety is congruence—4-
distributive but not 3-distributive. Of course, his result
extends to our larger variety. However, this can be obtain-
ed from Hickman [2], as each reduct (A;J) of an algebra (A;s),
where j is the derived ternary operation given by

(03) Jjx,y,2) = aly,xAy,yAz),
is a join algebra. We demonstrate this by showing that each
algebra is a nearlattice wherein j(x,y,z) = (xAy)viyaz).
Baker ‘s result has already been exploited by Berman [2].

In the presence of (S1) - (S4), (S5) is implied by

(S6) was(x,y,z) =8sl{x,wAy,wAaz).
The subvariety defined by the five identities (S1) - (S4) and
(s6), consists of subalgebras of reducts of distributive lat-
tices and so is the variety generated by (2;s), where (2;A ,v)
is the two element lattice. This variety was described by
Lyndon [ 8; Theorem 3] in 1951, using nine identities.

1. Subredyets. Before proceeding to the main results,
we would like to make some remarks on subreducts, that is
subalgebras of reducts, of the algebras in a variety.

Let ¥ be a variety of finitary algebras, p be an n-ary
V-polynomial, and !p be the class of all subalgebras of al-
gebras having the form (A;p), where A is the underlying set
of a Y-algebra. Then, !p is a class of algebras of type <n> ,
but it is not necessarily a variety. For example, if § is
the variety of Abelian groups and p is the group-mroduct,

then !p is the class of all commutative cancellative semi=~
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groups and the cancellation law can fail in homomorphic i-
mages of such semigroups. In general, !p is closed under
the formation of products and subalgebras. A sufficient
condition to ensure closure under homomorphic images is as
follows.

Suppose p is congruence-determining in the sense that

the V-congruences on a Y-algebra are precisely the !p—bong-

ruences on its gp-reduct. Also, assume that !p enjoys the
Congruence Extension Property. Then, it is immediate that
!p is closed under homomorphic images and so is a variety.
In the above case concerning Abelian groups, p is congruen-
ce-determining but the Congruence Extension Property fails
for commutative cancellative semigroups. An instance where
these conditions hold is supplied by the case of ¥ being
the variety of Boolean algebras (A;A ,v ,’' ,0,1) and p being
the binary polynomial plx,y) = x¥y = xay . Here, gp is the
variety of implicative BCK-algebras; for an account, see [3]
and especially Corollary 1.5, therein. Thus, !p has the Con-
gruence Extension Property; in fact, any variety of BCK-al-
gebras has the Congruence Extension Property, [5; Theorem
3.11. It is not hard to show that p(x,y) = x*y is congruen-
ce~determining on a Boolean algebra, or alternatively, this
can be deduced from [4, Corollary 3.131.

However, each of these two conditions is not necessary
for !p to ke a variety. For instance, when V is the variety
of (distributive) lattices (A;A,v ) and p is given by

plx,y) = xAy, V., is the variety of semilattices; here, ¥V

P P
has the Congruence Extension Property but p is not congruence
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-determining. On the other hand, the main result of this pa-
per, as described in Section 0O, supplies an example where
the Congruence Extension Property fails (because it fails
in any variety of non-distributive lattices) and p, that is
8, is congruence-determining. Actually, Baker commented on
this property of s in [1; Note 1, p. 143]1; this can also be
seen from Hickman [7; Proposition 2.21], since (D3) of Secti-
on O gives Hickman’s J as a polynomial in terms of s. Anot-
her such example is provided by Hickman ‘s Join slgebras, see
17; Proposition 1.1(iii), Theorem 2.1]J. Thus, the main res-
ult of this note has a significance with respect to a model-

theoretiec problem.

