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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22.4 (1981) 

A TERNARY VARIETY GENERATED BY LATTICES 
William H. CORNISH 

Abatract: The c lass of a l l subreducts of l a t t i c e s , 
with respect to the ternary latt ice-polynomial sCx fy fz) * 
* x A C y v z ) , i s a 4-baeed var ie ty . Within i ta l a t t i c e ot 
aubvarietiea, the subvariety of d i s tr ibut ive supremum a lgeb ­
ras ia atomic and needs 4 variables in any equatlonal d e s ­
cr ipt ion . 

Key words: Subreduct, l a t t i c e , n e a r i a t t i c e , distribu— 
t i v i t y . 

Class i f i cat ion: 03005, 06A12, 06D99, 08B10 

0* Introduction. Consider the variety of algebras (A;a) 

s f t yp#<3> that s a t i s f y the following i d e n t i t i e s 

CS1) aCx fx fy) » x f 

CS2) aCx fy,y) » s ( y f x f x ) f 

CS3) s ( x f y f z ) « s ( x f z f y ) f 

(54) wAa(x fy fz) * s ( i A x , y , z l , 

(55) 8(xfa(yfvfw)f aCzfvfw)) £aCxfvfw), 

where A is the derived operation given by 

CD1) xAy * aCxfyfy), 

and £ Is the derived relation defined by 

CDS) x^y if and only if x « XAy. 

Then, we ahow that an algebra la in thla variety if and only 

if it ia a subalgebra of s reduct (L;a), where CL; A ,V ) ia 
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a lattice and s(x,y,z) » x A C y v z ) . The variety generated a 

single such lattice-reduct (L;s) has already been atudied 

by Baker £13; he showed that the variety is congruences-

distributive but not 3-distributive« Of course, his result 

extends to our larger variety. However, this can be obtain­

ed from Hickman £21, as each reduct (A;j) of an algebra (A;s), 

where j is the derived ternary operation given by 

CD3) jCx,y,z) » sCy,XAy,yAz), 

is a join algebra. We demonstrate this by showing that each 

algebra is a nearlattice wherein :j(x,y,z) » CxAy)v(yAz). 

Baker's result has already been exploited by Berman 12}• 

In the presence of CS1) - (S4), (S5) is implied by 

CS6) W ! A S ( x , y , z ) sr s ( x , W A y , W A z ) . 

The subvariety defined by the f i v e ident i t i ea (Si) - (S4) and 

(S6) , consi3ts of subalgebras of reducts of d i s t r ibut ive l a t ­

t i c e s and so i s the variety generated by ( 2 ; s ) , where (2; A fv) 

i s the two element l a t t i c e . Thia variety waa described by 

Lyndon C8; Theorem 33 in 1951, uaing nine i d e n t i t i e s . 

-«• Subreducts. Before proceeding to the main r e s u l t s , 

we would l ike to make some remarks on subreduct9. that i3 

subalgebras of reducts , of the algebras in a variety . 

Let V be a variety of f in i tary algebras, p be an n-ary 

^-polynomial, and V be the class of a l l subalgebraa of a l ­

gebras having the form C.A;p), where k i s the underlying set 

of a J-algebra. Then, J p i s a c lass of algebras of type <n> , 

but i t i s not necessari ly a variety . For example, i f JT is 

the variety of Abelian groups and p i s the group-product, 

then V i s the class of a l l commutative cancel lat ive semi-
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groups and the cance l la t ion law can f a i l in homomorphic i -

mages of such semigroups. In general , V- i s closed under 

the formation of products and subalgebras. A s u f f i c i e n t 

cond i t ion to ensure closure under homomorphic images i s as 

fo l lows . 

Suppose p i s congruence-determining in the sense that 

the V-congruences on a ^-algebra are prec i se ly the V -cong­

ruences on i t s V -reduct . Also, assume that JJ enjoys the 

Congruence Extension Property. Then, i t i s immediate that 

Y i s c losed under homomorphic images and so i s a var ie ty . 

In the above case concerning Abelian groups, p i s congruen­

ce-determining but the Congruence Extension Property f a i l s 

for commutative cancellafcive semigroups. An instance where 

these cond it ions hold i s supp l ied by the case of Y being 

the variety of Boolean algebras (A; A , V , ' ,0 ,1) and p being 

the binary polynomial pCx,y) * x*y » x A y . Here, Yp i s the 

variety of imp l icat ive BCK-algebras; for an account, see [3] 

and e s p e c i a l l y Corollary 1.5, there in . Thus, Y has the Con­

gruence Extension Property; in f a c t , any variety of BCK-al­

gebras has the Congruence Extension Property, [5; Theorem 

3.13 • I t i s not hard to show that p(x,y) = x*y i s congruen­

ce-determining on a Boolean algebra, or a l ternat ive ly , th i s 

can be deduced from t 4 , Corollary 3.131. 

