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COMMENTATЮNES MATHEMATICAE UNľVERSГГATIS CAROUNAE 

23.1 (1982) 

PRERADICALS AND GENERALIZATIONS OF QF-3' MODULES, I 
Josef JIRASKO 

Abstract : QF-3 modules ( i . e . modules Q with 

by \ p * (E(Q)) - 0) were studied by various authors (see [23
 f 

L101,L121 ,L14.1). Rings with p ^ M x i = 0 fgr. every finitely 
generated submodule X of BC-jR) (.Left QF-3 rings) were cha­
racterized by T. Sumioka Ll61. In this paper QF-3" modules 
are introduced and are characterized in terms of preradl-
cals. Some results on QF-.J modules and rings and preradi-
cals connected with QF-3 modules are obtained. 

Kev words: ^-hereditary preijadicals, F-cohereditary 
preradicals, QF-3 modules, QF-3 rings. 

Classification: 16A63, 16A36 

In the following R stands for an associative ring with 

unit. The category of all left R-modules will be denoted by 

R-mod. 

A preradical r for R-mod is a subfunctor of the identi­

ty functor, i.e. r assigns to each Me R-mod its submodule 

r(M) such that f (r(M) )£ r(N) for any feHomR(M,N). A prera­

dical r is said to be 

- idempotent if r(r(M)) a r(M) for every Me R-mod, 

- a radical if r(M/r(M)) - 0 for every Me R-mod, 

- hereditary if r(N) =- ITAr(M) whenever N is a submodule of 

M, Ms R-mod, 

- cohereditary if r(M/N) = (r(M) * N)/N whenever N is a 
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submodule of M, Me R-mod. 

Let r be a preradical. A module M is called 

- r-torsion if r(M) » M 

- r-torsionfree if r(M) = 0 

- r - s p l i t t i n g i f r(M) i s a direct summand in M. 

The c lase of a l l r - tors ion (r- tors ionfree) modules w i l l 

be denoted by Of ( 3^r)# 

We 8ay that a preradical r 

- has FGSP i f every f i n i t e l y generated module i s r - s p l i t t l n g . 

The zero functor w i l l be denoted by zer. For a module Q 

l e t us define a radical p*® by p*Q*(M) =- fi Ker f ^rhere f 

runs over a l l f e HomR(M,Q), Me R-mod. 

Let r , s be preradicals . I f r(M)£s(M) for every MeR-mod 

then we write r ^ s . 

The idempotent core r of a preradical r i s defined by 

r(M) --=2 K, where K runs over a l l r - tors ion submodules of 

M and the radical closure r by r'(M) « AL*where L runs over 

a l l submodule9 L of M with M/L r - tors ionfree . 

I f -tr^jic II i s a family of preradicals then . fX r^ 

(„.S:t r J la a preradical defined by ( < O T ^ ) ( M ) = . n r r 4 ( M ) 

U . : £ r , ) ( M ) - . ^ T r , ( M ) ) , Me R-mod. 
*€l i t.feJ i ' 

The Jacobsen radical will be denoted by J and the sin­

gular preradical by Z* 

A module M is called finitely embedded if there is a 

finitely generated module N such that M is a submodule of N# 

The injective hull of a module Q will be denoted by 

E(Q). 

A module M is called nonsingular if Z(M) * 0* A module M is 

called TT-projective if every direct product M of copies 
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of M i s projective* 

A ring R i s called 

- l e f t perfect i f every l e f t R-module has a project ive cover, 

- l e f t V-ring i f every simple R-module i s i n f e c t i v e , 

- l e f t semiartintern i f every nonirero l e f t R-module ha» non­

zero s o c l e . 

