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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,1 (1982)

PRERADICALS AND GENERALIZATIONS OF QF-3' MODULES, |
Josef JIRASKO

Abstract: QF-3 " modules (i.e. modules Q with
p*m(E(Q)) = 0) were studied by various authors (see (2],

(107,{121,(141). Rings with p'R*(X) = O for every finitely
generated submodule X of E(pR) (left QF-3 rings) were cha-

racterized by T. Sumioka [16]. In this paper QF-3 ~ modules
are introduced and are chargcterized in terms of preradi-
cals. Some results on QF-} modules and rings and preradi-
cals connected with QF-3  modules are obtained.

Key words: E-hereditary prergdicals, F-cohereditary
preradicals, QF-3  modules, QF-3  rings.

Classification: 16463, 16436

In the following R stands for an associative ring with
unit. The category of all left R-modules will be denoted by
R-mod.

A preradical r for R-mod is a subfunctor of the identi-
ty functor, i.e. r assigns to each Me R-mod its submodule
r(M) such that £(r(M))=r(N) for any f ¢ Homy (M,N). A prera-
dical r is said to be
- idempotent if r(r(M)) = r(M) for every Me R-mod,

- a radical if r(M/r(M)) = O for every Me R-mod,

hereditary if r(N) = NNnr(M) whenever N is a submodule of
M, M¢ R-mod,
cohereditary if r(M/N) = (r(M) + N)/N whenever N is a
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submodule of M, Me R-mod,

Let r be a preradical. A module M is camlled
-~ r-torsion if r(M) =M
- r-torsionfree if r(M) = O
- r-splitting if r(M) is a direct summand in M.

The class of all r-torsion (r-torsionfree) modules will
be denoted by ’J"r (3'1_).

We say that a preradicsl r
~ has FGSP if every finitely generated module is r-splitting.

The zero functor will be denoted by zer. For a module Q
let us define a radical p{Q} by 'p{q}(l) = (A Ker f where f
runs over all fe Homp(M,Q), Me R-mod.
Let r, 8 be preradicals. If r(M)c s(M) for every Me R-mod
then we write r<s,

The idempotent core T of a preradical r is defined by
T(M) = = K, where K runs over all r-torsion submodules of
M and the radical closure T by T(M) = NL,where L runs over
all submodules L of M with M/L r-torsionfree.

If {r ;i€ I} 1s & family of preradicals then iQI ry
(:,%I ry) is a preradical defined by (1/2.1 r;) (M) =0y ri(M)
(CZ e = = r,00), Me R-nod.

The Jacobsen radical will be denoted by J and the sin-
gular preradical by Z.

A module M is called finitely embedded if there is a
finitely generated module N such that M is a submodule of Ns

The injective hull of a module Q will be denoted by
E(Q).
A module M is called nonsingular if Z(M) = O. A module M is
called TT-projective if every direct product Ml of copies
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of M is projective.
A ring R is called
- left perfect if every left R-module has a projective cover,
- left V-ring if every simple R-module is injective,
- left semiartinian if every nonzero left R-module has non-
zero socle.
A preradical r is said ‘to be
- l-idempotent if r(M) Gifr for every finitely generated mo-
dule M,
- 2-idempotent if r(M) € f} for every finitely embedded modu-
le M,
- F-hereditary if r(A) = ANT(B) whenever ASB, B finitely
generated,
- Fy-hereditary if r{(Q) = O implies r(X) = O for every fini-
tely generated submodule X of E(Q),
-~ F-cohereditary if for every module M r(M) = = r(X), whe-
re X runs over all finitely generated submodules of M.
For a preradical r let us define preradicals (Fh)(r) snd
(Fch)(r) as follows:
(FR) (r)(Q) = r(Q) + = (QNr(X)), where X runs over all fi-
nitely generated submodules of E(Q), Q€ R-mod,
(Feh) (r)(Q) = = r(X), where X runs over all finitely gemera-
ted submodules of Q, Q€ R-mod.

Proposition 1.
(1) Every F-hereditary preradical is F,-hereditery.
tii) Every F,-hereditary radical is F-hereditary.
(144) . (M) (r) is an F,-hereditary preradical and rz(fm){r).
(1v) If res, s F-hereditary then (Fh)(r) <s.
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(v) (M) (r)(Q) does not depend on particular choice of E(Q).