However, each of these two conditions i s not necessary 

for V to be a variety. For instance, when Y i s the variety 

of (d i s tr ibut ive) l a t t i c e s U ; A , V ) and p i s given by 

pCx,y) » XAy, Y i s the variety of semi lat t ices ; here, V 

has the Congruence Extension Property but p i s not congruence 
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-determining. On the other hand, the main result of this pa­

per | as described in Section 0, supplies an example where 

the Congruence .extension Property fa i l s (because i t f a i l s 

in any variety of non-distributive latt ices) and p, that i s 

s, i s congruence-determining. Actually, Baker commented on 

this property of s in t l ; Note 1, p. 1433; this can also be 

seen from Hickman C7» Proposition 2.23, since (D3) of Secti­

on 0 gives Hickman's j as a polynomial in terms of s . Anot­

her such example is provided by Hickman's join algebras, see 

17; Proposition l . l ( i i i ) , Theorem 2.13 . Thus, the main res­

ult of this note has a significance with respect to a model* 

theoretie problem* 

2* Main results. A partially ordered set i s said to ha­

ve the upper bound property i f any two elements possess a su­

pra mum f whenever they have a common upper bound. A near l a t t i ­

ce is a lower semllattice with the upper bound property. In 

any nearlattice ( A ; A , £ ) , j(x fy fz) * (xAy)vCyAz) i s defin­

ed on the whole of A. The resulting ternary algebras (A;j) 

are equationally definable and are called .join algebras. Ac­

tually, in £7; Theorem 2.1 , Proposition 2.43, Hickman showed 

that the variety of join algebras and their ho isomorphisms is 

isomorphic to the category of nearlattices and their near­

ia ttice-homomor phi sms; the isomorphism commutes with the for­

getful functors to the category of sets . We will give no fur­

ther details; additional information on neariattices and 

their congruences etc. can be found in £4; Section 3 ] . It 

should be mentioned, however, that a lower semllattice i s a 
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near la t t i ce i f and only i f the new semi la t t i ce , that r e s u l t s 

from the addit ion of a largest element, i s r e a l l y a l a t t i c e . 

Hence, the variety of jo in algebraa i8 the var ie ty Vpf when 

X i s the var iety of l a t t i c e a and p i8 j . 

We make use of the notation of Section 0 . A ternary a l ­

gebra (A;s) , sat iafy ing (SIJ - (S5) , w i l l be cal led a suort -

mum algebra. 

Lemma 2 . 1 . L&1 (A;s) fee a, a\jpremum algebra. Then, 

( A ; A , £ ) jla fl ng§rlqttl9fl. for ,aay a , b , c e A f a (a ,b f c ) « 

* a A (b v c) f jhaa b v c ex ia ta . 

Proof. By (S l l and (Dl) , aA a = s ( a , a , a ) 3 a. iron (S2) , 

aAb » bAa . From (S4) f a A (bA c) * aA s ( b , c , c ) » s (a A b , c , c ) = 

= (aAb) A C . Thus, (D2) says that ( A ; A 9 - & ) la a lower semi-

l a t t i c e , wherein £ la the induced partial order. 

Suppose b , c , £ a and l e t d « s ( a , b , c ) . Due to (S4) and 

( S l ) f bA d » a C b A a f b f c ) » 8 (b ,b f c ) * bf i . e . b £ d . S imi lar-

l y , c £ d f and d la a common upper bound of b and c. Let e be 

another such bound. Then, d ». s ( a , b , c ) = s ( a , b A e , c A e ) = 

= s ( a , s ( b , e , e ) , s ( c , e , e ) ) ^ s ( a , e , e ) - * a A e £ e f by (S5) . Hen­

ce, d » b v c . 

When b v c e x i s t s , the above reasoning shows that b v c -

* s ( b v c , b , c ) . Hence, a A ( b v c ) a a A a v b v c f b f c ) = s ( a A ( b v c , ) , 

b , c ) » (b vc)< As(a ,b ,c )& s ( a , b , c ) , due to two app l icat ions of 

CS4). But due to ($51, a l a f b f e ) » s (a ,b / s ( b v c) , c / s ( b v c)) » 

* s (a ,sCb,bv c f b v c ) f 8 ( c , b v c , b v c ) ) ^ s ( a , b v c , b Y c ! » 

= - a A ( b v c ) . Hence9 s ( a , b , c ) = - a A ( b v c ) . 