A prerad ical r i s said to be 

- 1-idempotent i f r(M) e (T'p for every f i n i t e l y generated mo­

dule M, 

- 2-idempotent i f r(M) € <$* for every f i n i t e l y embedded modu­

le M, 

- F-hereditary i f r(A) » AHr(B) whenever A£B f B f i n i t e l y 

generated , 

- Fj-hereditary if r(Q) = 0 implies r(X) - 0 for every fini­

tely generated submodule X of E(Q), 

- F-cohered it ary if for every module M r(M) « 2J r(X), whe­

re X runs over all finitely generated submodules of M* 

For a preradical r let us define preradicals (FhHr) and 

(FehHr) as follows: 

(Fh)(r)(Q) a r(Q) • X (QOr(X))t where X runs aver all fi­

nitely generated submodules of E(Q)f QcR-mod, 

(Fch)(r)(Q) * ^ r(X), where X runs over all finitely gene-ra­

ted submodules of Q, Qe R-mod. 

Proposition 1. 

(i) Every F-hereditary preradical is F*-hereditary. 

Cii) Every Fj-hereditary radical is F-hereditary. 

(iii) (FhHr) is an F^-hereditary preradical and r^(FhHr)* 

(iv) If r£ s, s F-hereditary then (FhHr) £a* 
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(v) (fh)(r)(Q) does not depend on particular choice of E(Q)* 

Cvi) (Fh)(r) is the least F-hereditary radical containing **• 

Cvii) (Fch)(r) is an F-co-hereditary preradical and 

( f c h ) ( r ) ^ r . 

(v i i i ) If a ^ r f s F-cohereditary then a^;(Fch)(r). 

(ix) (Fch)(r) is the largest F-cohereditary preradical con­

tained in r . 

(x) (Fch)(r)(Q) * r(Q) for every f ini te ly generated module Q. 

(xi) (Fh)(r)(Q) * r(Q) for every injective module Q. 

(xii) Every hereditary and every cohereditary preradical ia 

F-cohereditary. 

Cxiii) If^ri;i€l? is a family of F-hereditary preradicals 

then , r\ r^ is F-hereditary. 

(xiv) If r is a preradical then C\ i s;r^s, s F-hereditary 

(pre)radical^ is the least F-hereditary (pre)radical 

containing r* 

(xv) If -{r^iel? is a family of F-cohereditary preradicals 

then , .2E! r, is F-cohereditary. 

(xvi) If r is a preradical then -S { ' s; s~r, s f-coheredi­

tary (idempotent) preradical} is the largest 

F-cohereditary (idempotent) preradical contained in r. 

(xvii) A preradical r ia F^-hereditary if and only if $ is 

F-j-hereditary. 

(xviii) If r is F-hereditary then *r is so. 

(xix) If r is F-hereditary then F is so. 

Proof, (i). If r(Q) ~ 0, X is a finitely generated sub-

module of E(Q) and r F-hereditary then 0 = r(QflX) = r(X) f) 

O(Q^X) - QHr(X) and hence r(X) = 0. 
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( l i ) . Let A SB, B f i n i t e l y generated and r toe an .fj-

h e r e d l t a r y r a d i c a l * Consider the following coaamtatire d i a ­

gram 

(r(B)OA)/r(A) c > B/r(A) 

- ' " 8 

E ( ( r ( 8 ) n A ) / r ( A ) ) 

Then Im g is finitely generated and (r(B) n A)/r(A) e ^T 

since r is a radical. Hence Im g e 3L by the assumption* 

Now (r(B)n A)/r(A)£g(r(B/r(A)))£ r(Im g) = 0 and consequent­

ly r(A) = r(B)n A. 

The remaining assertions are clear. 

Proposition 2. For a radical r the following are equi­

valent 

(i) r is 1-idempotent (2-idempotent)f 

(ii) if 0~-n> k—?> B--> C—->0 is exact, B finitely generated 

(finitely embedded). A, C a &T then B e &T. 