2. Majn results. A partially ordered set is said to ha-
ve the upper bound property if any two elements possess a su-
premum, whenever they have a common upper bound. A pearlgtti-
cg is a lower semilattice with the upper bound property. Im
any nearlattice (A; A,2), j(x,y,2) = (xAy)viyAz) is defin-
ed on the whole of A. The resulting ternary algebras (A;J)
are equationally definable and are called Jjoinp algebras. Ac-
tually, in [7; Theorem 2.1, Proposition 2.4], Hickman showed
that the variety of Jjoin algebras and their homomorphisms is
isomorphic to the category of nearlattices and their near-
lattice-homomorphisms; the isomorphism commutes with the for-
getful functors to the category of sets. We will give no fur-
ther details; additional information on nearlattices and
their congruences gtg, can be found in [4; Section 3]. It

should be mentioned, however, that a lower semilattice is a
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nearlattice if and only if the new semilattice, that results
from the addition of a largest element, is really a lattice.
Hence, the variety of join algebras is the variety !p’ when
¥ is the variety of lattices amd p is J.

We make use of the notation of Section O. & ternary al-

gebra (A;s), satisfying (S1) - (S5), will be called a gupre-
pum slgebra.

Lemma 2.1. Let (A;s) be a syoremup algebra. Thep,

(A;A ,%) is g pegrlattice. For any a,b,ceA, s(a,b,c) =
=anlbve), when bve exists.

Proof. By (S1) and (Dl), an a = s(a,a,a) = a. From (S2),
aAb = baa. From (S4), aan(bac) = ans(b,c,c) = slanb,c,0)=
= (aADb)A c. Thus, (D2) says that (A; A,<) 1s a lower semi-
lattice, wherein <« 1is the induced partial order.

Suppose b,c,< a and let d = s(a,b,c). Due to (S4) and
(s1), bad = slbaa,b,c) = slb,b,e) = b, i.e. b£d. Similar-
ly, c<d, and d is a common upper bound of b and c. Let e be
another such bound. Then, d = s(a,b,c) = s(a,bAae,cAe) =
= s(a,s(b,e,e), s(c,e,e))=s8la,e,e) = anece, by (S5). Hen-
ce, d = bve.

When byvc exists, the above reasoning shows that bvc =
= g(bve,b,c). Hence, anl(bve) = ansibve,b,e) = alanlbve,),
b,e) = (bve)lAs(a,b,c)« s(a,b,c), due to two applications of
(S4). But due to (S5), sla,b,c) = s(a,balbve),cnlbve)) =
= s(a,alb,bv ¢,bvec), slc,bve,bve))4«sla,bve,bvel =
= aA(bve). Hence, s(a,b,c) = an(bve).

Notice that the lemma implies that j, as defined by (D3),
is given by j(x,y,z) = (xAy)v (yAz) on the underlying near-
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lattice of a supremum algebra. Hence, the reduct (A;J) of a
supremum algebra (A;s) is a join algebra, and so, by Hick-

man [ 7], we obtain

Corollary 2.2. The varie f suprem ebras is n-
gruence-4-distributive, but not congruenge-3-distributive.

In order to establish the characterization of supremum
algebras as subreducts, we need to introduce the appropriate
ideal-theoretic concepts. An s-idegl of a supremum algebra
(A;8) is a non-empty subset K such that, for any ac A and
ky k€ K, sla,ky,k,) € K, When a<k and keK, a = s(a,k,k),
and so a€ K. If kl,kzel( and k; v k2 exists, then Lemma 2.1
implies kv k, = s(klv' ka’kl’kz) and so kjv ky€ K. Thus, an
s~ideal is a nearlgttice-ideal of the underlying nearlattice.
Nevertheless, the true nature of s-ideals is a mystery to us,
even though we can exploit them.

When K; and K, are s-ideals of a supremum algebra (A;s),
there are k)€ K and k,& K and sc;, KAk, = s(klA k2’k1'k2) =
= S(kIA kz,kz,kz), says that k;A k, is in the set-intersec-
tion Kln Kz. It follows that Kan.‘, is an s~ideal. Also, let
T, =iachia = sla,ky,k;), k€ K, kye Ky} and Toa =fach:
ta = s(a,ty,t,), t),t,€ T ¥ for nZ 1. Then, we have inducti-
vely defined the sequence K, Kzs T, ST S eee ETST 1S eee ©
Moreover, it is not hard to show that Uit Tn:nzO} is the
smallest s-ideal containing both K, and K,. Hence, when or-
dered by set-inclusion, the s-ideals of (A;s) form a lattice,
wherein the infimum and supremum of s-ideals Kl and K‘Z are
given by Kjn K, and Kjv K, = U{ T, :n2 0%, respectively. Also,
it is not hard to see that for any be4, (bl = {acA:a<b}
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is the s-ideal generated by b. In general, the s-ideal gene-
rated by a non-empty subset B of A is U{sn:nzoi, where SO =
={ae K:a = s(a,b),b,),b) b€ B}, S, ) = fach:a = s(a,ry,r,),

