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COMMENTATIONES MATHEMATICAE UNIVERSITA. * CAROLiNAE 

22,4 (1981) 

COUNTABLY COMPACT SPACES ALL COUNTABLE SUBSETS 
OF WHICH ARE SCATTERED 
1. JUHASZ. J. van MILL 

Abstract: We give several examples of countably compact dense in itself 

spaces in which all countable subsets are scattered, thus answering a 

problem raised by M. G. TKaXenKo in [5]. 
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AMS subject classification: 54D35. 

0. Introduction, It is well-Known, and easy to prove, that every, compact 

dense in itself space X contains a countable dense in itself subset. Simply 

construct a closed subset of X which admits an irreducible map, say f, onto 

the Cantor set and then proceed as follows. Choose a countable dense set 

{d : n <u>} of the Cantor set and picK, for each n < u>, a point x € f" (d 1. 
n n n 

Then {x : n < u>} is a countable dense in itself subset of X. 
n 

In view of this result the following question, due to M.G. TKacenKo [5] 

is quite natural. Does every countably compact space which is dense in 

itself and regular contain a countable dense in itself subspace ? In this 

note we will answer this question in the negative. In fact, we will give se

veral counterexamples, one of which is of n-weight w and one of which satis

fies the countable chain condition. 

All topological spaces under discussion are Tychonoff. 
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1. A Theorem. An F-space is a space In which cozero-sets are C -embedded. 

It Is easy to show that a normal space X is an F-space iff for any two F -

subsets A.B c X such that A n B - 0 - B n A w e have that A n B - 0. This re-

result will be used frequently without explicit reference throughout the 

remaining part of this note. Observe that among familiar examples of 

F-spaces are the extremally disconnected spaces and all spaces of the form 

BX-X, where X is any locally compact and o-compect space, [3,14.27]. 

A point x of * space X is said to be a weak P-point provided that x i F 

for any countable F c X-{xK 

1.1. THEOREM: Let X be a compact F-space with the property that it contains 

a dense eet of weak P-points. Then X contains a dense countably compact 

subset c such that all countable subsets of C are scattered. 

PROOF; For each a < a)., we will construct a subset P„ c x and for each l a 

* € Pa ~ U8<a P8 a countaDls SBt HCx,a) c Ug<a Pg such that 

CD if E c U« Pg is countably infinite, then E has a limit point 

inPo. 

C2) if x € P a - Ug < a Pg and if x c F, where F c X-{x} is countable, 

then F n Hfx,a) i- 0. 

Put PQ • 0 and P* « {x * Xs x is a weak P-point} and let HCx,1) • 0 for all 

x (E P.. Now suppose that we have constructed for each 0 < a < u^ the sets 

P0 and for each x € Pa U ~ F* the set HCx.8). Define p p Y<p y 

fc" « {E c ug Pfi: E is countably infinite and discrsts}. 
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Take E e E arbitrarily. Since X is a compact F-space and E is discrete, E m 

M 6 E >* t3fa>. [3,14N]. Consequently, by a result of Kunen {4]. we can find a 

point xE c i-E which is a weak P-point of i-E. Define 

pa * üß<a P
в
 u
 <V

 E
 « O-

TaKe x € ?a - Ug<a P« a r b i t r a r i l y . Choose an E(x) c E such that x - * E ( X ) 

and, for each y c E(x ) , l e t Y^y) • min{$ < as y € Pfi>. Define 
p 

H(x.a) - E(x) u ü y € E ( x ) H(y.ү(y)). 

We claim that our inductive hypotheses are satisfied. For this we only need 

to check (2). 

So let x c P - Ug Pg and taKe a countable F c X-{x> with x c F. We 

obviously may assume that F n E(x) » 0 and also, since x is a weak P-point 

of ITxT-E(x). that F n (ITxT-E(x)) - 0. Now if F n E(x) - 0 then, since X is 

an F-space» F n E(x) • 0, which is a contradiction since x c F n ElxT. There

fore, F n E(x) i- 0 and we get what we want because of the definition of 

H(x.a) and our inductive assumptions. This completes the induction. 

Put D • U P . Then 0 is clearly countably compact and dense in X. It 

remains to be shown that all countable subsets of 0 are scattered which will 

follow if we show that every countable subset of 0 has an Isolated point. 

Let F c 0 be countable and define 

a • min{3 < w : F n Pg 4 0>. 

TaKe x c P„. n F. I f x € F-lxJ then (F-{x>) n H(x.a) i- 0 and since a 

- 853 -



H(x»a) c U« Pg, this contradicts the minimality of a. Therefore, x is an 

isolated point of F.O 

2. Examples: As was remarked in the proof of Theorem 1.1, Kunen [4] has 

shown that {3a>-fc) contains a dense set of weak P-points. Since (3o)-a> has no 

isolated points, in view of Theorem 1.1 this gives us our first example. 

It is natural to ask whether under HA one could actually find a dense in 

itself countably compact subspace of .3a)-w with the property that all subsets 

of cardinality less than 2 are scattered. This we do not know, however the 

next example shows that this will not be satisfied automatically. Let X * 

• (t-L • 1) . It is easily seen that X is a compact nowhere ccc dense in 

itself space of weight UL. Hence the projective cover EX of X is a compact 

nowhere ccc F-space (in fact, extremally disconnected) without isolated 

points. Clearly, EX has TT-weight UL. By [2,3.1], every nowhere ccc compact 

F-space contains a dense set of weak P-points. Therefore, EX contains a dense 

set D which is countably compact and which has the property that all of its 

countable subsets are scattered (Theorem 1.1). Since D has also TT-weight w , 

D has a dense in itself subspace of size UL. 

We can obtain other interesting examples in the following way. Dow [1] 

proved that the projective cover E of the Cantor cube of weight (2 ) con

tains a dense set of weak P-points. Applying Theorem 1.1 again gives us a 

countably compact, dense in itself ccc space all countable subsets of which 

are scattered. 

The following interesting problem remains open: doee there exist a cardinal 

K euoh that every dense in itself regular countably compact space has a dense 

in itself subspace of size K ? C.F. Mills claims to have constructed a consis

tent example of a sequentially compact O-dimenslonal space which is dense in 
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itself and which has the additional property that every subspace of size £2 

is scattered. Thus such a K roust be greater that 2 . 

.W 
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