(vi) (’M is the least P-hereditary redicsl containing T.

(vii) (Pch)(r) is an FP-cohereditary preradical and
(Feh)(r)£r.

(viii) If s<r, s PF-cohereditary then s <(Fch)(r).

(1x) (Fch)(r) is the largest F-cohereditary preradical com-
tained in r.

(x) (Pch)(r)(Q) = r(Q) for every finitely generated module Q.

(xi) (FPh)(r)(Q) = r(Q) for every injective module Q.

(x1) Every hereditary and every cohereditary preradical is
F-cohereditary.

(xii11) If{r;3ic I{ is a family of F-hereditary preradicals
then &QI ry is F-hereditary.

(xiv) If r is a preradical then- N i s;r<s, s F-hereditary
(pre)radical} is the least P-hereditary (pre)radical
containing r.

(xv) 1If ir ;1 €It 1s a family of F-cohereditary preradicals
then 4,’.:2'] ry is F-cohereditary.

(xvi) If r 48 s preradical then = {s; s<r, s Ff-coheredi-
tery (idempotent) preradicallt is the largest
F-cohereditary (idempotent) preradical contsined in r.

(xvii) A preradicsal r is F,-hereditary if and only if % is
rl-hereditary.

(xviii) If r is F-hereditary then ¥ is so.

(xix) 1If r is F-hereditary then T is so.

Proof. (i). If r(Q) =0, X is a finitely generated sub-
module of E(Q) and r F-hereditary then 0 = r(QNX) = r(X) N
NQNX) =QNr(X) and hence r(X) = 0.
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(11). Let ASB, B finitely generated and r be an n-
hereditary radical. Comsider the following commutative dis-

gram
(r(B)NA)/r(A) &——> B/r(A)

-

b4 .7 8

E((r(B)N A)/v(A)) .
Then Im g is finitely generated and (r(B)NA)/r(A) € 3;.
since r is g radical. Hence Im g ¢ ?’r by the assumption.
Now (r(B)NA)/r(A)c g(r(B/r(A)))S r(Im g) = O and consequent-
1y r(A) = r(B)NA.

The remaining asssertions are clear.

Propogition 2. For a radical r the following are equi-

valent
(i) r is l-idempotent (2-idempotent),
(i1) if 0—> A—> B—> C—> 0 is exact, B finitely generated

(finitely embedded), A, C e 3"r then B & 7 ..

Proof. (i) implies (ii), Tt is easy since for an l-idem-
potent (2-idempotent) radical and finitely generated (embed-
ded) module F Fe ¥, if and only if Homp(T,F) = O for every
T e ‘.’f'r.

(ii) implies (i). Consider the following exact sequence
0—> r(B)/r(r(B)) = B/r(r(B)) —> B/r(B)—> 0, where B is
finitely generated (embedded). Now B/r(r(B)) ¢ 3"1_ by (i1) and
consequently r(B) e :’T'r.

Pro t . The following are equivalent for & pre-
radical r

(1) r is F-hereditary,
(1i) r(A) = ANr(B) whenever A=B, B finitely embedded,
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(111) 12 A-5> r(B) 15 o monomorphism /A cyeclic/ and B is
finitely genersted (embedded) then A € 3},
(iv) a) r is l-idempotent (2-idempotent)
and

b) whemever ASB, B €T /A cyclic/ , B finitely embed-
ded then A € J..

Propogition 4. The following are equivalent for a pre-
radical r
(1) r is F,-hereditary,
(11) r(Q) = O implies r(X) = O for every finitely embedded
submodule X of E(Q).

Pr n 5. Let r be a preradical. Then r is F-he-
reditary if and only if (Fch)(r) is hereditary.

Proof. Suppose r is P-hereditary and A =(Peh)(r)(B).
Without loss of generality we can assume A is finitely gene—
rated. Hence there are finitely generated submodules Xi,
1e{1,2,...,n} of B such that A 52%; r(Xy)e r(%%é X;) and
consequently A Efr(?ch)(r) since r is F-hereditary and A is
finitely generated.

Corollary 6. An F-cohereditary preradical is P-heredi-
tary if and only if it is hereditary.