Ty, Tpe Sn§ , for nZz1l.

Lemma 2.3. Let (A;s) be g supremum glgebra and a,b,c<A.
Then, in the lattice of s-ideagls (blv(cl ={deA:d =
= g(d,b,c)}, apd conseguently (aln ((B3v(cl) = (s(a,b,cll.

Proof. Let T ={de A:d = s(d,b,c)}. Then, b,ceT, by
(S1) and (S3). Also, if d;< d and d = s(d,b,c) then d; =
= (d),b,c), due to (S4). In other words, T is hereditary.
Now, if t;,t,€ T and ac 4, then, because of (S5) and (S4),
s(e,tl,tz) = s(e,a(tl,b,c), s(tz,b,c))és(e,b,c), and
s(e,b,c) = s(e,b,c)A s(e,b,c) = s(s(e,b,c)A e,b,c) =
= s(s(e,b,c),b,c). Hence, s(e,b,c)e T, and 8o sle,t;,t,)e T,
too. Thus, T is an s-ideal containing b and ¢. It immediately
follows that T = (blv(cl.

The remaining assertion follows quickly from (S4), and

its consequence that a(a,b,clé& a.

Theorem 2.4. Let L be the variety of all lattices and
s be the ternary lattice-polypomial s(x,y,z) = xA(yvz).
Zhen, L, is the variety of supremup alsebras.

Proof. It is easily verified that each algebra in ._l:s
satisfies (S1) - (S5). On the other hand, a supremum algebra
(A;s) is in Ly, as the map a — (a) is a supremum algebra-em~
bedding of (A;s) into the s-reduct of its lattice of s~ideals.

We now turn to distributivity. A nearlattice is m;
butive, when the infimum distributes over existent finite su-
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prema. This is equivalent to the associated join algebrs sa-
tisfying the identity wa j(x,y,2) = j{wa x,y,wAz), where
xAy = J{x,y,x); see [T; Theorem 3.3). More importantly, a
nearlattice is distributive if and only if either each ini-
tial segment is a distributive sublattice or the lattice of
nearlattice-ideals is distributive or the finitely generat-
ed nearlattice-ideals form a distributive lattice, when or-
dered by set-inclusion. The equivalence for these last two

conditions is contained in the proof of L6; Theorem 1l.2].

Theorem 2.5. Th i) ndit n ternar -

gebrg (A;s) are eguivalent.
(1) (A;8) is a supremum slgebra satisfying the identity
(s7T) s8(x,y,z) = slx,xAy,xA2Z).
¢11) (a;8) is s gsupremum algebra, whose latt £ a-
jdegls ig digtributive.
(111) (A;s) gatisfies the identities (S1) - (S4) and

(S6), where A is defiped by (D1).
Proof. (i) == (ii). It follows from (i) and Lemma 2.1

that each initial segment of the underlying nearlattice is
a distributive lattice. It also follows from (i) and Lemma
2.1 that each nearlattice-ideal is an s-ideal. Thus, the two
concepts of ideal coincide here. As the nearlattice is dis-
tributive, (ii) follows.

(i1) =b (iii) holds because a distributive lattice sa=-
tisfies (S6).