Notice that the lemma implies that j, aa defined by (D3), 

is given by j(xtyf*l » (xAy)v (JTAZ) on the underlying r»ay-
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l a t t i c e of a supremum a lgeb ra . Hence, the reduc t (A;j) of a 

supremum algebra (A;s) i s a j o i n a lgeb ra , and s o , by Hick­

man 173, we obta in 

Co ro l lary 2.2. The v a r i e t y of supremum algebras i s con­

g r u e n c e s - d i s t r i b u t i v e - but no t conff ruence-3-dia t r ibut ive . 

In order to e s t a b l i s h the c h a r a c t e r i z a t i o n of supremum 

a lgebras as subreduc t s , we need to in t roduce the appropr ia te 

i d e a l - t h e o r e t i c concepts . An s - i d e a l of a supremum algebra 

(A;3) i s a non-empty subset K such t h a t , f o r any a e A and 

k-^k^e K, s^(a,k-j, ,k 2 ) e Kf When a ^ k and k e K , a - s ( a , k , k ) , 

and so a £ K. I f k j^k^eK and k^v k^ e x i s t s , then Lemma 2 .1 

implies k ,v k« = s(k , v k^,k, jk^) and so k , v k^e K. Thus, an 

s - i d e a l i s a n e a r l a t t i c e - i d e a l of the underlying n e a r l a t t i c e . 

Never the less , the true nature of s - i d e a l s i s a mystery t o u s , 

even though we can exp lo i t them* 

When K, and Kp are s - i dea l s of a supremum algebra (A ; s ) , 

the re are k-^e K and k2^ K and so , k^A k^ =* s(k^A k ^ k ^ , ] ^ ) = 

-» s(k-rA k ^ , ^ , ^ ) , says tha t k^A k^ i s in the s e t - i n t e r s e c ­

t i o n K-J-A Kp. I t follows that K^AK*, i s an s - i d e a l . Also , l e t 

TQ = A a e A: a = s ( a , k 1 , k 2 ) , k ^ c K , k ^ e i y and T ^ » i a € A: 

Ja « s ( a , t l f t ^ ) , t x ' * 2 e T n ^ f o r n ~ 1 # T n e n > w e n a V e i n d u c t i ­

vely defined the aequence K^, IL& TQ£ T^s . . . £ T n ^ T ^S . . . . 

Moreover, i t i9 not hard to show that U\T :n>OJ i s the 

smalleat s - i d e a l containing both K, and K^. Hence, when o r ­

dered by s e t - i n c l u s i o n , the s - idea l s of (A;s) form a l a t t i c e , 

wherein the infimum and supremum of s - idea l s K, and K^ are 

given by K-,0 K^ and KjV K^ =- U-CTn :n>0{, r e s p e c t i v e l y . Also , 

i t i s not hard to see tha t fo r any b e A , Cb3 a { a e A . a ^ b } 
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i s the s - idea l generated by b . In general, the s - idea l gene­

rated by a non-empty subset B of k i s U{Sn-n .£0? f where SQ * 

*-CaeA:a * 8(a ,b l f b 2 5 ) fb^$b^€ B} f S ^ =--£ae&-a -» s ( a f r l f r 2 ) f 

r l f r ? e S n i f for n £ l . 

Lemma 2 . 3 . Let (A;s) be a supremum algebra anda .b . ccA. 

Then, in the l a t t i c e of a - ldeals ( b 3 v ( c 3 *-£d€A:d « 

- a ( d f b f c ) l f and consequently (a3n ((b3 v (c3) ** ( s ( a , b , c ) ] . 

Proof. Let T -*-£d£A:d - = s ( d f b f c ) f . Then, b f c e T f by 

(SI) and (S3) . Also, i f d-^ d and d = s ( d f b , c ) then d-̂  =-

=- (djL fb fc) f due to (S4) . In other words, T i s hereditary. 

Now, i f t ^ y T and « £ A f then, because of (S5) and (S4) , 

s C e , ^ - ^ ) 3 s ( e , s ( t l f b , c ) , s( t 2 , b , c ) ) «£ s ( e f b f c) f and 

s ( e , b , c ) = s ( e , b , c ) A s ( e , b , c ) » s ( s ( e , b , C ) A e , b , c ) * 

-* s ( s ( e f b , c ) , b , c ) . Hence, s ( e , b , c ) c T , and so s ( e f t i f t . £ ) € Tf 

too. Thus, T i s an s - idea l containing b and c. It immediately 

fol lows that T = (b3vCc3. 