Propogition 7. Let r be an F-hereditary radical. Then
there is an injective (Fch)(r)-torsionfree module Q sueh that
r(N) = p{Q}(N) for every finitely embedded module N,

Progof. By Proposition 5 and (3], Theorem 2.5 there is
an injective (Fch)(r)-torsionfree module Q such that
TN Q3 _ AQ%
{Frch)(r) = p "~ . Hence r(N) = p V' (N) for every finitely em=
bedded module N,
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Propogition 8. Let r be an F-hereditary preradical
(radicsl) and w is the set of all left idesls I with
R/I € J. Then
(i) w is a (radical) filter.
If s is the hereditary preradical (radical) corresponding to
< then
(11) s(M) ={meM;Rm ¢ T.%,
(1ii) s is the largest hereditary preradical (radical) con-
tained in r,

(iv) s = (Fch)(r).

A left R-module Q is called
- QF-3°

’

if the radical pi'is F-hereditary,
- 1 QF-3" if the idempotent radical p'®' is F-hereditary.

Propogjtion 9. Let Qe R-mod. Then the following are e-
quivalent
(1) Q is QF-3"7,
(11) p{Q}(X) = 0 for every finitely generated (embedded)
submodule X of E(Q),
(1ii) 4if X is a finitely generated (embedded) submodule of
E(Q) then X is isomorphic to a submodule of a direct product
of copies of Q,
(iv) (Fch)(p*Q‘) is hereditary,
(v) p{Q§(X) = p{E(Q)}(X) for every finitely generated (em-
bedded module X,
(v1) (gen)(pidd) = pIEQN
(vi1) (Fen) (p¥)(E(Q) =0,
(viii) for every finitely generated (embedded) module X
p{E(Q)z(X) = 0 implies p{Q;(X) = 0,
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(1x) a) Homy(p'3H(X),2) = © for every finitely generated

(embedded) module X
and

b) if A=B, A cyclic, B finitely embedded and
Homp(B,Q) = O then Homg(4,Q) =0,
(x) a) If 0—>A—>B—>C—>0 is exsact, B is finitely ge-
nerated (embedded), A & ?E{QQ and C = ?}‘Q? then B = 3£{Q?
and

b) if AZ B ‘A cyclic/, B finitely embedded and
HcmR(B,Q) = 0 then HomR(A,Q) =0,
(xi) a) if 00— A~—> B —» C—>0 is exact, B is finitely ge-
nerated (embedded), A e ﬁh{Q% and C < 3}{Q3 then B ¢ ?5{Q¥
and

b) for every finitely embedded module X
HomR(X,E(Q)) = 0 if and only if HomR(X,Q) =0,
(xii) for every monomorphism h:A —>B, where B is finitely
generated (embedded), for every non-zero homomorphism f:4 —
—> Q there are homomorphisms k:Im £f—5 Q and g:B—=Q with
Otkof = goh,
(xiii) for every cyclic module C, finitely generated (embed-
ded) submodule X of E(C) with h:C <> X and every non-zero
homomorphism f:C — Q there are homomorphisms k:Im f—> Q
and g:X~—> Q such that C+kecf = goh,
(xiv) if A is s /ecyclic/ submodule of a finitely generated
(embedded) module B and Homp(A,Q) | O then there is a homo-
morphism g:B - — 3 with g(A)§ 0.

Proof. The equivalence of the first eleven conditions

-

follows from Propositions 1 (i),{ii), 2, 3 "iv), 4 and =.




(11) implies (xii). Consider the following commutative

diagram
b 58
@
vsoo®
E(Q)

’
where £+0 and B is finitely generated. Then p{Qﬁ(Im p) =0
by (ii) and hence 04 £(4)4 p{Qg(Im p). Thus there is a home-
morphism q:Im p- . Q with q(£(A))1 0. Put k = q|p(,) and
g =qupe. ThenOi ke¢f = g h,

(xiv) implies (ii). Suppose there is a finitely genera-
ted submodule X or E(Q) such that p'?%X) (0. Then L =
= p*QR(X)l\Q { 0. Hence there is a homomorphism g:X > Q with
g(L)+ 0 by (xiv), a contradiction.

The rest is clear.