Proof* (i) implies (ii)* It is easy since for an 1-idem­

potent (2-idempotent) radical and finitely generated (embed­

ded) module F F e &T ±t and only if HomR(T,F) « 0 for every 

T z rT. 
(ii) implies (i). Consider the following exact sequence 

0—> r(B)/r(r(B))^—?B/r(r(B))—> B/r(B)—>O f where B ii 

finitely generated (embedded). Now B/r(r(B)) e & by (ii) and 

consequently r(B) e (f . 

Proposition j.» The following are equivalent for a pre-

radical r 

(i) r is F-hereditary, 

(ii) r(A) =- Anr(B) whenever A£B, B finitely embedded, 
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( i i l ) i f A~^> r(B) i s a »oww>rphi*a /A c y c l i c / and B ia 

f i n i t e l y generated (embedded) then A £ iT^, 

( iv ) a) r i s 1-idempotent (2-idempotent) 

and 

b) whenever A£ Bf B e ( T p / A c y c l i c / f B f i n i t e l y embed­

ded then A e &T* 

Propoaition 4 . The following are equ ivalent for a pre*-

radical r 

( i ) r i s Fj-heredifrary, 

( i i ) r(Q) = 0 implie8 r(X) * 0 for every f i n i t e l y embedded 

aubmodule X of £(Q). 

Propoaition 5. Let r be a preradical . Then r i s F-he-

reditary i f and only i f (FchHr) i s hereditary. 

Proof. Suppose r i s ^-hereditary and A ^ (FchHr) (B). 

Without loss of general i ty we can assume A i s f i n i t e l y gene­

rated. Hence there are f i n i t e l y generated submodules X* f 

i e - Q f 2 f . . . , n } of B such that A .s.-S, r(X±)s r ( ^ X±) and 

consequently A e ^(p» c h) (r ) s i n c e r i a F-hereditary and A i s 

f i n i t e l y generated. 

Corollary 6* An F-eohereditary preradical i s F-heredi-

tary i f and only i f i t i s hereditary* 

Proposition 7. Let r be an F~hereditary radical* Then 

there i s an in jec t ive (FchHr)-toraionfree module Q such that 

r(N) « p Q*(N) for every f i n i t e l y embedded module N» 

Prgof. By Proposition 5 and [ 3 1 f Theorem 2.5 there ia 

an in jec t ive (FchHr)-torsionfree module Q such that 

<FchHr) * p*Q*. Hence r(N) = p*Q*(N) for every f i n i t e l y em­

bedded module N. 
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Proposition 8. Let r be an F-hereditary prBradrcal 

(radical) and a> is the set of a l l left ideals I with 

R/I e rTr. Then 

(j) a) is a (radical) f i l t e r . 

If s is the hereditary preradical (radical) corresponding to 

cj then 

( i i ) s (M) = { m e M ; R m <£ CrrJf, 

(iii) s is the largest hereditary preradical (radical) con­

tained in r, 

(iv) s = (FchHr). 

A left R-module Q is called 

- QF-3" if the radical p*Q*is F-hereditary, 

- i QF-3" if the idempotent radical p is F-hereditary. 

Proposition 9* Let Qe R-mod. Then the following are e-

quivalent 

(i) Q is QF-3", 

Cii) p Q (X) = 0 for every finitely generated (embedded) 

submodule X of E(Q), 

(iii) if X is a finitely generated (embedded) submodule of 

E(Q.$ then X is isomorphic to a submodule of a direct product 

of copies of Q, 

(iv) (Fch)(p^Q*) is hereditary, 

M p ^ ( X ) = p*E(Q)*(X) for every finitely generated (em­

bedded module X, 

(vi) (FchXp^ 5) -=piE<«>*. 