The remaining assert ion fol lows quickly from (S4>, and 

i t s consequence that s ( a , b , c ) ^ a. 

Theorem 2 . 4 . Lg£ L be the variety of a l l l a t t i c e s and 

a fre the ternary latt ice-polynomial s ( x f y f z ) = x A ( y v z ) . 

Then. L s fa, frfte y y l r t y Pf mprtWM ftlffit-!M« 

Proof. I t i8 e a s i l y ver i f i ed that each algebra in L 

s a t i s f i e s (SI) - (S5) . On the other hand, a supremum algebra 

(A;sX i s i n L f as the map a—*> (a3 i s a supremum algebra-em­

bedding of (A;s) into the s-reduct of i t s l a t t i c e of s - i d e a l s . 

We now turn to d i s t r i b u t i v i t y . A near la t t i ce i s dflia|rl-

butive. when the infimum dis tr ibutes over ex is tent f i n i t e su-
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pre ma. This i s equivalent to the associated join algebra2 sa­

t i s fy ing the i d e n t i t y w A j ( x , y , : ) « J(WA x , y , w A z ) , where 

x A y » j ( x , y , x ) ; see £?; Theorem 3 . 3 1 . More importantly, a 

near la t t l ce i s d i s t r i b u t i v e i f and only i f e i ther each i n i ­

t i a l segment i s a d i s t r i b u t i v e sub l a t t i ce or the l a t t i c e of 

n e a r l a t t i c e - i d e a l s i s d i s t r i b u t i v e or the f i n i t e l y generat­

ed n e a r l a t t i c e - i d e a l s form a d i s t r ibut ive l a t t i c e , when or­

dered by s e t - i n c l u s i o n . The equivalence for these la s t two 

cond itions i s contained in the proof of L'6; Theorem 1 . 2 ] . 

Theorem 2 # 5 . The following cond it ions pn a ternary a l -

gebrq (A;s) are equivalent* 

(i> (A;s) I S a supremum algebra sa t i s fy ing the ident i ty 

(S7) s ( x , y , z ) =- S ( X , X A y , x / \ z ) . 

(ill (A;s) IS a supremum algebraf whose lattice of s-

jdeals la dlgtrifrutlye. 

(iiil (A;s) satisfies the identities (SI) - (S4) and 

(SS^t where A is defined by (Dl). 

Proof, (i) «-.• (ii). It follows from (i) and Lemma 2.1 

that each initial segment of the underlying nearlattice is 

a distributive lattice. It also follows from (i) and Lemma 

2.1 that each nearlattice-ideal is an s-ideal. Thus, the two 

concepts of ideal coincide here. Aa the nearlattice is dis­

tributive, (ii) follows. 

(iil*--> (iii) holds because a distributive lattice sa­

tisfies (S6). 

(iii; ~ - M i ) . Reasoning along much the same lines em 

In the proof of Lemma 2.1, we see that (ill) implies that 

(A;A>^) is a nearlattice* Also, s(a,btc) = bvc, whenever a is 
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an upper bound of both b and c. Due to CS6), sCx,y,z) * 

ss aCxAX,y,z) = x A s ( x , y , z ) =- SCX,XA y ,xA z ) . Hence, (S7) 

holds and s ( x , y , z ) = (XA y) v CXA z ) . Then, CS6) says that 

the infimum d i s t r ibutes over such a supremum. Using these 

observations, i t i s possib le to express the l e f t s ide of (S3) 

as a supremum of infima, and so e s t a b l i s h (S5) . 

Corollary 2 . 6 . Let J) be the var ie ty pf d i s t r i b u t i v e 

l a t t i c e s and s be the ternary D-Polynomlal aCx,y,z) -»xACyvz)= 

-= C x A y ) v ( x A z ) . Then. BQ jg the variety pf a,!), qjlgebraa 

sa t i s fy ing the cond it ions of Theorem 2 . 5 . 

Call the algebras of Theorem 2 . 5 . d i s t r i b u t i v e supremum 

algebras. The above re su l t s show that Hickman's d istributive? 

jo in algebras and d i s t r i b u t i v e supremum algebras are d e f i n i -

t i ona l l y equivalent. And, perhaps, i t would be more natural 

to describe join algebras by CxAy)v/CxAz) instead of j . Co­

ro l lary 2.6 ensures our remarks at the end of Section 0 . 