Propogition 10. Let Q< R-mod. Thern the following are
equivalent
(1) 2 is 1QF-3"7,
(i3) HomR(Y,Q):‘O for every finitely embedded nonzero sub-
module Y of F(Q),
(iii) (Fch)(;T:r) is hereditary,
(iv) ;ﬁai(x) = p‘E(z):(X) for every finitely generated (em-
bedded) module X,
(v) (Fch)(;7§_) = p&E(:)i,
(vi) (fFen) (p %) (£(2)) = o,
(vii) for every finitely generated {embedded) module X
p{E(:)s(X) = O implies HomR(Y,Q)1:0 whenever 0 $Y<¢X,
(viii) 4f ASB /A cyclic/, B finitely embedded and
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Homp(B,Q) = O then Homp(4,Q) = 0,
(ix) for every finitely embedded module X Homp (X,E(Q)) = ©
if and only if HomR(X,Q) = 0.

Proof. It follows immediately from Propositions 1(i),
(i1), 3(iv), 4 and 5.

Proposition 11. Let Q¢ R-mod. If pt<% has FGSP then Q
is QF-3"" if and only if Q is i QF-3"".

Proof. With respect to Proposition 1l(xix) it suffices
to prove the "only if" part. Suppose there is X< E(Q), X fi-
nitely generated and L = piQk(X)*'O. Then Homp(L,Q)+ O by
Proposition 10 since 2 is iQF-3". Thus there is a nonzero
homomorphism f:L —> Q which can be extended to a homomorph-

ism g:X — Q, a contradiction.

Proposition 12. Let S be a simple R-module. Then S is
QF-3"" if and only if it is injective.

I

Proof. Suppose O+S is simple and Q#-3 ", O*X SE(S), X
finitely generated. Then p{S}(X) = 0. Hence OA*S:$p{S§(X) and
consequently there is a homomorphism f£:X —> S such that £(S)#+ 0.
Since Ker fNS =0, f is an isomorphism. Thus X = S. Hence S =

= E(S) is injective.

A module Q is sald to be an F-cogenerator if png(N) =z 0
for every finitely generated (embedded) module N.

Remark 13. Let QcR-mod. Then Q is an F-cogenerator if
and only if (Fch)(p*QE) = zer.

Propogition 14. For Q& R-mod the following are equiva-

lent

(1) Q is an F-cogenerator,
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(1i) Q is QF-3"" and E(Q) is a cogenerstor,
(11i) Q is QF-3"~ and every simple R-module is isomorphic

to a submodule of Q.

Proof. (ii) is equivalent to (iii). By [12], Proposi-
tion 2.8, (i) is equivalent to (ii). It follows immediately

from Proposition 9.

Corollgry 15. Let Q be an injective R-module. Then Q

is an F-cogenerator if and only if it is a cogenerator.

Propogition 16. Let Q =S7;TRS, where & is the repre-
sentative set of simple left R-modules. Then the following
are equivalent
(1) Q is QF-3"7,

(ii) J is F-hereditary,
(i1i) Q is an F-cogenerator,
(iv) R is a left V-ring.

Proof. (i) is equivalent to (iii). It follows from Pro-

position 14. The rest is clear since J = p{Q}.

Proposition 17. The following are equivalent for a
faithful module Q:
(1) (ren)(pRY) = 2,
(11) @ is QF-3"" and Z(Q) = 0,
(1i1) ‘q’(Fch)(p‘Q})‘ 7y

Proof. (iii) implies (ii). As it is easy to see Z(Q) =
= 0. If X=E(Q), X finitely generated then Z(X) = O and con-
sequently p{Q}(X) = 0,

(1i) implies (i). 2Z(Q) = O implies Z.épQQ{ and hence
VA é(Fch)(p‘Q}). On the other hand if N is finitely embedded
and r-torsion, where r = p*Qk, neN and I is a left ideal
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with IN(0:n) = O. Then the homomorphism f:I — In defined
by £(1) = in, 1 €I is an isomorphism. Now I = :T'r since r is
P-hereditary. Hence I=r(R) = O by assumption. Thus (O:n)
is essential in R and consequently Z(N) = N. Therefore
r(N) £ Z(N) for every finitely embedded module N and we have
(pen) (p'9%) -z,

The rest is clear.