(111) w=p (1). Reasoning along much the same lines as
in the proof of Lemma 2.1, we see that (i1ii) implies that

(A;A,€) 18 a nearlattice. Also, s(a,b,c) = bvc, whenever a is
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an upper bound of both b and c. Due to (S6), s(x,y,z) =

= 8(xAX,¥,2) = xA8(x,y,2) = s(x,xA y,xA2). Hence, (S7)
holds and s(x,y,z) = (xAy) v (xAz). Then, (S6) says that
the infimum distributes over such a supremum. Using these
observations, it is possible to express the left side of (S5)

as a supremum of infima, and so establish (S5).

Corollary 2.6. Let D be the variety of distributive
lattices and s be the ternary D-polynomial s(x,y,z) =xA(yvz)=

= (xAy)v(xaz). Then, Dy is the variety of all algebras
t in, he conditi Theor 2.5.

Call the algebras of Theorem 2.5, digtributjve supremum
algebras. The above results show that Hickman's distributive
join algebras and distributive supremum algebras are defini-
tionally equivalent. And, perhaps, it would be more natural
te describe Jjoin algebras by (xAy)v (xA z) instead of j. Co-
rollary 2.6 ensures our remarks at the end of Section O.
Hickman's equational base for the variety of distributive su-
premum algebras has 9 identities, as does Lyndon's. Ours has
5 identititles. However, both the variety of supremum algebras,
and its subvariety of distributive algebras, can be defined
by using at most 4 identities. This is because of Corollary
2.2, and Padmanabhan and Quackenbush [9; Theorem 11.

A related question is that of the minimum number of va-
riables needed in an equational base for one of these varie-

ties.

Theorem Z2.7. Ap e t al or_e T -

or djstr
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risbles. And 4 is sufficient for distributive supremup al-
gebras.

Proof. Suppose 3 variables are sufficient for either
of the varieties. Because of Theorem 2.5 and (S7), 3 vari-
ables suffice for distributive supremum algebras. Hence 3
variagbles suffice to equationally describe distributive
Jjoin algebras. Now consider the 5-element modular non-dis-
tributive lattice. The associated join algebra ie not dis-
tributive, yet all of its 3-generated join subalgebras sare
distributive. This gives the desired contradiction. The re-
maining assertion follows from Theorem 2.5(iii).

When looking for examples of supremum algebras, it is
important to observe that any hereditary subset of a latti-
ce is closed under s, and so becomes a supremum subalgebra.
We do not know whether all supremum algebras arise this way.
But distributive supremum algebras do! As observed in the
proof of Theorem 2.5, the s-ideals and the nearlattice-ide-
als coincide on a distributive supremum algebra. Moreover,
the finitely generated nearlattice-~ideals form a lattice
when the nearlattice is distributive, c.f. L 6; Theorem 1.2].
Then, due to the upper bound property, a distributive sup-
remum algebra i1s a hereditary subset of its lattice of fi-
nitely generated s-ideals.

Another feature of distributive supremum algebras is
that they are s-isomorphic if and only if they are order-i-
somorphic. In general, this is not the case. For let us con-
sider the 4-element nearlattice ., which has 3 atoms a, b,

and ¢, and smallest element O. It is a hereditary subset of
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the following 4 lattices Ll'LZ’L3'L4' Here, L, is the Boo-
Iean 1lattice with a,b, and c as atoms; the associated al-
gebra A) = (A;8) is distributive, but not subdirectly irre-
ducible. Then, L, is the 5-element modular non-distributive
lattice; the algebra A, = (A;8) is simple and not distribu~
tive. The lattice L3 has 5 elements; the new elements are d
end e, d = bve, e =avd =avbvec; the algebra Ay = (4;8)
is subdirectly irreducible, but not simple. The fourth lat-
tice L4 has 6 elements; the new elements are d,e,f, d = ay b,
e =bve, £ = dve; the algebra Ay = (A;8) is elso subdirect-
ly irreducible but not simple. Up to s-isomorphism, Al - A4
are the only distinct supremum algebras which contain A as a
subnearlattice. Because of congruence-distributivity, A2, A3
and A4 generate distinet varieties which cover the variety
of distributive supremur algebras. Thus, to us, the study of
the lattice of subvarieties of supremum algebras seems hope-

lessly difficult.
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