(vii) (Fch)(pW5KE(Q)) = 0, 

(vili) for every finitely generated (embedded) module X 

p{E(QH(x) = 0 implies pW5 ( x ) „ 0f 
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(ix) a) Horn (p^(X),Q) = 0 for every finitely generated 
R 

(embedded) module X 

and 

b) if A~B, 'A cyclic', B finitely embedded and 

HomR(B,Q) = 0 then HomR(A,Q) = 0, 

(x) a) If 0—>A-^B—*• C—*0 is exact, B is finitely ge­

nerated (embedded), A a ^ {§\ and C a ^ ^\ then B a 3ylQr 

and 

b) if A.̂: B 'A cyclic/, 3 finitely embedded and 

HomR(B,Q) = 0 then HomgU^) = 0, 

(xi) a) if 0 —•*• A •--> B —> C—>0 is exact, B is finitely ge­

nerated (embedded), A a 3"p(Q4 and C « .^(Qr then B <s <T' W 

and 

b) for every finitely embedded module X 

HomR(X,E(Q)) = 0 if and only if Hom-^X.Q) = 0, 

(xii) for every monomorphism h:A—>B, where B is finitely 

generated (embedded), for every non-zero homomorphism f:A-^ 

—9- Q there are homomorphisms k:Im f—> Q and g:B—*Q with 

0-j= k of = g oh, 

(xiii) for every cyclic module C, finitely generated (embed­

ded) submodule X of E( C) with h:C c—> X and every non-zero 

homomorphism f :C— * Q there are homomorphisms k:Im f—•> Q 

and g:X—> Q. such that Otkof =- g c h, 

(xiv) if A is a /cyclic/ submodule of a finitely generated 

(embedded) module B and HomR(A,Q) j 0 then there is a homo­

morphism g:B Q with g(A)^~0. 

Proof. The equivalence of the first eleven conditions 

follows from Propositions 1 (i),(ii), 2, 3 iv), 4 and *„ 



(ii) implies (xii). Consider the following commutative 

diagram 

A c h—^ B 

t \ / 
Q / 

E(Q> 
f 

where f ̂ 0 and B is finitely generated. Then p (Im p) = 0 

by (ii) and hence 0-4 f(A) 4 P dm p). Thus there is a homo-

morphism q:Im p ^ Q with q(f(A))i 0. Put k =- Q)f(A) and 

g sqi/p, Then 0 ( k *- f = g • h. 

(xiv) implies (ii). Suppose there is a finitely genera­

ted submodule X of E(Q) such that p^Q'MX) I 0. Then L = 

= pJlQis(X)/\Q 10. Hence there is a homomorphism g:X /Q with 

g(L)tO by (xiv), a contradiction. 

The rest is clear. 

Proposition 10. Let Qc R-mod. Then the following are 

equivalent 

(i) Q is iQF-3", 

(ii) HomR(Y,Q) :-0 for every finitely embedded nonzero sub-

module Y of F(Q), 

(iii) (Fch)(p Q ) is hereditary, 

(iv) p1Q'T(X) =- p<E(*'*(X) for every finitely generated (em­

bedded) module X, 

(v) (FchH^~) * p*E(Q)i , 

(vi) (Fch)(plQM(E(Q)) = 0, 

(vii) for every finitely generated (embedded) module X 

p^EU)J(X) = 0 implies HomR(Y,Q)tO whenever OtY^X, 

(viii) if A9B/A cyclic/, B finitely embedded and 
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HomR(B,Q) = 0 then HomR(A,Q) = 0, 

(ix) for every finitely embedded module X HomR(X,E(Q)) = 0 

if and only if HomR(X,Q) = 0. 

Proof. I t follows immediately from Propos i t ions l ( i ) , 

( i i ) , 3 ( i v ) , 4 and 5. 

Propos i t ion 11 . Let Q£R-mod. If p*Q* has FGSP then Q 

i s Q F - 3 " i f and only i f Q i s i Q F - 3 " . 

Proof. With respect to P ropos i t ion l ( x i x ) i t suf f ices 

to prove the "only if" p a r t . Suppose there i s X^E(Q), X f i ­

n i t e l y generated and L = p ^ M t o . Then HomR(L,QH 0 by 

Propos i t ion 10 since Q is iQF-3 ' . Thus there i s a nonzero 

homomorphism f:L-—;> Q which can be extended to a homomorph-

ism g:X —? Q, a con t rad ic t ion . 