Corollsry 18. Let R be a ring witﬁ Z(RR) = 0. Then the
following are equivalent
(1) R s a left QF-3"" ring (i.e. pR 1s ¥¥-3""),
(11)  (Fen) (pRY) = 2,
(111) piR"(x) = O whenever X<=N, X finitely generated and

N nonsingular.

0 iti . For an TT-projective faithful R-modu-
le Q the following sre equivalent
(1) q1s =377
(1i) for every finitely generated submodule X of E/3) the-
re is s projective module Px such that X is isomorphic to a

submodule of PX'

Progof. (i) implies (ii)., If X is a finitely generated
submodule of E’Q) then pg;}(x) = 0 and hence X is isomorph-
ic to a subrodule ‘of QI for some I, which is projective.

(ii1) implies {i). If X is a finitely generated submodu-
le of E(Q) and X= P for some projective module P then
p!¥(x12 p¥(p) = 0 since q 1s faithrul.

Corollary 20. Let R be left perfect and right coherent

ring. Then the following are equivalent
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(1) R 4s left Qr-3"°,
(ii1) for every finitely generated submodule X of E(RR) the~
re is a projective module Px such that X is isomorphic to a

submodule of PX'

Pr 21.
(1) Every direct product of QF-3"  R-modules is QF-3"".
(11) Every direct sum of QF-3"’ R-modules is QF-3" .
(111) Every essential extension of a QF-3"  R-module is
QF-37".

Proof. (1). Let Q =;LT; Qys where Q;, ie I are 3"
modules. Then p{Q§=3f;n P Qi is F-hereditary by Proposi-
tion 1(xiii). Thus Q is WF-3"".

(11). It can be made similarly as in (i).

(iii). Obvious.

Proposition 22. Let 4,B¢ R-mod. If plA¥(B) = O then
the following are equivalent
(1) A@®B s QF-3"",
(11) A 1s QF-3"",

Using the method of L. Bican [2], Theorem 11 we obtain
the following theorem.

Theorem 23. Let M be a finitely embedded left R-modu-
le, S = Homp(M,M) and Nc R-mod. If Mg is flat and N is QF-3""
then HomR(M,N) is a Q@=-3"" left S-module.

Proof. Let us denote X = Homp(M,N). If Mg is flat then
GM™ = Homg (M,F(N)) is injective and consequently E(JX) = M™%
Now if oY is a finitely generated submodule of E(SI) then
Y = ,Z,sf,, for some fy< M¥ 1:z1,2,...,n%, Further
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Im £; is finitely embedded, i e{1,2,...,n3% since gM 1= Ti-
nitely embedded and hence SYE&HomR(M,Z), where Z is a fini-
tely generated submodule of E(N). As it is easy to see

INY

1aX X
pLS k(SY)E pis 1(HomR(M,Z)) = 0 since p' ' (Z) = O and con-

sequently oX is w37

Corollary 24. Let R, S be Morita equivalent rings via
F = HomgP,-). If pQ is QF-3"" then gF(Q) is @F-3"",

Cor a 25. Let R and S be Morite equivalent rings
via F = HomR(P,—). Then F induces one-to-one correspondence
between the isomorphism classes of QF-3"" R-modules and

QF-3"’ S-modules.

Corollary 26. If R and S are Morita equivalent rings

’

then R is left QF-3 " if and only if S is left QF-3"".

Propogition 27. Let Q ¢R-mod. If every cyclic submodu-
le of Q i3 QF-3"" then Q is QF-3"".

Proof. It follows immedistely from Proposition 9.

Corollary 28. The following are equivalent
(1) every left R-module is QF-3"",

(11) every cyclic left R-module is F-3"".

Pr i . Let R be either left or right semiar-
tinian. Then the following assertions are equivalent
(1) every left R-module is QF=3"",
(i1) R is a left V-ring,
(1i1) every right R-module is QF-3"",
(iv) R is a right V_ring.

Proof. (i) implies (ii) end (iii) implies (iv). It fol-
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lows from Propositicn 12. For the rest see [151.

n

[2]

(3]

(4]

[5)

(6l

7

L8]

(9]

(101

11

[121

(1
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