Hickman's equational base for the variety of d i s t r i b u t i v e su­

premum algebras has 9 i d e n t i t i e s , as does Lyndon's. Ours has 

5 ident i t i t t e s . However, both the variety of supremum algebras , 

and i t s subvariety of d i s t r i b u t i v e algebras, can be defined 

by using at most 4 i d e n t i t i e s . This i s because of Corollary 

2 . 2 , and Padmanabhan and Quackenbush L9; Theorem 13. 

A re la ted question i s that of the minimum number of va­

r i a b l e s needed in an equational base for one of these var ie ­

t i e s . 

Theorem 2 . 7 . An eotiational base for e i ther supremum a l -

fi?frrag or d i s t r ibut ive gupremytfl aMefrrfl? need a,j jLeggt? 4 l&z 
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irJj&lsj.* And 4 ig sufficient for djUtfrfrfriUYg amxiww gte 

Proof. Suppose 3 variab les are suf f ic ient for e i ther 

of the v a r i e t i e s . Because of Theorem 2 .5 and (S7) , 3 var i ­

ab les suff ice for d i s t r i b u t i v e supremum algebras. Hence 3 

variab les suf f ice to equationally describe d i s t r ibut ive 

join algebras. Now consider the 5-element modular non-d i s ­

tr ibutive l a t t i c e . The associated join algebra i s not d i s ­

t r ibut ive , yet a l l of i t s 3~generated join subalgebras are 

d i s t r i b u t i v e . This gives the desired contrad iction. The re ­

maining assert ion follows from Theorem 2 . 5 ( i i i ) . 

When looking for examples of supremum algebras, i t i s 

important to observe that any hered itary subset of a l a t t i ­

ce i s closed under s , and so becomes a supremum subalgebra. 

We do not know whether a l l supremum algebras arise th i s way. 

But d i s t r ibut ive supremum algebras doI As observed in the 

proof of Theorem 2 . 5 , the s - i d e a l s and the n e a r l a t t i c e - i d e -

als coincide on a d i s t r ibut ive supremum algebra. Moreover, 

the f i n i t e l y generated near la t t i ce - idea l s form a l a t t i c e 

when the near l a t t i c e i s d i s t r i b u t i v e , c.f . t 6 ; Theorem 1 .23 . 

Then, due to the upper bound property, a d i s t r i b u t i v e sup­

remum algebra Is a hered i tary subset of i t s l a t t i c e of f i ­

n i t e l y generated s - i d e a l s . 

Another feature of d i s t r i b u t i v e supremum algebras i s 

that they are s-isomorphic i f and only i f they are order - i -

somorphic. In general , th i s i s not the case . For l e t us con­

s ider the 4-element near la t t i ce ., \fhich has 3 atoms a, b , 

and c, and smallest element 0. I t i s a hered i tary subset of 
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the fol lowing 4 l a t t i c e s L^ - I^L^-L^ . Here, L^ ia the Boo­

lean l a t t i c e with a , b , and c as atoms; the assoc ia ted a l ­

gebra AJL » (A;s) i s d i s t r i b u t i v e , but not subd i r ec t l y i r r e ­

d u c i b l e . Then, L^ i s the 5-element modular n o n - d i s t r i b u t i v e 

l a t t i c e ; the algebra A^ - (A;s) i s simple and not d i s t r i b u ­

t i v e . The l a t t i c e L-* haa 5 elements; the new elements are d 

and e , d =- b v c , e = a v d = a v b v c ; the a lgebra A-j = (A;3) 

i s s u b d i r e c t l y i r r e d u c i b l e , but not s imple . The four th l a t ­

t i c e L, has 6 elements; the new elements are d , e , f , d =- a v b , 

e » b v c , f =• d v e ; the a lgebra A* a (A;s) i s a lso subd i r ec t ­

ly i r r e d u c i b l e but not s imple . Up to s-isomorphism, A-* - A. 

are the only d i s t i n c t supremum algebras which contain A as a 

s u b n e a r l a t t i c e . Because of c o n g r u e n c e - d i s t r i b u t i v i t y , A2» An 

and A* generate d i s t i n c t v a r i e t i e s which cover the v a r i e t y 

of d i s t r i b u t i v e supremum a l g e b r a s . Thus, to us , the study of 

the l a t t i c e of subvar i e t i ea of supremum algebras seems hope­

l e s s l y d i f f i c u l t . 
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