P ropo s i t ion 12. Let S be a simple R-module. Then S i s 

Q F - 3 " i f and only i f i t i s i n j e c t i v e . 

Proof. Suppose 04=S i s simple and Q F - 3 " , 0 * X S E ( S ) , X 

f i n i t e l y generated. Then p ^ ( X ) = 0. Hence 04-S-4p t S*(X) and 

consequently the re i s a homomorphism f:X—* S such tha t f(S)4=0. 

Since Ker f f iS -* 0, f i s an isomorphism. Thus X = S. Hence S = 

« E(S) i s i n j e c t i v e . 

A module Q i s sa id to be an F-cogenerator i f p ^UN) = 0 

fo r every f i n i t e l y generated (embedded) module N. 

Remark 13 . Let QeR-mod. Then Q i s an F-cogenerator i f 

and only i f (FchMp*^) » ze r . 

P ropos i t ion 14* For Qe R-mod the following are equiva­

lent 

( i ) Q i s an F-cogenerato r , 
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(ii) Q is QF-3" and E(Q) is a cogenerator, 

(iii) Q is QF-3" and every simple R-module is isomorphic 

to a submodule of Q. 

Proof, (ii) is equivalent to (iii). By [12], Proposi­

tion 2.8. (i) is equivalent to (ii). It follows immediately 

from Proposition 9. 

Corollary 15. Let Q be an infective R-module. Then Q 

is an F-cogenerator i f and only i f i t is a cogenerator. 

Proposition 16. Let Q = J T S, where f̂ is the repre-

sentative set of simple lef t R-modules. Then the following 

are equivalent 

(i) Q is QF-3" , 

( i i ) J is F-hereditary, 

( i i i ) Q is an F-cogenerator, 

(iv) R is a left V-ring. 

Proof, (i) is equivalent to ( i i i ) . It follows from Pro­

position 14* The rest is clear since J = p ^ . 

Proposition 17. The following are equivalent for a 

faithful module Q: 

(i) (FchMp^) = Z, 

( i i ) Q is QF-3" and Z(Q) = 0* 

( i i i ) ^ ( W h ) ( p W ) 8 *z-

Proof, (iii) implies (ii). As it is easy to see Z(Q) = 

= 0. If X£E(Q), X finitely generated then Z(X) = 0 and con­

sequently ptQ1;(X) = 0. 

(ii) implies (i). Z(Q) = 0 implies Z.=-pCQ^ and hence 

Z £(Fch)(p^Q ). On the other hand if N is finitely embedded 

and r-torsion, where r = p , n a N and I is a left ideal 
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with IOi(0:n) =- 0. Trjen the homomorphism f:I —--v In defined 

by f(i) « in, l e i is an isomorphism. Now I & 3*T since r is 

F-hereditary. Hence ISr(R) =- 0 by assumption. Thus (0:n) 

is essential in R and consequently Z(N) » N. Therefore 

r(N)*Z(N) for every finitely embedded module N and we have 

(Fch ) (p W ) . -=Z. 

The rest is clear. 

Corollary 18. Let R be a ring with Z(RR) * 0. Then the 

following are equivalent 

(i) R is a left QF-3" ring (i.e. RR is QF-3"), 

(ii) (Fch)(p W) * Z, 

(iii) p*Rl,J(X) =- 0 whenever X£N f X finitely generated and 

N nonsingular. 

Proposition 19. For an TT-projective faithful R-modu-

le Q the following are equivalent 

(i) Q is QF-3" 

(ii) for every finitely generated submodule X of Ê  Q) the­

re is a projective module P^ such that X is isomorphic to a 

submodule of P«. 

Prpog. (i) implies (ii). If X is a finitely generated 
C~ "> 

submodule of E'Q) then p %<(X) -= 0 and hence X is isomorph­

ic to a submodule of Q for some I, which is projective. 

(ii) implies (i). If X is a finitely generated submodu­

le of £(Q) and X - P for some projective module P then 

piQ^(X)£piQ*(P) * 0 since Q is faithful. 

Corollary 20. Let R be left perfect and right coherent 

ring. Then the following are equivalent 
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(i) R is left QF-3", 

(ii) for every finitely generated submodule X of E(RR) the­

re is a projective module P^ such that X is isomorphic to a 

submodule of P~. 

PrpppsJUPfl 21* 

(i) Every direct product of QF-3" R-modules is QF-3". 

(ii) Every direct sum of QF-3" R-modules is QF-3". 

(iii) Every essential extension of a QF-3",R-module is 

QF-3". 

Proof, (i). Let Q —"PiQ.*, where Q.,, i c l are QF-3" 

modules. Then P - 4O1 P is F-hereditary by Proposi­

tion l(xiii). Thus Q is QF-3". 

(ii). It can be made similarly as in (i). 

(iii). Obvious. 

Proposition 22. Let A,BCR-mod. If p*^A*(B) = 0 then 

the following are equivalent 

(i) A 0 B is QF-3", 

(ii) A is QF-3". 

Using the method of L# Bican [23, Theorem 11 we obtain 

the following theorem. 

Theorem 21. Let M be a finitely embedded left R-modu-

le, S = HomR(M,M) and N*. R-mod. If Ms is flat and N is QF-3" 

then Hon^CM.N) is a QF-3" left S-module. 

Prgpjf. Let us denote X = HomR(M,N). If M© is flat then 

SM* = HomR(M,F(N)) is infective and consequently E(^X)^oM* 

Now if c?Y is a finitely generated submodule of E(^X) then 

$Y -s;^/.Sfi, for some t±z. ^M* i 5 il,2,... ,n:. Further 
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Im f± i s f i n i t e l y embedded, i e U , 2 , . . . , n ^ since RM ia f i ­

n i t e l y embedded and hence SX £HomR(M,Z), where Z i s a f i n i ­

t e l y generated submodmle of E(N). As i t i s easy to see 

p"lS ^ ( s Y ) £ p ^ ^(HomR(M,Z)) = 0 s ince p*N}(Z) -= 0 and con­

sequently SX i s QF-3' . 

Coro l lary 24* Let R, S be Morita equivalent r ings v ia 

F * Homj-CP,-). I f RQ i s Q F - 3 " then SF(Q) i s Q F - 3 " . 

Cpro l lary 25. Let R and S be Morita equivalent r i ngs 

via F = HomR(P,-). Then F induces one-to-one correspondence 

between the isomorphism c lasses of QF-3 R-modules and 

Q F - 3 " S-modules. 

Cpro l lary 26. I f R and S are Morita equivalent r ings 

then R i s l e f t Q F - 3 " i f and only i f S i s l e f t Q F - 3 ' \ 

Propos i t ion 27. Let Q^R-mod. I f every cyc l ic submodu-

le of Q i s Q F - 3 " then Q i s Q F - 3 " . 

Proof* I t follows immediately from Propos i t ion 9. 

Coro l lary 2ft* The fo l lowing are equivalent 

( i ) every l e f t R-module i s Q F - 3 " , 

( i i ) every cyc l ic l e f t R-module i s Q F - 3 " . 

P ropos i t ion 2ft. Let R be e i t h e r l e f t or r i g h t semiar-

t i n i a n . Then the fo l lowing a s se r t ions are equivalent 

( i ) every l e f t R-module i s Q F - 3 " , 

( i i ) R i s a l e f t V-r ing , 

( i i i ) every r i g h t R-module i s Q F - 3 " , 

( iv) R i s a r i g h t V-r ing . 

Proof, ( i ) implies ( i i ) and ( i i i ) implies ( i v ) . I t f o l -
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lows from P r o p o s i t i o n 12. For the r e s t see [ 1 5 1 . 
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